Potential Nutritional Benefits of Current Citrus Consumption
Abstract
:1. Introduction
2. Data Sources
3. Production and Consumption
Region | Item | 1979 | 1989 | 1999 | 2009 |
---|---|---|---|---|---|
World | Total citrus supply tonnes | 49,114,005 | 67,645,354 | 89,146,403 | 112,910,151 |
Total citrus g per capita/day | 32 | 36 | 42 | 47 | |
% of total that is oranges & mandarines | 78 | 81 | 76 | 72 | |
Least | Total citrus supply tonnes | 718,199 | 918,998 | 1,358,035 | 2,182,861 |
Developed | Total citrus g per capita/day | 6 | 6 | 7 | 8 |
Countries | % of total that is oranges & mandarines | 33 | 33 | 43 | 50 |
Africa | Total citrus supply tonnes | 4,371,141 | 5,955,141 | 8,312,179 | 10,988,040 |
Total citrus g per capita/day | 26 | 28 | 31 | 32 | |
% of total that is oranges & mandarines | 50 | 54 | 52 | 50 | |
Asia | Total citrus supply tonnes | 4,371,250 | 5,955,256 | 8,312,304 | 10,988,172 |
Total citrus g per capita/day | 12 | 18 | 23 | 31 | |
% of total that is oranges & mandarines | 83 | 78 | 78 | 71 | |
SE Asia | Total citrus supply tonnes | 991,627 | 1,695,364 | 3,008,770 | 4,947,774 |
Total citrus g per capita/day | 7 | 10 | 16 | 24 | |
% of total that is oranges & mandarines | 100 | 100 | 81 | 83 | |
Oceania | Total citrus supply tonnes | 515,315 | 569,112 | 547,564 | 548,025 |
Total citrus g per capita/day | 73 | 71 | 60 | 52 | |
% of total that is oranges & mandarines | 84 | 86 | 90 | 88 | |
Europe | Total citrus supply tonnes | 9,631,873 | 13,039,703 | 14,584,512 | 19,532,380 |
Total citrus g per capita/day | 35 | 46 | 55 | 73 | |
% of total that is oranges & mandarines | 77 | 80 | 80 | 81 | |
North America | Total citrus supply tonnes | 13,292,610 | 14,506,257 | 14,141,748 | 13,928,358 |
Total citrus g per capita/day | 144 | 143 | 125 | 112 | |
% of total that is oranges & mandarines | 81 | 81 | 82 | 79 | |
South America | Total citrus supply tonnes | 7,516,799 | 10,525,514 | 15,148,330 | 13,530,945 |
Total citrus g per capita/day | 87 | 99 | 121 | 96 | |
% of total that is oranges & mandarines | 89 | 91 | 83 | 80 |
Nutrient | 1970 | 2006 |
---|---|---|
Vitamin C | ||
mg | 26.4 | 32.8 |
% of dietary nutrients from citrus | 24.9 | 27.6 |
Vitamin A | ||
µg RAE | 3.7 | 4.3 |
% of dietary nutrients from citrus | 0.3 | 0.4 |
Folate (DFE) | ||
µg | 19.2 | 30.5 |
% of dietary nutrients from citrus | 6.4 | 3.4 |
Dietary Fiber | ||
g | 0.6 | 0.6 |
% of dietary nutrients from citrus | 3.0 | 2.2 |
Carotenoids | ||
µg | 7.7 | 8.2 |
% of dietary nutrients from citrus | 1.5 | 1.2 |
4. Nutritional and Phytochemical Contents of Citrus
Vitamin C | Vitamin A* | Folate | Fiber | |
---|---|---|---|---|
Oranges | 53-88 mg | 17 µg | 30 µg | 2.4 g |
Children under 9 y (%) † | 213–589 | 3–6 | 15–20 | 10–13 |
Persons 9+ y | 59–195 | 2–4 | 8–10 | 6–11 |
Pregnant/lactating women | 44–110 | 2–3 | 5–6 | 8–9 |
Grapefruit | 31-61 mg | 58 µg | 13 µg | 1.6 g |
Children under 9 y | 125–244 | 12–15 | 7–9 | 6–8 |
Persons 9+ y | 35–135 | 6–10 | 3–4 | 4–8 |
Pregnant/lactating women | 26–76 | 4–8 | 2–3 | 6 |
Tangerines | 27-72 mg | 46-144 µg | 16 µg | 1.8 g |
Children under 9 y | 107–480 | 9–36 | 8–11 | 7–9 |
Persons 9+ y | 30–160 | 5–24 | 4–5 | 5–9 |
Pregnant/lactating women | 21–90 | 4–19 | 3–4 | 6 |
Lemons/limes | 29-61 mg | 2-22µg | 11-16µg | 1.8-2.8 g |
Children under 9 y | 116–407 | 0.4–6 | 4–7 | 11–15 |
Persons 9+ y | 32–135 | 0.2–4 | 2–4 | 9–13 |
Pregnant/lactating women | 24–76 | 0.2–3 | 1–2 | 10 |
4.1. Vitamin C
4.2. Carotenoids and Vitamin A
4.3. Folate
4.4. Fiber
4.5. Flavonoids and Limonoids
5. Evidence of Health Benefits of Whole Citrus Fruits
6. Barriers of Increasing Citrus Intake and Recommendations
References and Notes
- Fresh Citrus Report. Available online: http://www.pir.sa.gov.au/horticulture/citrus/fresh_citrus_report (accessed on 14 October 2012).
- Ortiz, J.M. Botany. In Citrus: The Genus Citrus; Dugo, G., Di Giacomo, A., Eds.; Taylor and Francis: New York, NY, USA, 2002; pp. 16–35. [Google Scholar]
- Radhika, G.; Sudha, V.; Sathya, R.M.; Ganesan, A.; Mohan, V. Association of fruit and vegetable intake with cardiovascular risk factors in urban South Indians. Brit. J. Nutr. 2008, 99, 398–405. [Google Scholar]
- Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; Leschik-Bonnet, E.; Mueller, M.J.; Oberritter, H.; Schulze, M.; Stehle, P.; Watzl, B. Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr. 2012, 51, 637–663. [Google Scholar] [CrossRef]
- Codoñer-Franch, P.; Valls-Bellés, V. Citrus as Functional foods. Curr. T. Nutraceut. Res. 2010, 8, 173–183. [Google Scholar]
- Food Availability (Per Capita) Data System, Nutrient Availability. US Deparment of Agriculture, Economic Research Service. Available online: http://www.ers.usda.gov/data-products/food-availability-%28per-capita%29-data-system.aspx#26705 (accessed on 17 October 2012).
- FAOSTAT, Production Crops. Food and Agriculture Organization of the United Nations. Available online: http://faostat3.fao.org/home/index.html#VISUALIZE (accessed on 5 October 2012).
- Global prevalence of vitamin A deficiency in populations at risk 1995–2005: WHO global database on vitamin A deficiency. World Health Organization: Geneva, Switerzland, 2009. Available online: http://whqlibdoc.who.int/publications/2009/9789241598019_eng.pdf (accessed on 18 October 2012).
- Guidelines on Food Fortification with Micronutrients; World Health Organization: Geneva, Switerzland, 2006.
- Vitamin and Mineral Requirements in Human Nutrition; World Health Organization: Geneva, Switerzland, 2004.
- FAO Food Supply Crops Primary Equivalent. Food and Agriculture Organization. Available online: http://faostat.fao.org/site/609/default.aspx#ancor (accessed on 18 October 2012).
- Plattner, K.; Perez, A. Fruit and Tree Nuts Outlook: Total Citrus Production Slightly Down in 2011/12. US Deparment of Agriculture, Economic Resource Service. Available online: http://www.ers.usda.gov/media/468106/fts351.pdf (accessed on 10 October 2012).
- Loss-Adjusted Food Availability, Fruit. US Department of Agriculture, Economic Research Service. Available online: http://www.ers.usda.gov/data-products/food-availability-%28per-capita%29-data-system.aspx#26705 (accessed on 17 October 2012).
- Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, DC, USA, 2006.
- National Nutrient Database for Standard Reference Release 24. US Department of Agriculture, Agriculture Research Service. Available online: http://www.ars.usda.gov/nutrientdata (accessed on 14 October 2012).
- USDA-NCC Carotenoid Database for US Foods—1998. US Department of Agriculture, ARS Nutrient Data Laboratory. Available online: http://www.nal.usda.gov/fnic/foodcomp/Data/car98/car98.html (accessed on 19 October 2012).
- Yano, M.; Kato, M.; Ikoma, Y.; Kawasaki, A.; Fukazawa, Y.; Sugiura, M.; Matsumoto, H.; Oohara, Y.; Nagao, A.; Ogawa, K. Quantitation of carotenoids in raw and processed fruits in Japan. Food Sci. Technol. Res. 2005, 11, 13–18. [Google Scholar] [CrossRef]
- Nagy, S. Vitamin C contents of citrus fruit and their products: a review. J. Agr. Food Chem. 1980, 28, 8–18. [Google Scholar] [CrossRef]
- Carotenoids and Food Preparation: The Retention of Provitamin A Carotenoids in Prepared, Processed and Stored Foods; OMNI Project: Campinas, Brazil, 1997.
- Fraser, P.D.; Bramley, P.M. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 2004, 43, 228–265. [Google Scholar] [CrossRef]
- Meister, A. Glutathione ascorbic acid antioxidant system in animals. J. Biol. Chem. 1994, 269, 9397–9400. [Google Scholar]
- Palacios, C. The role of nutrients in bone health, from A to Z. Crit. Rev. Food Sci. 2006, 46, 621–628. [Google Scholar] [CrossRef]
- Wintergerst, E.S.; Maggini, S.; Hornig, D.H. Immune-enhancing role of vitamin C and zinc and effect on clinical conditions. Ann. Nutr. Meta. 2006, 50, 85–94. [Google Scholar] [CrossRef]
- Chappell, L.C.; Seed, P.T.; Briley, A.L.; Kelly, F.J.; Lee, R.; Hunt, B.J.; Parmar, K.; Bewley, S.J.; Shennan, A.H.; Steer, P.J.; Poston, L. Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: A randomised trial. Lancet 1999, 354, 810–816. [Google Scholar]
- Szeto, Y.T.; Tomlinson, B.; Benzie, I.F.F. Total antioxidant and ascorbic acid content of fresh fruits and vegetables: implications for dietary planning and food preservation. Brit. J. Nutr. 2002, 87, 55–59. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Cano, M.P.; de Ancos, B.; Plaza, L.; Olmedilla, B.; Granado, F.; Martín, A. Effect of orange juice intake on vitamin C concentrations and biomarkers of antioxidant status in humans. Am. J. Clin. Nutr. 2003, 78, 454–460. [Google Scholar]
- Johnston, C.S.; Dancho, C.L.; Strong, G.M. Orange juice ingestion and supplemental vitamin C are equally effective at reducing plasma lipid peroxidation in healthy adult women. J. Am. Coll. Nutr. 2003, 22, 519–523. [Google Scholar]
- What We Eat in America. US Department of Agriculture, ARS. Available online: http://www.ars.usda.gov/Services/docs.htm?docid=18349 (accessed on 7 October 2012).
- Schleicher, R.L.; Carroll, M.D.; Ford, E.S.; Lacher, D.A. Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003–2004 National Health and Nutrition Examination Survey (NHANES). Am. J. Clin. Nutr. 2009, 90, 1252–1263. [Google Scholar] [CrossRef]
- Allen, L.H. Multiple micronutrients in pregnancy and lactation: an overview. Am. J. Clin. Nutr. 2005, 81, 1206–1212. [Google Scholar]
- Daneel-Otterbech, S.; Davidsson, L.; Hurrell, R. Ascorbic acid supplementation and regular consumption of fresh orange juice increase the ascorbic acid content of human milk: Studies in European and African lactating women. Am. J. Clin. Nutr. 2005, 81, 1088–1093. [Google Scholar]
- Frei, B.; Birlouez-Aragon, I.; Lykkesfeldt, J. Authors’ perspective: What is the optimum intake of vitamin C in humans? Crit. Rev. Food Sci. 2012, 52, 815–829. [Google Scholar] [CrossRef]
- Britton, G. Structure and properties of carotenoids in relation to function. FASEB J. 1995, 9, 1551–1558. [Google Scholar]
- Khachik, F.; Spangler, C.J.; Smith, J.C.; Canfield, L.M.; Steck, A.; Pfander, H. Identification, quantification, and relative concentrations of carotenoids and their metabolites in human milk and serum. Anal. Chem. 1997, 69, 1873–1881. [Google Scholar] [CrossRef]
- Frankel, E.N. Lipid oxidation. Prog. Lipid Res. 1980, 19, 1–22. [Google Scholar] [CrossRef]
- Katsuura, S.; Imamura, T.; Bando, N.; Yamanishi, R. Beta-carotene and beta-cryptoxanthin but not lutein evoke redox and immune changes in RAW264 murine macrophages. Mol Nutr Food Res. 2009, 53, 1396–1405. [Google Scholar] [CrossRef]
- Matsumoto, A.; Mizukami, H.; Mizuno, S.; Umegaki, K.; Nishikawa, J.I.; Shudo, K.; Kagechika, H.; Inoue, M. beta-Cryptoxanthin, a novel natural RAR ligand, induces ATP-binding cassette transporters in macrophages. Biochem. Pharmacol. 2007, 74, 256–264. [Google Scholar] [CrossRef]
- Uchiyama, S.; Yamaguchi, M. Inhibitory effect of [beta]-cryptoxanthin on osteoclast-like cell formation in mouse marrow cultures. Biochem. Pharmacol. 2004, 67, 1297–1305. [Google Scholar] [CrossRef]
- Sahni, S.; Hannan, M.T.; Blumberg, J.; Cupples, L.A.; Kiel, D.P.; Tucker, K.L. Protective Effect of total carotenoid and lycopene Intake on the risk of hip fracture: A 17-year follow-up from the Framingham Osteoporosis Study. J. Bone Miner. Res. 2009, 24, 1086–1094. [Google Scholar] [CrossRef]
- Stahl, W.; Nicolai, S.; Briviba, K.; Hanusch, M.; Broszeit, G.; Peters, M.; Martin, H.D.; Sies, H. Biological activities of natural and synthetic carotenoids: induction of gap junctional communication and singlet oxygen quenching. Carcinogenesis 1997, 18, 89–92. [Google Scholar]
- Snodderly, D. Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am. J. Clin. Nutr. 1995, 62, 1448–1461. [Google Scholar]
- Seddon, J.M.; Ajani, U.A.; Sperduto, R.D.; Hiller, R.; Blair, N.; Burton, T.C.; Farber, M.D.; Gragoudas, E.S.; Haller, J.; Miller, D.T.; et al. Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. J. Am. Med. Assoc. 1994, 272, 1413–1420. [Google Scholar] [CrossRef]
- Petro, R.; Doll, R.; Buckley, J.D.; Sporn, M.B. Can dietary beta-carotene materially reduce human cancer rates? Nature 1981, 290, 201–208. [Google Scholar] [CrossRef]
- Gallicchio, L.; Boyd, K.; Matanoski, G.; Tao, X.; Chen, L.; Lam, T.K.; Shiels, M.; Hammond, E.; Robinson, K.A.; Caulfield, L.E.; Herman, J.G.; Guallar, E.; Alberg, A.J. Carotenoids and the risk of developing lung cancer: A systematic review. Am. J. Clin. Nutr. 2008, 88, 372–383. [Google Scholar]
- Nishino, H.; Murakoshi, M.; Tokuda, H.; Satomi, Y. Cancer prevention by carotenoids. Arch. Biochem. Biophys. 2009, 483, 165–168. [Google Scholar]
- Russell, R.M. The vitamin A spectrum: from deficiency to toxicity. Am. J. Clin. Nutr. 2000, 71, 878–884. [Google Scholar]
- Penniston, K.L.; Tanumihardjo, S.A. The acute and chronic toxic effects of vitamin A. Am. J. Clin. Nutr. 2006, 83, 191–201. [Google Scholar]
- Castenmiller, J.J.M.; West, C.E. Bioavailability and bioconversion of carotenoids. Ann. Rev. Nutr. 1998, 18, 19–38. [Google Scholar] [CrossRef]
- De Pee, S.; West, C.E.; Permaesih, D.; Martuti, S.; Muhilal; Hautvast, J.G. range fruit is more effective than are dark-green, leafy vegetables in increasing serum concentrations of retinol and beta-carotene in schoolchildren in Indonesia. Am. J. Clin. Nutr. 1998, 68, 1058–1067. [Google Scholar]
- Arscott, S.A.; Howe, J.A.; Davis, C.R.; Tanumihardjo, S.A. Carotenoid profiles in provitamin A-containing fruits and vegetables affect the bioefficacy in Mongolian gerbils. Exp. Biol. Med. 2010, 235, 839–848. [Google Scholar] [CrossRef]
- Burri, B.; Chang, J.; Neidlinger, T. Beta-cryptoxanthin- and alpha-carotene-rich foods have greater apparent bioavailability than beta-carotene-rich foods in Western diets. Brit. J. Nutr. 2011, 105, 212–219. [Google Scholar] [CrossRef]
- Turner, T. Pro-vitamin A Carotenoids: Aspects of the Biology, Chemical Analysis, and Utilization of Foods for Improving Public Health. Ph.D. Thesis, University of California, Davis, CA, USA, 2012. [Google Scholar]
- Burri, B.J.; Chang, J.S.; Turner, T. Citrus can help prevent vitamin A deficiency in developing countries. Calif. Agr. 2011, 65, 130–135. [Google Scholar] [CrossRef]
- Green, N.S. Folic acid supplementation and prevention of birth defects. J. Nutr. 2002, 132, 2356–2360. [Google Scholar]
- hrvik, V.; Witthöft, C. Orange juice is a good folate source in respect to folate content and stability during storage and simulated digestion. Eur. J. Nutr. 2008, 47, 92–98. [Google Scholar] [CrossRef]
- Kurowska, E.M.; Spence, J.D.; Jordan, J.; Wetmore, S.; Freeman, D.J.; Piché, L.A.; Serratore, P. HDL-cholesterol-raising effect of orange juice in subjects with hypercholesterolemia. Am. J. Clin. Nutr. 2000, 72, 1095–1100. [Google Scholar]
- Brown, L.; Rosner, B.; Willett, W.W.; Sacks, F.M. Cholesterol-lowering effects of dietary fiber: A meta-analysis. Am. J. Clin. Nutr. 1999, 69, 30–42. [Google Scholar]
- Dikeman, C.L.; Fahey, G.C. Viscosity as related to dietary fiber: A review. Crit. Rev. Food Sci. 2006, 46, 649–663. [Google Scholar] [CrossRef]
- Economos, C.; Clay, W. Nutritional and health benefits of citrus fruits. Food and Agriculture Organization. Available online: ftp://ftp.fao.org/docrep/fao/X2650T/X2650t03.pdf (accessed on 1 October 2012).
- Rock, C.L.; Swendseid, M.E. Plasma beta-carotene response in humans after meals supplemented with dietary pectin. Am. J. Clin. Nutr. 1992, 55, 96–99. [Google Scholar]
- Riedl, J.; Linseisen, J.; Hoffmann, J.; Wolfram, G. Some dietary fibers reduce the absorption of carotenoids in women. J. Nutr. 1999, 129, 2170–2176. [Google Scholar]
- Brouns, F.; Theuwissen, E.; Adam, A.; Bell, M.; Berger, A.; Mensink, R.P. Cholesterol-lowering properties of different pectin types in mildly hyper-cholesterolemic men and women. Eur J Clin Nutr 2012, 66, 591–599. [Google Scholar] [CrossRef]
- Tripoli, E.; Guardia, M.L.; Giammanco, S.; Majo, D.D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar]
- Peterson, J.; Dwyer, J. Flavonoids: Dietary occurrence and biochemical activity. Nutr. Res. 1998, 18, 1995–2018. [Google Scholar] [CrossRef]
- Bhagwat, S.; Haytowitz, D.B.; Holden, J.M. USDA Database for the Flavanoid Content of Selected Foods Release 3. US Deparment of Agriculture, ARS. Available online: http://www.nal.usda.gov/fnic/foodcomp/Data/Flav/flav.pdf (accessed on 5 October 2012).
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar]
- Ameer, B.; Weintraub, R.A.; Johnson, J.V.; Yost, R.A.; Rouseff, R.L. Flavanone absorption after naringin, hesperidin, and citrus administration[ast]. Clin. Pharmacol. Ther. 1996, 60, 34–40. [Google Scholar] [CrossRef]
- Jeon, S.-M.; Kim, H.K.; Kim, H.-J.; Do, G.-M.; Jeong, T.-S.; Park, Y.B.; Choi, M.-S. Hypocholesterolemic and antioxidative effects of naringenin and its two metabolites in high-cholesterol fed rats. Transl. Res. 2007, 149, 15–21. [Google Scholar] [CrossRef]
- Habauzit, V.; Sacco, S.M.; Gil-Izquierdo, A.; Trzeciakiewicz, A.; Morand, C.; Barron, D.; Pinaud, S.; Offord, E.; Horcajada, M.-N. Differential effects of two citrus flavanones on bone quality in senescent male rats in relation to their bioavailability and metabolism. Bone 2011, 49, 1108–1116. [Google Scholar] [CrossRef]
- Horcajada, M.N.; Habauzit, V.; Trzeciakiewicz, A.; Morand, C.; Gil-Izquierdo, A.; Mardon, J.; Lebecque, P.; Davicco, M.J.; Chee, W.S.S.; Coxam, V.; et al. Hesperidin inhibits ovariectomized-induced osteopenia and shows differential effects on bone mass and strength in young and adult intact rats. J. Appl. Physiol. 2008, 104, 648–654. [Google Scholar] [CrossRef]
- Selma, M.V.; Espín, J.C.; Tomás-Barberán, F.A. Interaction between phenolics and gut microbiota: role in human health. J. Agr. Food Chem. 2009, 57, 6485–6501. [Google Scholar] [CrossRef]
- Vallejo, F.; Larrosa, M.; Escudero, E.; Zafrilla, M.P.; Cerdá, B.A.; Boza, J.; García-Conesa, M.T.; Espín, J.C.; Tomás-Barberán, F.A. Concentration and solubility of flavanones in orange beverages affect their bioavailability in humans. J. Agr. Food Chem. 2010, 58, 6516–6524. [Google Scholar] [CrossRef]
- Rizza, S.; Muniyappa, R.; Iantorno, M.; Kim, J.-A.; Chen, H.; Pullikotil, P.; Senese, N.; Tesauro, M.; Lauro, D.; Cardillo, C.; Quon, M.J. Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. J. Clin. Endocr. Metab. 2011, 96, E782–E792. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Knaze, V.; Luján-Barroso, L.; Slimani, N.; Romieu, I.; Fedirko, V.; Santucci de Magistris, M.; Ericson, U.; Amiano, P.; Trichopoulou, A.; et al. Estimated dietary intakes of flavonols, flavanones and flavones in the European Prospective Investigation into Cancer and Nutrition (EPIC) 24 hour dietary recall cohort. Brit. J. Nutr. 2011, 106, 1915–1925. [Google Scholar] [CrossRef]
- Knekt, P.; Kumpulainen, J.; Järvinen, R.; Rissanen, H.; Heliövaara, M.; Reunanen, A.; Hakulinen, T.; Aromaa, A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 2002, 76, 560–568. [Google Scholar]
- Welch, A.; MacGregor, A.; Jennings, A.; Fairweather-Tait, S.; Spector, T.; Cassidy, A. Habitual flavonoid intakes are positively associated with bone mineral density in women. J. Bone Miner. Res. 2012, 27, 1872–1878. [Google Scholar] [CrossRef]
- Maras, J.E.; Talegawkar, S.A.; Qiao, N.; Lyle, B.; Ferrucci, L.; Tucker, K.L. Flavonoid intakes in the Baltimore Longitudinal Study of Aging. J. Food Compos. Anal. 2011, 24, 1103–1109. [Google Scholar] [CrossRef]
- Manners, G.D. Citrus limonoids: Analysis, bioactivity, and biomedical prospect. J. Agr. Food Chem. 2007, 55, 8285–8294. [Google Scholar] [CrossRef]
- Silalahi, J. Anticancer and health protective properties of citrus fruit components. Asia Pac. J. Clin. Nutr. 2002, 11, 79–84. [Google Scholar] [CrossRef]
- Chidambara Murthy, K.N.; Jayaprakasha, G.K.; Patil, B.S. Apoptosis mediated cytotoxicity of citrus obacunone in human pancreatic cancer cells. Toxicol. In Vitro 2011, 25, 859–867. [Google Scholar] [CrossRef]
- Chidambara Murthy, K.N.; Jayaprakasha, G.K.; Kumar, V.; Rathore, K.S.; Patil, B.S. Citrus Limonin and its glucoside inhibit colon adenocarcinoma cell proliferation through apoptosis. J. Agr. Food Chem. 2011, 59, 2314–2323. [Google Scholar]
- Lam, L.K.T.; Zhang, J.; Hasegawa, S. Citrus limonoid reduction of chemically-induced tumorigensis. Food Technol. 1994, 48, 104–108. [Google Scholar]
- Battinelli, L.; Mengoni, F.; Lichtner, M.; Mazzanti, G.; Saija, A.; Mastroianni, C.M.; Vullo, V. Effect of limonin and nomilin on HIV-1 replication on infected human mononuclear cells. Planta Med. 2003, 69, 910–913. [Google Scholar] [CrossRef]
- Astani, A.; Reichling, J.; Schnitzler, P. Antiviral activity of monoterpene components of essential oils against Herpes Simplex virus. Antivir. Res. 2009, 82, A46. [Google Scholar]
- Vikram, A.; Jesudhasan, P.R.; Jayaprakasha, G.K.; Pillai, S.D.; Patil, B.S. Citrus limonoids interfere with Vibrio harveyi cell-cell signalling and biofilm formation by modulating the response regulator LuxO. Microbiology SGM 2011, 157, 99–110. [Google Scholar] [CrossRef]
- Ramful, D.; Tarnus, E.; Aruama, O.I.; Bourdon, E.; Bahorun, T. Polyphenolic composition, vitamin C content, and antioxidant capacity of Mauritian citrus fruit pulps. Food Res. Int. 2011, 44, 2088–2099. [Google Scholar] [CrossRef]
- Aruoma, O.I.; Landes, B.; Ramful-Baboolall, D.; Bourdon, E.; Neergheen-Bhujun, V.; Wagner, K.H.; Bahorun, T. Functional benefits of citrus fruits in the management of diabetes. Prevent. Med. 2012, 54, S12–S16. [Google Scholar] [CrossRef]
- Sun, J.; Chu, Y.-F.; Wu, X.; Liu, R.H. Antioxidant and antiproliferative activities of common fruits. J. Agr. Food Chem. 2002, 50, 7449–7454. [Google Scholar] [CrossRef]
- Harats, D.; Chevion, S.; Nahir, M.; Norman, Y.; Sagee, O.; Berry, E.M. Citrus fruit supplementation reduces lipoprotein oxidation in young men ingesting a diet high in saturated fat: Presumptive evidence for an interaction between vitamins C and E in vivo. Am. J. Clin. Nutr. 1998, 67, 240–245. [Google Scholar]
- Ghanim, H.; Sia, C.L.; Upadhyay, M.; Korzeniewski, K.; Viswanathan, P.; Abuaysheh, S.; Mohanty, P.; Dandona, P. Orange juice neutralizes the proinflammatory effect of a high-fat, high-carbohydrate meal and prevents endotoxin increase and Toll-like receptor expression. Am. J. Clin. Nutr. 2010, 91, 940–949. [Google Scholar] [CrossRef]
- Codoñer-Franch, P.; López-Jaén, A.B.; De La Mano-Hernández, A.; Sentandreu, E.; Simó-Jordá, R.; Valls-Bellés, V. Oxidative markers in children with severe obesity following low-calorie diets supplemented with mandarin juice. Acta Pædiatr. 2010, 99, 1841–1846. [Google Scholar] [CrossRef]
- Devaraj, S.; Jialal, I.; Vega-Lopez, S. Plant sterol-fortified orange juice effectively lowers cholesterol levels in mildly hypercholesterolemic healthy individuals. Arterioscler. Thromb. Vasc. Biol. 2004, 24, E25–E28. [Google Scholar] [CrossRef]
- Franke, A.A.; Cooney, R.V.; Henning, S.M.; Custer, L.J. Bioavailability and antioxidant effects of orange juice components in humans. J. Agr. Food Chem. 2005, 53, 5170–5178. [Google Scholar] [CrossRef] [Green Version]
- Titta, L.; Trinei, M.; Stendardo, M.; Berniakovich, I.; Petroni, K.; Tonelli, C.; Riso, P.; Porrini, M.; Minucci, S.; Pelicci, P.G.; Rapisarda, P.; Recupero, G.R.; Giorgio, M. Blood orange juice inhibits fat accumulation in mice. Int. J. Obes. 2010, 34, 578–588. [Google Scholar] [CrossRef]
- Salamone, F.; Volti, G.L.; Titta, L.; Puzzo, L.; Barbagallo, I.; La Delia, F.; Zelber-Sagi, S.; Malaguarnera, M.; Pelicci, P.G.; Giorgio, M.; Galvano, F. Moro orange juice prevents fatty liver in mice. World J. Gastroenterol. 2012, 18, 3862–3868. [Google Scholar] [CrossRef]
- González-Molina, E.; Domínguez-Perles, R.; Moreno, D.A.; García-Viguera, C. Natural bioactive compounds of Citrus limon for food and health. J. Pharm. Biomed. Anal. 2010, 51, 327–345. [Google Scholar] [CrossRef]
- Seyoum, E.; Selhub, J. Properties of food folates determined by stability and susceptibility to intestinal pteroylpolyglutamate hydrolase action. J. Nutr. 1998, 128, 1956–1960. [Google Scholar]
- Dietary Guidelines for Americans, 7th ed; U.S. Government Printing Office: Washington, DC, USA, 2010.
- Citrus Fruits 1999 Summary. US Deparment of Agriculture: National Agriculture Statistics Servic. Available online: http://usda01.library.cornell.edu/usda/nass/CitrFrui//1990s/1999/CitrFrui-09-23-1999.pdf (accessed on 5 October 2012).
- Citrus Fruits 2012 Summary. US Department of Agriculture: National Agriculture Statistics Service. Available online: http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1031 (accessed on 5 October 2012).
- Citrus: World Markets and Trade. US Department of Agriculture, Foreign Agriculture Service. Available online: http://usda01.library.cornell.edu/usda/current/citruswm/citruswm-07-26-2012.pdf (accessed on 7 October 2012).
- Spreen, T.H. Projections of World Production and Consumption of Citrus to 2010. In Proceedings of the China/FAO Citrus Symposium, Beijing, China, 14–17 May 2001.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Turner, T.; Burri, B.J. Potential Nutritional Benefits of Current Citrus Consumption. Agriculture 2013, 3, 170-187. https://doi.org/10.3390/agriculture3010170
Turner T, Burri BJ. Potential Nutritional Benefits of Current Citrus Consumption. Agriculture. 2013; 3(1):170-187. https://doi.org/10.3390/agriculture3010170
Chicago/Turabian StyleTurner, Tami, and Betty J. Burri. 2013. "Potential Nutritional Benefits of Current Citrus Consumption" Agriculture 3, no. 1: 170-187. https://doi.org/10.3390/agriculture3010170