Fatty Acid, Flavonol, and Mineral Composition Variability among Seven Macrotyloma uniflorum (Lam.) Verdc. Accessions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fatty Acids
Source | df | 14:0 | 16:0 | 18:0 | 18:1 | 18:2 | 18:3 | 20:0 | 20:1 | 22:0 | 24:0 |
---|---|---|---|---|---|---|---|---|---|---|---|
Year (Y) | 1 | 0.008* | 0.827 | 0.257*** | 21.542*** | 21.023*** | 1.016 | 0.008** | 0.006** | 0.124 | 0.043** |
Block (B) | 1 | 0.001 | 0.615 | 0.012 | 0.860* | 0.718 | 0.31 | 0.0006 | 0.002 | 0.112 | 0.005 |
Accession (A) | 6 | 0.007* | 6.235*** | 0.057** | 25.979*** | 10.080*** | 3.338* | 0.009*** | 0.005** | 0.328** | 0.154*** |
A × Y | 6 | 0.001 | 0.125 | 0.005 | 2.115*** | 1.338* | 2.089 | 0.0003 | 0.0005 | 0.042 | 0.012 |
Acc.(PI) | Oil%† | 14:0 | 16:0 | 18:0 | 18:1 | 18:2 | 18:3 | 20:0 | 20:1 | 22:0 | 24:0 |
---|---|---|---|---|---|---|---|---|---|---|---|
212636 | 2.40cd | 0.56a | 25.4a | 2.00a | 12.6d | 42.5d | 11.6b | 0.57a | 0.26bcd | 2.53a | 1.97a |
165594 | 2.45c | 0.52ab | 24.9ab | 2.03a | 12.6d | 43.0cd | 12.8ab | 0.52b | 0.23de | 1.92bc | 1.49cd |
174824 | 2.32e | 0.52ab | 24.1bc | 1.86b | 8.9e | 45.6a | 14.3a | 0.52b | 0.20e | 2.49a | 1.57bc |
345729 | 2.40cd | 0.51ab | 23.9cd | 1.93ab | 14.0c | 43.5c | 11.7b | 0.48c | 0.25cd | 2.18ab | 1.47cd |
163321 | 2.61b | 0.49bc | 23.2d | 1.84bc | 14.4c | 43.8bc | 12.1b | 0.46cd | 0.28abc | 1.96bc | 1.61b |
639027 | 2.36de | 0.46bc | 24.0cd | 1.73c | 16.8a | 40.3e | 12.5b | 0.47cd | 0.30a | 1.79c | 1.40d |
174827 | 2.87a | 0.44c | 21.6e | 1.75c | 15.8b | 44.4b | 12.1b | 0.44d | 0.29ab | 1.89bc | 1.38d |
2.2. Flavonols
Source | Df | Seed wt. (g) | Myricetin (μg/g) | Quercetin | Kaempferol |
---|---|---|---|---|---|
(μg/g) | (μg/g) | ||||
Year(Y) | 1 | 0.00003 | 45.93 | 5.68 | 20040.15*** |
Block(B) | 1 | 0.00002 | 3.98 | 0.94 | 153.53 |
Accession(A) | 6 | 0.00002 | 524.98** | 171.66** | 3239.84** |
AxY | 6 | 0.00003 | 26.82 | 11.84 | 549.3 |
Acc. (PI) | Seed wt. (g) | Myricetin (μg/g) | Quercetin (μg/g) | Kaempferol (μg/g) |
---|---|---|---|---|
174827 | 0.112a | 36.01a | 27.22a | 301.79ab |
212636 | 0.111a | 0.00c | - | 315.53a |
163321 | 0.110a | 26.55ab | 23.82ab | 283.34bc |
165594 | 0.108a | 17.00b | 14.88c | 240.36e |
639027 | 0.106a | 0.00c | - | 247.65de |
345729 | 0.106a | 25.65ab | 21.52b | 293.31abc |
174824 | 0.106a | 0.00c | 0.00d | 271.73cd |
2.3. Minerals
Source | df | Seed wt. (g) | Ca | K | Mg | P | S | Cu | Fe | Mn | Ni | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg/g) | (mg/g) | (mg/g) | (mg/g) | (mg/g) | (μg/g) | (μg/g) | (μg/g) | (μg/g) | (μg/g) | |||
Year (Y) | 1 | 0.000007 | 1.01* | 14.78*** | 0.40*** | 0.13 | 0.14** | 6.04 | 1791.90** | 8216.10** | 3.88** | 72.00* |
Block (B) | 1 | 0.0000003 | 0.32 | 0.34 | 0.003 | 0.08 | 0.01 | 2.62 | 99.57 | 2222.78 | 1.55 | 11.06 |
Accession (A) | 6 | 0.000005 | 2.11*** | 0.26 | 0.002 | 0.14 | 0.11** | 1.07 | 127.33 | 1659.97 | 0.44 | 32.61 |
A × Y | 6 | 0.000004 | 0.12 | 0.08 | 0.004 | 0.09 | 0.006 | 1.40 | 88.88 | 964.15 | 0.37 | 21.63 |
Acc. (PI) | Seed wt. (g) | Ca | K | Mg | P | S | Cu | Fe | Mn | Ni | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|
(mg/g) | (mg/g) | (mg/g) | (mg/g) | (mg/g) | (μg/g) | (μg/g) | (μg/g) | (μg/g) | (μg/g) | ||
212636 | 0.254a | 2.50b | 13.26a | 1.61a | 3.97bc | 1.80d | 11.75a | 63.47a | 95.25a | 1.83a | 33.44b |
163321 | 0.253ab | 3.00ab | 13.29a | 1.57a | 3.92bc | 2.00c | 11.94a | 75.28a | 63.06ab | 1.31a | 36.71ab |
174827 | 0.253ab | 3.27a | 13.28a | 1.55a | 4.12abc | 2.12bc | 10.89a | 73.79a | 84.10ab | 1.81a | 36.81ab |
345729 | 0.253ab | 2.91ab | 13.52a | 1.56a | 3.85c | 2.10bc | 12.08a | 79.37a | 46.63ab | 1.03a | 38.65ab |
165594 | 0.253ab | 1.81c | 13.64a | 1.56a | 4.40a | 2.32a | 11.60a | 70.60a | 69.33ab | 1.89a | 36.00ab |
174824 | 0.252ab | 1.32c | 13.84a | 1.59a | 4.11abc | 2.20ab | 10.93a | 66.39a | 40.05b | 1.28a | 33.21b |
639027 | 0.251b | 1.71c | 14.11a | 1.60a | 4.32ab | 2.23ab | 11.04a | 69.23a | 49.20ab | 1.53a | 42.14a |
2.4. Correlation Analysis
16:0 | 18:0 | 18:1 | 18:2 | 18:3 | 20:0 | 20:1 | 22:0 | 24:0 | m | q | ka | Ca | Cu | Fe | K | Mg | Mn | Ni | P | S | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14:0 | 0.81*** | 0.77*** | −0.53** | 0.16 | −0.22 | 0.66** | −0.66** | 0.43* | 0.34 | −0.41 | −0.46 | 0.24 | −0.43* | 0.51** | 0.24 | 0.42* | 0.39* | −0.31 | −0.31 | 0.01 | −0.007 | −0.26 |
16:0 | 0.66** | −0.45* | −0.18 | −0.09 | 0.73*** | −0.55** | 0.38 | 0.45* | −0.69** | −0.62** | −0.05 | −0.55** | 0.36 | 0.02 | 0.27 | 0.23 | −0.12 | −0.06 | 0.2 | 0.002 | −0.08 | |
18:0 | −0.5** | 0.33 | −0.3 | 0.65** | −0.63** | 0.21 | 0.21 | −0.28 | −0.4 | 0.39* | −0.29 | 0.59** | 0.46* | 0.55** | 0.51** | −0.25 | −0.3 | 0.14 | 0.15 | −0.29 | ||
18:1 | −0.64** | −0.48* | −0.61** | 0.78*** | −0.47* | −0.23 | 0.42 | 0.83*** | −0.24 | 0.5** | −0.07 | −0.06 | −0.3 | −0.33 | 0.21 | 0.19 | −0.04 | −0.18 | 0.51** | |||
18:2 | 0.09 | 0.03 | −0.53* | 0.17 | −0.13 | 0.23 | −0.13 | 0.50** | −0.01 | 0.27 | 0.50** | 0.35 | 0.35 | −0.24 | −0.29 | −0.01 | 0.23 | −0.30 | ||||
18:3 | 0.11 | −0.15 | 0.007 | −0.13 | −0.16 | −0.57* | −0.23 | −0.34 | −0.66** | −0.50** | −0.13 | −0.09 | 0.01 | 0.12 | 0.04 | 0.26 | −0.40* | |||||
20:0 | −0.46* | 0.55** | 0.62** | −0.72** | −0.79** | 0.27 | −0.45* | 0.06 | −0.18 | 0.2 | 0.36 | −0.15 | −0.21 | −0.12 | −0.19 | −0.54** | ||||||
20:1 | −0.36 | 0.02 | 0.36 | 0.64** | −0.1 | 0.58** | −0.34 | −0.27 | −0.44* | −0.33 | 0.41* | 0.29 | −0.23 | −0.4* | 0.29 | |||||||
22:0 | 0.63** | −0.32 | −0.48 | 0.09 | −0.23 | −0.007 | −0.25 | −0.17 | −0.17 | 0.009 | −0.01 | −0.29 | −0.48* | −0.12 | ||||||||
24:0 | −0.41 | −0.02 | 0.16 | 0.04 | 0.03 | −0.37 | −0.34 | −0.13 | 0.38 | 0.23 | −0.36 | −0.76*** | −0.23 | |||||||||
m | 0.92*** | 0.1 | 0.82*** | −0.1 | 0.17 | −0.49* | −0.42 | 0.26 | 0.09 | −0.26 | −0.12 | 0.22 | ||||||||||
q | 0.23 | 0.82*** | 0.08 | 0.06 | −0.32 | −0.27 | 0.32 | 0.15 | −0.2 | −0.47 | 0.38 | |||||||||||
ka | 0.24 | 0.24 | 0.44* | 0.34 | 0.61** | −0.12 | −0.32 | −0.21 | −0.22 | −0.42 | ||||||||||||
Ca | −0.08 | 0.05 | −0.52** | −0.25 | 0.37 | 0.1 | −0.38 | −0.48* | 0.1 | |||||||||||||
Cu | 0.71*** | 0.56** | 0.41* | −0.11 | −0.15 | 0.33 | 0.2 | 0.22 | ||||||||||||||
Fe | 0.66** | 0.56** | −0.32 | −0.35 | 0.31 | 0.40* | 0.20 | |||||||||||||||
K | 0.8*** | −0.53** | −0.45* | 0.46* | 0.61** | −0.1 | ||||||||||||||||
Mg | −0.53** | −0.59** | 0.24 | 0.38* | −0.35 | |||||||||||||||||
Mn | 0.91*** | 0.11 | −0.42* | 0.17 | ||||||||||||||||||
Ni | 0.29 | −0.21 | 0.27 | |||||||||||||||||||
P | 0.63** | 0.29 | ||||||||||||||||||||
S | 0.13 |
3. Materials and Methods
3.1. Plant Materials
3.2. Fatty Acid Analysis
3.3. Flavonol Analysis
3.4. Mineral Analysis
3.5. Statistical Analysis
4. Conclusions
References
- Youdim, K.A.; Martin, A.; Joseph, J.A. Essential fatty acids and the brain: Possible health implications. Int. J. Dev. Neurosci. 2000, 18, 383–399. [Google Scholar] [CrossRef]
- Brielmann, H.L.; Setzer, W.N.; Kaufman, P.B.; Kirakosyan, A.; Cseke, L.J. Natural Products from Plants, 2nd; Cseke, L.J., Kirakosyan, A., Kaufman, P.B., Warber, S.L., Duke, J.A., Brielmann, H.L., Eds.; Taylor and Francis Group: Boca Raton, FL, USA, 2006; pp. 1–49. [Google Scholar]
- Kang, N.J.; Jung, S.K.; Lee, K.W.; Lee, H.J. Myricetin is a potent chemopreventive phytochemical in skin carcinogenesis. Ann. N.Y. Acad. Sci. 2011, 1, 124–132. [Google Scholar]
- Sun, F.; Zheng, X.Y.; Ye, J.; Wu, T.T.; Wang, J.I.; Chen, W. Potential anticancer activity of myricetin in human T24 bladder cancer cells both in vitro and in vivo. Nutr. Cancer 2012, 64, 599–606. [Google Scholar] [CrossRef]
- Phillips, P.A.; Sangwan, V.; Borja-Cacho, D.; Dudeja, V.; Vickers, S.M.; Saluja, A.K. Myricetin induces pancreatic cancer cell death via the induction of apoptosis and inhibition of the phosphatidylinositol 3-kinase (P13K) signaling pathway. Cancer Lett. 2011, 308, 181–188. [Google Scholar] [CrossRef]
- Yu, M.S.; Lee, J.; Lee, J.M.; Kim, Y.; Chin, Y.W.; Jee, J.G.; Keum, Y.S.; Jeong, Y.J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett. 2012, 22, 4049–4054. [Google Scholar] [CrossRef]
- Edwards, R.L.; Lyon, T.; Litwin, S.E.; Rabovsky, A.; Symons, J.D.; Jalili, T. Quercetin reduces blood pressure in hypertensive subjects. J. Nutr. 2007, 137, 2405–2411. [Google Scholar]
- Loke, W.M.; Hodgson, J.M.; Proudfoot, J.M.; McKinley, A.J.; Puddey, I.B.; Croft, K.D. Pure dietary flavonoids quercetin and (-)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am. J. Clin. Nutr. 2008, 88, 1018–1025. [Google Scholar]
- Davis, J.M.; Carlstedt, C.J.; Chen, S.; Carmichael, M.D.; Murphy, E.A. The dietary flavonoid quercetin increases VO(2max) and endurance capacity. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 56–62. [Google Scholar]
- Kanzaki, N.; Saito, K.; Maeda, A.; Kitagawa, Y.; Kiso, Y.; Watanabe, K.; Tomonaga, A.; Nagaoka, I.; Yamaguchi, H. Effect of a dietary supplement containing glucosamine hydrochloride, chondroitin sulfate and quercetin glycosides on symptomatic knee osteoarthiritis: A randomized, double-blind, placebo-controlled study. J. Sci. Food Agric. 2012, 92, 862–869. [Google Scholar] [CrossRef]
- Bouis, H.E.; Welch, R.M. Biofortification—A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci. 2010, 50, S20–S32. [Google Scholar]
- Keatinge, J.D.H.; Waliyar, F.; Jamnadas, R.H.; Moustafa, A.; Andrade, M.; Drechsel, P.; Hughes, J.d’A.; Kadirvel, P.; Luther, K. Relearning old lessons for the future of food—By bread alone no longer: Diversifying diets with fruit and vegetables. Crop Sci. 2010, 50, S51–S62. [Google Scholar] [CrossRef]
- Kadam, S.S.; Salunkhe, D.K. Nutritional composition, processing, and utilization of horse gram and moth bean. Crit. Rev. Food Sci. Nutr. 1985, 22, 1–26. [Google Scholar]
- Bravo, L.; Siddhuraju, P.; Saura-Calixto, F. Composition of underexploited Indian pulses. Comparison with common legumes. Food Chem. 1999, 64, 185–192. [Google Scholar] [CrossRef]
- Shobana, G.; Sivaelango, G.; Kumaravel, P. Evaluation of antihyperlipidaemic effect of macrotyloma uniflorum seed extract in experimental hyperlipidaemia. Res. J. Pharm. Technol. 2012, 5, 353–356. [Google Scholar]
- Gupta, L.H.; Badole, S.L.; Bodhankar, S.L.; Sabharwal, S.G. Antidiabetic potential of α-amylase inhibitor from the seeds of Macrotyloma uniflorum in streptozotocin-nicotinamide-induced diabetic mice. Pharm. Biol. 2011, 49, 182–189. [Google Scholar] [CrossRef]
- Kawsar, S.M.A.; Uddin, M.S.; Huq, E.; Nahar, N.; Ozeki, Y. Biological investigation of Macrotyloma uniflorum Linn. extracts against some pathogens. J. Biol. Sci. 2008, 8, 1051–1056. [Google Scholar] [CrossRef]
- Joshi, U.N.; Luthra, Y.P. Fatty acid profile of horse gram seeds. In Advances in Arid Legumes Research, Proceedings of the National Symposium on arid legumes, for food nutrition security and promotion of trade, Hisar, India, 15–16 May 2002.
- Krishna, A.G.G.; Prabhakar, J.V.; Aitzetmuller, K. Tocopherol and fatty acid composition of some Indian pulses. J. Am. Oil Chem. Soc. 1997, 74, 1603–1606. [Google Scholar] [CrossRef]
- Sreerama, Y.N.; Sashikala, V.B.; Pratape, V.M. Variability in the distribution of phenolic compounds in milled fractions of chickpea and horse gram: Evaluation of their antioxidant properties. J. Agric. Food Chem. 2010, 58, 8322–8330. [Google Scholar] [CrossRef]
- Diaz-Batalla, L.; Widholm, J.M.; Fayey, G.C., Jr.; Castano-Tostado, E.; Paredes-Lopez, O. Chemical components with health implications in wild and cultivated Mexican common bean seeds (Phaseolus vulgaris L.). J. Agric. Food Chem. 2006, 54, 2045–2052. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Morris, J.B.; Wang, M.L.; Grusak, M.A.; Tonnis, B. Fatty Acid, Flavonol, and Mineral Composition Variability among Seven Macrotyloma uniflorum (Lam.) Verdc. Accessions. Agriculture 2013, 3, 157-169. https://doi.org/10.3390/agriculture3010157
Morris JB, Wang ML, Grusak MA, Tonnis B. Fatty Acid, Flavonol, and Mineral Composition Variability among Seven Macrotyloma uniflorum (Lam.) Verdc. Accessions. Agriculture. 2013; 3(1):157-169. https://doi.org/10.3390/agriculture3010157
Chicago/Turabian StyleMorris, John Bradley, Ming Li Wang, Michael A. Grusak, and Brandon Tonnis. 2013. "Fatty Acid, Flavonol, and Mineral Composition Variability among Seven Macrotyloma uniflorum (Lam.) Verdc. Accessions" Agriculture 3, no. 1: 157-169. https://doi.org/10.3390/agriculture3010157
APA StyleMorris, J. B., Wang, M. L., Grusak, M. A., & Tonnis, B. (2013). Fatty Acid, Flavonol, and Mineral Composition Variability among Seven Macrotyloma uniflorum (Lam.) Verdc. Accessions. Agriculture, 3(1), 157-169. https://doi.org/10.3390/agriculture3010157