The Potential Impact of Climate Change on Soil Properties and Processes and Corresponding Influence on Food Security
Abstract
:1. Introduction
2. Soils as a Part of the Global C and N Cycles
3. Influence of Climate Change on Soil Properties and Processes
4. Food Security in a Changing Climate
Food Source | Calories a | Percent of Calories |
---|---|---|
Rice | 557 | 25.5 |
Wheat | 521 | 23.9 |
Maize | 147 | 6.7 |
Sorgum | 33 | 1.5 |
Potatoes | 60 | 2.7 |
Cassava | 42 | 1.9 |
Sugar | 202 | 9.3 |
Soybean Oil | 87 | 4.0 |
Palm Oil | 50 | 2.3 |
Milk | 122 | 5.6 |
Animal Fats (raw and butter) | 62 | 2.8 |
Eggs | 33 | 1.5 |
Meat (pig) | 117 | 5.4 |
Meat (poultry) | 46 | 2.1 |
Meat (bovine) | 40 | 1.8 |
Meat (sheep and goats) | 11 | 0.5 |
Fish and other aquatic products b | 52 | 2.4 |
TOTAL | 2182 |
5. Conclusions
Conflict of Interest
References
- IPCC, Summary for Policymakers. In Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. (Eds.) Cambridge University Press: Cambridge, UK, 2007; pp. 1–18.
- Brevik, E.C. Soils and climate change: Gas fluxes and soil processes. Soil Horiz. 2012, 53. [Google Scholar] [CrossRef]
- Pimentel, D. Soil erosion: A food and environmental threat. Environ. Dev. Sustain. 2006, 8, 119–137. [Google Scholar] [CrossRef]
- Lal, R. Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. BioScience 2010, 60, 708–721. [Google Scholar] [CrossRef]
- Blum, W.E.H.; Nortcliff, S. Soils and Food Security. In Soils and Human Health; Brevik, E.C., Burgess, L.C., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 299–321. [Google Scholar]
- Brevik, E.C. Soils and Human Health—An Overview. In Soils and Human Health; Brevik, E.C., Burgess, L.C., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 29–56. [Google Scholar]
- Brevik, E.C. Climate Change, Soils, and Human Health. In Soils and Human Health; Brevik, E.C., Burgess, L.C., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 345–383. [Google Scholar]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 14th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Hansen, J.; Sato, M.; Kharecha, P.; Russell, G.; Lea, D.W.; Siddall, M. Climate change and trace gases. Philos. Trans. R. Soc. A 2007, 365, 1925–1954. [Google Scholar] [CrossRef]
- Pierzynski, G.M.; Sims, J.T.; Vance, G.F. Soils and Environmental Quality, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Rustad, L.E.; Huntington, T.G.; Boone, R.D. Controls on soil respiration: Implications for climate change. Biogeochemistry 2000, 48, 1–6. [Google Scholar] [CrossRef]
- Lal, R.; Kimble, J.; Follett, R.F. Pedospheric Processes and the Carbon Cycle. In Soil Processes and the Carbon Cycle; Lal, R., Kimble, J.M., Follett, R.F., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 1998; pp. 1–8. [Google Scholar]
- Mosier, A.R. Soil processes and global change. Biol. Fertil. Soils 1998, 27, 221–229. [Google Scholar] [CrossRef]
- Brevik, E.C.; Homburg, J.A. A 5000 year record of carbon sequestration from a coastal lagoon and wetland complex, Southern California, USA. Catena 2004, 57, 221–232. [Google Scholar] [CrossRef]
- Schlesinger, W.H. An Overview of the Carbon Cycle. In Soils and Global Change; Lal, R., Kimble, J., Levine, E., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 1995; pp. 9–25. [Google Scholar]
- Post, W.M.; Izaurralde, R.C.; Jastrow, J.D.; McCarl, B.A.; Amonette, J.E.; Bailey, V.L.; Jardine, P.M.; West, T.O.; Zhou, J. Enhancement of carbon sequestration in US soils. BioScience 2004, 54, 895–908. [Google Scholar] [CrossRef]
- Lokupitiya, E.; Paustian, K. Agricultural soil greenhouse gas emissions: A review of national inventory methods. J. Environ. Qual. 2006, 35, 1413–1427. [Google Scholar] [CrossRef]
- Steinbach, H.S.; Alvarez, R. Changes in soil organic carbon contents and nitrous oxide emissions after introduction of no-till in Pampean agroecosystems. J. Environ. Qual. 2006, 35, 3–13. [Google Scholar] [CrossRef]
- Calegari, A.; Hargrove, W.L.; Rheinheimer, D.D.S.; Ralisch, R.; Tessier, D.; de Tourdonnet, S.; de Fatima Guimarães, M. Impact of long-term no-tillage and cropping system management on soil organic carbon in an Oxisol: A model for sustainability. Agron. J. 2008, 100, 1013–1019. [Google Scholar] [CrossRef]
- Hobbs, P.R.; Govaerts, B. How Conservation Agriculturecan Contribute to Buffering Climate Change. In Climate Change and Crop Production; Reynolds, M.P., Ed.; CPI Antony Rowe: Chippenham, UK, 2010; pp. 177–199. [Google Scholar]
- Bakker, J.M.; Ochsner, T.E.; Venterea, R.T.; Griffis, T.J. Tillage and soil carbon sequestration-What do we really know? Agric. Ecosyst. Environ. 2007, 118, 1–5. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. No-tillage and soil-profile carbon sequestration: An on-farm assessment. Soil Sci. Soc. Am. J. 2008, 72, 693–701. [Google Scholar] [CrossRef]
- Christopher, S.F.; Lal, R.; Mishra, U. Regional study of no-till effects on carbon sequestration in the Midwestern United States. Soil Sci. Soc. Am. J. 2009, 73, 207–216. [Google Scholar] [CrossRef]
- lvaro-Fuentes, J.; Paustian, K. Potential soil carbon sequestration in a semiarid Mediterranean agroecosystem under climate change: Quantifying Management and climate effects. Plant Soil 2011, 338, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land-use change: Processes and potential. Glob. Change Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef]
- Silver, W.L.; Osterlag, R.; Lugo, A.E. The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. Restor. Ecol. 2000, 8, 394–407. [Google Scholar] [CrossRef]
- Neill, C.; Cern, C.C.; Melillo, J.M.; Feigl, B.J.; Steudler, P.A.; Moraes, J.F.L.; Piccolo, M.C. Stocks and Dynamics of Soil Carbon Following Deforestation for Pasture in Rondonia. In Soil Processes and the Carbon Cycle; Lal, R., Kimble, J.M., Follett, R.F., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 1998; pp. 9–28. [Google Scholar]
- Dixon-Coppage, T.L.; Davis, G.L.; Couch, T.; Brevik, E.C.; Barineau, C.I.; Vincent, P.C. A forty-year record of carbon sequestration in an abandoned borrow-pit, Lowndes County, GA. Soil Crop Sci. Soc. Fla. Proc. 2005, 64, 8–15. [Google Scholar]
- Brevik, E.C. A comparison of soil properties in compacted versus non-compacted Bryant soil series twenty-five years after compaction ceased. Soil Surv. Horiz. 2000, 41, 52–58. [Google Scholar]
- Brevik, E.C.; Fenton, T.E.; Moran, L. Effect of soil compaction on organic carbon amounts and distribution, South-Central Iowa. Environ. Pollut. 2002, 116, S137–S141. [Google Scholar] [CrossRef]
- Martikainen, P.J.; Regina, K.; Syväsalo, E.; Laurila, T.; Lohila, A.; Aurela, M.; Silvola, J.; Kettunen, R.; Saarnio, S.; Koponen, H.; et al. Agricultural Soils as a Sink and Source of Greenhouse Gases: A Research Consortium (AGROGAS). In Understanding the Global System, the Finnish Perspective; Käyhkö, J., Talve, L., Eds.; Finnish Global Change Research Programme FIGARE: Turku, Finland, 2002; pp. 55–68. [Google Scholar]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Agriculture. In Climate change 2007: Mitigation; Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 497–540. [Google Scholar]
- Heilig, G.K. The greenhouse gas methane (CH4): Sources and sinks, the impact of population growth, possible interventions. Popul. Environ. 1994, 16, 109–137. [Google Scholar] [CrossRef]
- Stepniewski, W.; Stepniewski, Z.; Rożej, A. Gas Exchange in Soils. In Soil Management: Building a Stable Base for Agriculture; Hatfield, J.L., Sauer, T.J., Eds.; Soil Science Society of America: Madison, WI, USA, 2011; pp. 117–144. [Google Scholar]
- Hu, R.; Kusa, K.; Hatano, R. Soil respiration and methane flux in adjacent forest, grassland, and cornfield soils in Hokkaido, Japan. Soil Sci. Plant Nutr. 2001, 47, 621–627. [Google Scholar] [CrossRef]
- Neue, H.-U. Agronomic practices affecting methane fluxes from rice cultivation. Ecol. Bull. 1992, 42, 174–182. [Google Scholar]
- Wassmann, R.; Schütz, H.; Papen, H.; Rennenberg, H.; Seiler, W.; Aiguo, D.; Renxing, S.; Xingjian, S.; Mingxing, W. Quantification of methane emissions from Chinese rice fields (Zhejiang Province) as influenced by fertilizer treatment. Biogeochemistry 1993, 20, 83–101. [Google Scholar] [CrossRef]
- Lu, Y.; Wassmann, R.; Neue, H.-U.; Huang, C. Impact of phosphorus supply on root exudation, aerenchyma formation and methane emission of rice plants. Biogeochemistry 1999, 47, 203–218. [Google Scholar]
- Zhang, J.-E.; Ouyang, Y.; Huang, Z.-X.; Quan, G.-M. Dynamic emission of CH4 from a rice-duck farming ecosystem. J. Environ. Prot. 2011, 2, 537–544. [Google Scholar] [CrossRef]
- Mullen, R.W. Nutrient Cycling in Soils: Nitrogen. In Soil Management: Building a Stable Base for Agriculture; Hatfield, J.L., Sauer, T.J., Eds.; Soil Science Society of America: Madison, WI, USA, 2011; pp. 67–78. [Google Scholar]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 129–234. [Google Scholar]
- Grant, R.F.; Pattey, E.; Goddard, T.W.; Kryzanowski, L.M.; Puurveen, H. Modeling the effects of fertilizer application rate on nitrous oxide emissions. Soil Sci. Soc. Am. J. 2006, 70, 235–248. [Google Scholar] [CrossRef]
- Wagner-Riddle, C.; Weersink, A. Net Agricultural Greenhouse Gases: Mitigation Strategies and Implications. In Sustaining Soil Productivity in Response to Global Climate Change: Science, Policy, and Ethics; Sauer, T.J., Norman, J.M., Sivakumar, M.V.K., Eds.; John Wiley & Sons, Inc.: Oxford, UK, 2011; pp. 169–182. [Google Scholar]
- Grandy, A.S.; Loecke, T.D.; Parr, S.; Robertson, G.P. Long-term trends in nitrous oxide emissions, soil nitrogen, and crop yields Of till and no-till cropping systems. J. Environ. Qual. 2006, 35, 1487–1495. [Google Scholar] [CrossRef]
- Melillo, J.M.; Steudler, P.A.; Feigl, B.J.; Neill, C.; Garcia, D.; Piccolo, M.C.; Cerri, C.C.; Tian, H. Nitrous oxide emissions from forests and pastures of various ages in the Brazilian Amazon. J. Geophys. Res. 2001, 106 (D24), 34179–34188. [Google Scholar]
- Hall, S.J.; Asner, G.P.; Kitayama, K. Substrate, climate, and land use controls over soil N dynamics and N-oxide emissions in Borneo. Biogeochemistry 2004, 70, 27–58. [Google Scholar] [CrossRef]
- Brevik, E.C. Soil Health and Productivity. In Soils, Plant Growth and Crop Production; Verheye, W., Ed.; Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, EOLSS Publishers: Oxford, UK, 2009; Available online: http://www.eolss.net (accessed on 10 May 2013).
- Brevik, E.C. An Introduction to Soil Science Basics. In Soils and Human Health; Brevik, E.C., Burgess, L.C., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 3–28. [Google Scholar]
- Coughenour, M.B.; Chen, D.-X. Assessment of grassland ecosystem responses to atmospheric change using linked plant-soil process models. Ecol. Appl. 1997, 7, 802–827. [Google Scholar]
- Hättenschwiler, S.; Handa, I.T.; Egli, L.; Asshoff, R.; Ammann, W.; Körner, C. Atmospheric CO2 enrichment of alpine treeline conifers. New Phytol. 2002, 156, 363–375. [Google Scholar] [CrossRef]
- Poorter, H.; Navas, M.-L. Plant growth and competition at elevated CO2: On winners, losers and functional groups. New Phytol. 2003, 157, 175–198. [Google Scholar] [CrossRef]
- Zavaleta, E.S.; Shaw, M.R.; Chiariello, N.R.; Thomas, B.D.; Cleland, E.E.; Field, C.B.; Mooney, H.A. Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecol. Monogr. 2003, 73, 585–604. [Google Scholar] [CrossRef]
- Long, S.P.; Ainsworth, E.A.; Leakey, A.D.B.; Morgan, P.B. Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields. Philos. Trans. R. Soc. B 2005, 360, 2011–2020. [Google Scholar] [CrossRef]
- Körner, C. Plant CO2 responses: An issue of definition, time and resource supply. New Phytol. 2006, 172, 393–411. [Google Scholar] [CrossRef]
- Jarvis, A.; Ramirez, J.; Anderson, B.; Leibing, C.; Aggarwal, P. Scenarios of Climate Change Within the Context of Agriculture. In Climate Change and Crop Production; Reynolds, M.P., Ed.; CPI Antony Rowe: Chippenham, UK, 2010; pp. 9–37. [Google Scholar]
- Zaehle, S.; Friedlingstein, P.; Friend, A.D. Terrestrial nitrogen feedbacks may accelerate future climate change. Geophys. Res. Lett. 2010, 37, L01401. [Google Scholar] [CrossRef]
- Hungate, B.A.; Dukes, J.S.; Shaw, M.R.; Luo, Y.; Field, C.B. Nitrogen and climate change. Science 2003, 302, 1512–1513. [Google Scholar] [CrossRef]
- Niklaus, P.A.; Körner, C. Synthesis of a six-year study of calcareous grassland responses to in situ CO2 enrichment. Ecol. Monogr. 2004, 74, 491–511. [Google Scholar] [CrossRef]
- Kirkham, M.B. Elevated Carbon Dioxide; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Carney, K.M.; Hungate, B.A.; Drake, B.G.; Megonigal, J.P. Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc. Natl. Acad. Sci. USA 2007, 104, 4990–4995. [Google Scholar]
- Eglin, T.; Ciasis, P.; Piao, S.L.; Barré, P.; Belassen, V.; Cadule, P.; Chenu, C.; Gasser, T.; Reichstein, M.; Smith, P. Overview on Response of Global Soil Carbon Pools to Climate and Land-Use Changes. In Sustaining Soil Productivity in Response to Global Climate Change: Science, Policy, and Ethics; Sauer, T.J., Norman, J.M., Sivakumar, M.V.K., Eds.; John Wiley & Sons, Inc.: Oxford, UK, 2011; pp. 183–199. [Google Scholar]
- Gorissen, A.; Tietema, A.; Joosten, N.N.; Estiarte, M.; Peñuelas, J.; Sowerby, A.; Emmett, B.A.; Beier, C. Climate change affects carbon allocation to the soil in shrublands. Ecosystems 2004, 7, 650–661. [Google Scholar]
- Wan, Y.; Lin, E.; Xiong, W.; Li, Y.; Guo, L. Modeling the impact of climate change on soil organic carbon stock in upland soils in the 21st century in China. Agric. Ecosyst. Environ. 2011, 141, 23–31. [Google Scholar] [CrossRef]
- Link, S.O.; Smith, J.L.; Halverson, J.J.; Bolton, H., Jr. A reciprocal transplant experiment within a climatic gradient in a semiarid shrub-steppe ecosystem: Effects on bunchgrass growth and reproduction, soil carbon, and soil nitrogen. Glob. Change Biol. 2003, 9, 1097–1105. [Google Scholar] [CrossRef]
- Price, D.T.; Peng, C.H.; Apps, M.J.; Halliwell, D.H. Simulating effects of climate change on boreal ecosystem carbon pools in central Canada. J. Biogeogr. 1999, 26, 1237–1248. [Google Scholar] [CrossRef]
- Grace, P.R.; Colunga-Garcia, M.; Gage, S.H.; Robertson, G.P.; Safir, G.R. The potential impact of agricultural management and climate change on soil organic carbon of the north central region of the United States. Ecosystems 2006, 9, 816–827. [Google Scholar] [CrossRef]
- Niklińska, M.; Maryański, M.; Laskowski, R. Effect of temperature on humus respiration rate and nitrogen mineralization: Implications for global climate change. Biogeochemistry 1999, 44, 239–257. [Google Scholar]
- Gill, R.A.; Polley, H.W.; Johnson, H.B.; Anderson, L.J.; Maherali, H.; Jackson, R.B. Nonlinear grassland responses to past and future atmospheric CO2. Nature 2002, 417, 279–282. [Google Scholar] [CrossRef]
- Reich, P.B.; Hobbie, S.E.; Lee, T.; Ellsworth, D.S.; West, J.B.; Tilman, D.; Knops, J.M.; Naeem, S.; Trost, J. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 2006, 440, 922–925. [Google Scholar] [CrossRef]
- Holland, E.A. The Role of Soils and Biogeochemistry in the Climate and Earth System. In Sustaining Soil Productivity in Response to Global Climate Change: Science, Policy, and Ethics; Sauer, T.J., Norman, J.M., Sivakumar, M.V.K., Eds.; John Wiley & Sons, Inc.: Oxford, UK, 2011; pp. 155–168. [Google Scholar]
- Norby, R.J.; Luo, Y. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol. 2004, 162, 281–293. [Google Scholar] [CrossRef]
- Joshi, A.B.; Vann, D.R.; Johnson, A.H. Litter quality and climate decouple nitrogen mineralization and productivity in Chilean temperate rainforests. Soil Sci. Soc. Am. J. 2005, 70, 153–162. [Google Scholar] [CrossRef]
- Reich, P.B.; Hungate, B.A.; Luo, Y. Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 611–636. [Google Scholar] [CrossRef]
- An, Y.; Wan, S.; Zhou, X.; Subedar, A.A.; Wallace, L.A.; Luo, Y. Plant nitrogen concentration, use efficiency, and contents in a tallgrass prairie ecosystem under experimental warming. Glob. Change Biol. 2005, 11, 1733–1744. [Google Scholar] [CrossRef]
- Zhang, X.C.; Nearing, M.A.; Garbrecht, J.D.; Steiner, J.L. Downscaling monthly forecasts to simulate impacts of climate change on soil erosion and wheat production. Soil Sci. Soc. Am. J. 2004, 68, 1376–1385. [Google Scholar] [CrossRef]
- Ravi, S.; Breshears, D.D.; Huxman, T.E.; D’Odorico, P. Land degradation in drylands: interactions among hydraulic-aeolian erosion and vegetation dynamics. Geomorphology 2010, 116, 236–245. [Google Scholar] [CrossRef]
- Sivakumar, M.V.K. Climate and Land Degradation. In Sustaining Soil Productivity in Response to Global Climate Change: Science, Policy, and Ethics; Sauer, T.J., Norman, J.M., Sivakumar, M.V.K., Eds.; John Wiley & Sons, Inc.: Oxford, UK, 2011; pp. 141–154. [Google Scholar]
- Chiew, F.H.S.; Whetton, P.H.; McMahon, T.A.; Pittock, A.B. Simulation of the impacts of climate change on runoff and soil moisture in Australian catchments. J. Hydrol. 1995, 167, 121–147. [Google Scholar] [CrossRef]
- Favis-Mortlock, D.; Boardman, J. Nonlinear responses of soil erosion to climate change: A modeling study on the UK South Downs. Catena 1995, 25, 365–387. [Google Scholar] [CrossRef]
- Li, Z.; Lui, W.-Z.; Zhang, X.-C.; Zheng, F.-L. Assessing the site-specific impacts of climate change on hydrology, soil erosion, and crop yields in the Loess Plateau of China. Clim. Change 2011, 105, 223–242. [Google Scholar] [CrossRef]
- FAO, Trade Reforms and Food Security: Conceptualizing the Linkages; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003.
- Brevik, E.C. Soil, Food Security, and Human Health. Soils, Plant Growth and Crop Production; Verheye, W., Ed.; Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, EOLSS Publishers: Oxford, UK, 2009. Available online: http://www.eolss.net (accessed on 10 May 2013).
- Allan, J.D.; Abell, R.; Hogan, Z.; Revenga, C.; Taylor, B.W.; Welcomme, R.L.; Winemiller, K. Overfishing of inland waters. BioScience 2005, 55, 1041–1051. [Google Scholar] [CrossRef]
- Jackson, J.B.C.; Kirby, M.X.; Berger, W.H.; Bjorndal, K.A. Botsford, L.W.; Bourque, B.J.; Bradbury, R.H.; Cooke, R.; Erlandson, J.; Estes, J.A.; et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 2001, 293, 629–638. [Google Scholar] [CrossRef]
- Meehl, G.A.; Stocker, T.F.; Collins, W.D.; Friedlingstein, P.; Gaye, A.T.; Gregory, J.M.; Kitoh, A.; Knutti, R.; Murphy, J.M.; Noda, A.; et al. Global Climate Projections. In Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 747–845. [Google Scholar]
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Tank, A.K.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; et al. Observations: Surface and Atmospheric Climate Change. In Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 235–336. [Google Scholar]
- Sauer, T.J.; Nelson, M.P. Science, Ethics, and the Historical Roots of Our Ecological Crisis. Was White Right? In Sustaining Soil Productivity in Response to Global Climate Change: Science, Policy, and Ethics; Sauer, T.J., Norman, J.M., Sivakumar, M.V.K., Eds.; John Wiley & Sons, Inc.: Oxford, UK, 2011; pp. 3–16. [Google Scholar]
- Kang, Y.; Khan, S.; Ma, X. Climate change impacts on crop yield, crop water productivity, and food security—A review. Prog. Nat. Sci. 2009, 19, 1665–1674. [Google Scholar] [CrossRef]
- Park, S.E.; Howden, S.M.; Crimp, S.J.; Gaydon, D.S.; Attwood, S.J.; Kokic, P.N. More than eco-efficiency is required to improve food security. Crop Sci. 2009, 50, S132–S141. [Google Scholar]
- Funk, C.; Dettinger, M.D.; Michaelsen, J.C.; Verdin, J.P.; Brown, M.E.; Barlow, M.; Hoell, A. Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proc. Natl. Acad. Sci. USA 2008, 105, 11081–11086. [Google Scholar]
- Paeth, H.; Capo-Chichi, A.; Endlicher, W. Climate change and food security in tropical West Africa—A dynamic-statistical modeling approach. Erdkunde 2008, 62, 101–115. [Google Scholar] [CrossRef]
- Schmidhuber, J.; Tubiello, F.N. Global food security under climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19703–19708. [Google Scholar] [CrossRef]
- Fischer, G.; Shah, M.; Tubiello, F.N.; van Velhuizen, H. Socio-economic and climate change impacts on agriculture: An integrated assessment, 1990–2080. Philos. Trans. R. Soc. B 2005, 360, 2067–2083. [Google Scholar]
- Gregory, P.J.; Ingram, J.S.I.; Brklacich, M. Climate change and food security. Philos. Trans. R. Soc. B 2005, 360, 2139–2148. [Google Scholar] [CrossRef]
- Parry, M.; Rosenzweig, C.; Livermore, M. Climate change, global food supply, and risk of hunger. Philos. Trans. R. Soc. B 2005, 360, 2125–2138. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Cline, S.A. Global food security: Challenges and policies. Science 2003, 302, 1917–1919. [Google Scholar] [CrossRef]
- Poudel, D.D.; Midmore, D.J.; West, L.T. Erosion and productivity of vegetable systems on sloping volcanic ash-derived Philippine soils. Soil Sci. Soc. Am. J. 1999, 63, 1366–1376. [Google Scholar] [CrossRef]
- Sparovek, G.; Schnug, E. Temporal erosion-induced soil degradation and yield loss. Soil Sci. Soc. Am. J. 2001, 65, 1479–1486. [Google Scholar] [CrossRef]
- García-Fayos, P.; Bochet, E. Indication of antagonistic interaction between climate change and erosion on plant species richness and soil properties in semiarid Mediterranean ecosystems. Glob. Change Biol. 2009, 15, 306–318. [Google Scholar] [CrossRef]
- Lele, U. Food security for a billion poor. Science 2010, 326, 1554. [Google Scholar] [CrossRef]
- St. Clair, S.B.; Lynch, J.P. The opening of Pandora’s Box: Climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 2010, 335, 101–115. [Google Scholar] [CrossRef]
- Easterling, W.E.; Aggarwal, P.K.; Batima, P.; Brander, K.M.; Erda, L.; Howden, S.M.; Kirilenko, A.; Morton, J.; Soussana, J.-F.; Schmidhuber, J.; et al. Food, Fibre and Forest Products. In Climate Change 2007: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 273–313. [Google Scholar]
- Olesen, J.E.; Bindi, M. Consequences of climate change for European agricultural productivity, land use, and policy. Eur. J. Agron. 2002, 16, 239–262. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Parry, M. Potential impact of climate change on world food supply. Nature 1994, 367, 133–138. [Google Scholar] [CrossRef]
- Sanchez, P.A.; Swaminathan, M.S. Hunger in Africa: The link between unhealthy people and unhealthy soils. Lancet 2005, 365, 442–444. [Google Scholar]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Huntingford, C.; Lambert, F.H.; Gash, J.H.C.; Taylor, C.M.; Challinor, A.J. Aspects of climate change prediction relevant to crop productivity. Philos. Trans. R. Soc. B 2005, 360, 1999–2009. [Google Scholar] [CrossRef]
- Tan, Z.; Tieszen, L.L.; Liu, S.; Tachie-Obeng, E. Modeling to evaluate the response of savanna-derived cropland to warming-drying stress and nitrogen fertilizers. Clim. Change 2010, 100, 703–715. [Google Scholar] [CrossRef]
- Pimentel, D.; Cooperstein, S.; Randell, H.; Filiberto, D.; Sorrentino, S.; Kaye, B.; Nicklin, C.; Yagi, J.; Brian, J.; O’Hern, J.; et al. Ecology of increasing diseases: Population growth and environmental degradation. Hum. Ecol. 2007, 35, 653–668. [Google Scholar] [CrossRef]
- Li, Z.; Tang, S.; Deng, X.; Wang, R.; Song, Z. Contrasting effects of elevated CO2 on Cu and Cd uptake by different rice varieties grown on contrasting soils with two levels of metals: Implication for phytoextraction and food security. J. Hazard. Mater. 2010, 177, 352–361. [Google Scholar] [CrossRef]
- Wu, H.B.; Tang, S.R.; Zhang, X.M.; Guo, J.K.; Song, Z.G.; Tian, S.; Smith, D. Using elevated CO2 to increase the biomass of a Sorghum vulgare × Sorghum vulgare var. sudanense hybrid and Trifolium pretense L. and to trigger hyperaccumulation of cesium. J. Hazard. Mater. 2009, 170, 861–870. [Google Scholar] [CrossRef]
- Tang, S.R.; Xi, L.; Zhang, X.M.; Li, H.Y. Response to elevated CO2 of Indian mustard and sunflower growing on copper contaminated soil. Bull. Environ. Contam. Toxicol. 2003, 71, 988–997. [Google Scholar] [CrossRef]
- Brevik, E.C.; Burgess, L.C. The 2012 fungal meningitis outbreak in the United States: Connections between soils and human health. Soil Horiz. 2013, 54. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Brevik, E.C. The Potential Impact of Climate Change on Soil Properties and Processes and Corresponding Influence on Food Security. Agriculture 2013, 3, 398-417. https://doi.org/10.3390/agriculture3030398
Brevik EC. The Potential Impact of Climate Change on Soil Properties and Processes and Corresponding Influence on Food Security. Agriculture. 2013; 3(3):398-417. https://doi.org/10.3390/agriculture3030398
Chicago/Turabian StyleBrevik, Eric C. 2013. "The Potential Impact of Climate Change on Soil Properties and Processes and Corresponding Influence on Food Security" Agriculture 3, no. 3: 398-417. https://doi.org/10.3390/agriculture3030398