Rhizosphere Versus Bulk Soil Properties of Peanut (Arachis hypogaea L.) Growing Under Field Conditions in Southern Algeria
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling
2.3. Soil Analysis
2.4. Statistical Analysis
2.5. Geostatistical Analysis
3. Results
3.1. Soil Physicochemical Properties
3.2. Soil Nutrient Dynamics
3.3. Spatial Variability and Multivariate Analysis
4. Discussion
4.1. Rhizosphere Soil Influence
4.2. Spatial Variability
4.3. Effects of Management Practices
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hinsu, A.T.; Panchal, K.J.; Pandit, R.J.; Koringa, P.G.; Kothari, R.K. Characterizing Rhizosphere Microbiota of Peanut (Arachis hypogaea L.) from Pre-Sowing to Post-Harvest of Crop under Field Conditions. Sci. Rep. 2021, 11, 17457. [Google Scholar] [CrossRef]
- Dwivedi, S.L.; Vetukuri, R.R.; Kelbessa, B.G.; Gepts, P.; Heslop-Harrison, P.; Araujo, A.S.F.; Sharma, S.; Ortiz, R. Exploitation of Rhizosphere Microbiome Biodiversity in Plant Breeding. Trends Plant Sci. 2025, 30, 1033–1045. [Google Scholar] [CrossRef]
- Thepbandit, W.; Athinuwat, D. Rhizosphere Microorganisms Supply Availability of Soil Nutrients and Induce Plant Defense. Microorganisms 2024, 12, 558. [Google Scholar] [CrossRef]
- Oliva-Cruz, M.; Cabañas-López, J.R.; Altamirano-Tantalean, M.A.; Juarez-Contreras, L.; Vigo, C.N. Agronomic Behavior of Peanut (Arachis hypogaea L.) Cultivars Under Three Planting Densities in the Northeast of Peru. Agronomy 2024, 14, 1905. [Google Scholar] [CrossRef]
- Cesari, A.B.; Fernandez, M.; Paulucci, N.S.; Dardanelli, M.S. Long-Life Inoculant: Bradyrhizobium Stored in Biodegradable Beads for Four Years Shows Optimal Cell Vitality, Interacts with Peanut Roots, and Promotes Early Growth. Plants 2024, 13, 2983. [Google Scholar] [CrossRef]
- Lallaouna, R.; Ababsa, N.; Chenchouni, H. Soil Physicochemical Properties and Soil Fertility Indicators of Two Cropping Systems under Semiarid Climate Conditions. Environ. Adv. 2025, 21, 100663. [Google Scholar] [CrossRef]
- Lan, W.; Ding, H.; Zhang, Z.; Li, F.; Feng, H.; Guo, Q.; Qin, F.; Zhang, G.; Xu, M.; Xu, Y. Diversified Soil Types Differentially Regulated the Peanut (Arachis hypogaea L.) Growth and Rhizosphere Bacterial Community Structure. Plants 2025, 14, 1169. [Google Scholar] [CrossRef]
- Zou, X.; Jiang, X.; Jiang, H.; Li, C.; Cheng, J.; Ji, D.; Wang, J.; Ruan, J.; Zhou, T.; Kuang, C.; et al. Soil Biocrusts May Exert a Legacy Impact on the Rhizosphere Microbial Community of Plant Crops. Agronomy 2024, 14, 2548. [Google Scholar] [CrossRef]
- Wu, H.; Chen, S.; Huang, Z.; Huang, T.; Tang, X.; He, L.; Li, Z.; Xiong, J.; Zhong, R.; Jiang, J.; et al. Effects of Intercropping and Nitrogen Application on Soil Fertility and Microbial Communities in Peanut Rhizosphere Soil. Agronomy 2024, 14, 635. [Google Scholar] [CrossRef]
- Haghpanah, M.; Hashemipetroudi, S.; Arzani, A.; Araniti, F. Drought Tolerance in Plants: Physiological and Molecular Responses. Plants 2024, 13, 2962. [Google Scholar] [CrossRef]
- Liu, C.; Shang, S.; Wang, C.; Tian, J.; Zhang, L.; Liu, X.; Bian, R.; He, Q.; Zhang, F.; Chen, L.; et al. Biochar Amendment Increases Peanut Production Through Improvement of the Extracellular Enzyme Activities and Microbial Community Composition in Replanted Field. Plants 2025, 14, 922. [Google Scholar] [CrossRef]
- Yu, T.; Hou, X.; Fang, X.; Razavi, B.; Zang, H.; Zeng, Z.; Yang, Y. Short-Term Continuous Monocropping Reduces Peanut Yield Mainly Via Altering Soil Enzyme Activity and Fungal Community. Environ. Res. 2024, 245, 117977. [Google Scholar] [CrossRef]
- Córdoba, M.A.; Hang, S.B.; Bozzer, C.; Alvarez, C.; Faule, L.; Kowaljow, E.; Vaieretti, M.V.; Bongiovanni, M.D.; Balzarini, M.G. Spatial Variability and Temporal Changes of Soil Properties Assessed by Machine Learning in Córdoba, Argentina. Soil. Syst. 2025, 9, 109. [Google Scholar] [CrossRef]
- Ellur, R.; Ankappa, A.M.; Dharumarajan, S.; Puttavenkategowda, T.; Nanjundegowda, T.M.; Sannegowda, P.S.; Pratap Mishra, A.; Đurin, B.; Dogančić, D. Soil Quality Assessment and Its Spatial Variability in an Intensively Cultivated Area in India. Land 2024, 13, 970. [Google Scholar] [CrossRef]
- Acir, N. Predicting Soil Fertility in Semi-Arid Agroecosystems Using Interpretable Machine Learning Models: A Sustainable Approach for Data-Sparse Regions. Sustainability 2025, 17, 7547. [Google Scholar] [CrossRef]
- Zhang, X.; Li, P.; Zhao, M.; Wang, S.; Sun, B.; Zhang, Y.; Wang, Y.; Chen, Z.; Xie, H.; Jiang, N.; et al. Organic Fertilizer with High Nutrient Levels Affected Peanut-Growing Soil Bacteria More Than Fungi at Low Doses. Agronomy 2024, 14, 765. [Google Scholar] [CrossRef]
- Andrade, C.; Fonseca, A.; Santos, J.A.; Bois, B.; Jones, G.V. Historic Changes and Future Projections in Köppen–Geiger Climate Classifications in Major Wine Regions Worldwide. Climate 2024, 12, 94. [Google Scholar] [CrossRef]
- Laouar, B.; Kraimat, M.; Benhammouda, H.; Oulad Heddar, M. A GIS-based Approach to Assessing the Spatial Variability and Rhizosphere Soil Properties of Retama raetam Forssk., Growing in Southern Algeria. J. Inf. Syst. Eng. Manag. 2025, 10, 988–1001. [Google Scholar] [CrossRef]
- Djili, B.; Hamdi-Aïssa, B. Characteristics and mineralogy of desert alluvial soils: Wadi Zegrir, Northern Sahara of Algeria. Arid. Land Res. Manag. 2018, 32, 1–19. [Google Scholar] [CrossRef]
- Dill Harald, G.; Buzatu, A. From the aeolian landform to the aeolian mineral deposit in the present and its use as an ore guide in the past. Constraints from mineralogy, chemistry and sediment petrography. Ore Geol. Rev. 2022, 141, 104490. [Google Scholar] [CrossRef]
- Laoufi, H.; Bachir, H.; Hadj-Miloud, S.; Clark, K. Comparative Assessment of Three Methods for Soil Organic Matter Determination in Calcareous Soils, Eastern Algeria. Land 2025, 14, 2030. [Google Scholar] [CrossRef]
- Krahl, I.; Tokarski, D.; Kučerík, J.; Schwitzky, E.; Siewert, C. New Approach to Experimental Soil Health Definition Using Thermogravimetric Fingerprinting. Agronomy 2025, 15, 487. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, J.E.; Back, I.; Lim, K.J.; Mo, C. Estimation of Total Nitrogen Content in Topsoil Based on Machine and Deep Learning Using Hyperspectral Imaging. Agriculture 2023, 13, 1975. [Google Scholar] [CrossRef]
- Mogashane, T.M.; Mapazi, O.; Motlatle, M.A.; Mokoena, L.; Tshilongo, J. A Review of Recent Developments in Analytical Methods for Determination of Phosphorus from Environmental Samples. Molecules 2025, 30, 1001. [Google Scholar] [CrossRef]
- Bekir, S.; Zoghlami, R.I.; Boudabbous, K.; Khelil, M.N.; Moussa, M.; Ghrib, R.; Nahdi, O.; Trabelsi, E.; Bousnina, H. Soil Physicochemical Changes as Modulated by Treated Wastewater after Medium-and Long-Term Irrigations: A Case Study from Tunisia. Agriculture 2022, 12, 2139. [Google Scholar] [CrossRef]
- Sharma, S.B.; Raverkar, K.P.; Wani, S.P.; Bagyaraj, D.J.; Kannepalli, A.; Kandula, D.R.W.; Mikaelyan, A.; Ansari, M.A.; Stock, S.P.; Davies, K.G.; et al. Role of the Plant–Microbiome Partnership in Environmentally Harmonious 21st Century Agriculture. Microorganisms 2025, 13, 2839. [Google Scholar] [CrossRef]
- El-sherbeny, T.M.S.; Mousa, A.M.; Zhran, M.A. Response of Peanut (Arachis hypogaea L.) Plant to Bio-Fertilizer and Plant Residues in Sandy Soil. Environ. Geochem. Health 2023, 45, 253–265. [Google Scholar] [CrossRef]
- Baccari, B.; Krouma, A. Rhizosphere Acidification Determines Phosphorus Availability in Calcareous Soil and Influences Faba Bean (Vicia faba) Tolerance to P Deficiency. Sustainability 2023, 15, 6203. [Google Scholar] [CrossRef]
- Turdaliev, A.; Askarov, K.; Abakumov, E.; Makhkamov, E.; Rahmatullayev, G.; Mamajonov, G.; Akhmadjonov, A.; Axunov, A. Biogeochemical State of Salinized Irrigated Soils of Central Fergana (Uzbekistan, Central Asia). Appl. Sci. 2023, 13, 6188. [Google Scholar] [CrossRef]
- Alnaimy, M.; Zelenakova, M.; Vranayova, Z.; Abu-Hashim, M. Effects of Temporal Variation in Long-Term Cultivation on Organic Carbon Sequestration in Calcareous Soils: Nile Delta, Egypt. Sustainability 2020, 12, 4514. [Google Scholar] [CrossRef]
- Xiao, Y.; Ye, M.; Zhang, J.; Chen, Y.; Sun, X.; Li, X.; Song, X. Significant Changes in Soil Properties in Arid Regions Due to Semicentennial Tillage—A Case Study of Tarim River Oasis, China. Sustainability 2025, 17, 4194. [Google Scholar] [CrossRef]
- Khan, M.T.; Supronienė, S.; Žvirdauskienė, R.; Aleinikovienė, J. Climate, Soil, and Microbes: Interactions Shaping Organic Matter Decomposition in Croplands. Agronomy 2025, 15, 1928. [Google Scholar] [CrossRef]
- Chen, Q.; Luo, J.; Liao, F.; Xu, X.; Li, A.; Chen, L.; Zhao, T.; Long, T.; Li, S.; Li, H. Mineralogical and Geochemical Evolution During Limestone Weathering and Pedogenesis in Shimen, Hunan Province, South China. Minerals 2025, 15, 1109. [Google Scholar] [CrossRef]
- Du, Y.; Ge, X.; Du, Y.; Ding, H.; Lu, A. Mineral–Soil–Plant–Nutrient Synergism: Carbonate Rock Leachate Irrigation Enhances Soil Nutrient Availability, Improving Crop Yield and Quality. Minerals 2025, 15, 825. [Google Scholar] [CrossRef]
- Tlili, A.; Dridi, I.; Mlaiki, F.; Schillaci, C.; Saia, S. Description of Representative “In-Situ” Soil Profiles in Northwestern Tunisia. Discov. Soil 2025, 2, 31. [Google Scholar] [CrossRef]
- González-Valoys, A.C.; Chong, T.; Arrocha, J.; Lloyd, J.; Olmos, J.; Vergara, F.; Denvers, M.; Jaén, J.; Jiménez-Oyola, S.; García-Navarro, F.J. Geochemical Characterization of Soil and Water in an Agricultural Area for the Sustainable Use of Natural Resources. Agriculture 2025, 15, 702. [Google Scholar] [CrossRef]
- Zhao, C.X.; Jia, L.H.; Wang, Y.F.; Wang, M.L.; McGiffen, M.E. Effects of Different Soil Texture on Peanut Growth and Development. Commun. Soil Sci. Plant Anal. 2015, 46, 2249–2257. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, L.; Liang, H.; Liu, M.; Chen, Y.; Chen, D.; Shen, P. Impacts of Soil Compaction and Phosphorus Levels on the Dynamics of Phosphate-Solubilizing and Nitrogen-Fixing Bacteria in the Peanut Rhizosphere. Agronomy 2024, 14, 1971. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, Z.; Sun, D.; Lei, Y.; Li, Z.; Zheng, Y. Advances in Water and Nitrogen Management for Intercropping Systems: Crop Growth and Soil Environment. Agronomy 2025, 15, 2000. [Google Scholar] [CrossRef]
- Gao, C.; Kong, W.; Zhao, F.; Ju, F.; Liu, P.; Li, Z.; Liu, K.; Zhao, H. Enhancing Soil Phosphorus Availability in Intercropping Systems: Roles of Plant Growth Regulators. Agronomy 2025, 15, 1748. [Google Scholar] [CrossRef]
- Grzyb, A.; Wolna-Maruwka, A.; Niewiadomska, A. The Significance of Microbial Transformation of Nitrogen Compounds in the Light of Integrated Crop Management. Agronomy 2021, 11, 1415. [Google Scholar] [CrossRef]
- Han, B.; Chen, W.Q.; Jiao, Y.Q.; Yang, R.; Niu, L.L.; Chen, X.R.; Ji, C.Y.; Yin, D.X. Effects of Nitrogen Fertilizer Application on Soil Properties and Arsenic Mobilization in Paddy Soil. Sustainability 2024, 16, 5565. [Google Scholar] [CrossRef]
- Ding, B.; Feng, M.; Wang, R.; Chang, L.; Jiang, Y.; Xie, J.; Tian, D. A Study of Growth and Yield of Four Peanut Varieties with Rhizobia Inoculation under Field Conditions. Agronomy 2024, 14, 1410. [Google Scholar] [CrossRef]
- Hu, J.; Yang, Y.; Zhang, H.; Li, Y.; Zhang, S.; He, X.; Huang, Y.; Ye, Y.; Zhao, Y.; Yan, J. Reduction in Nitrogen Rate and Improvement of Nitrogen Use Efficiency Without Loss of Peanut Yield by Regional Mean Optimal Rate of Chemical Fertilizer Based on a Multi-Site Field Experiment in the North China Plain. Plants 2023, 12, 1326. [Google Scholar] [CrossRef]
- Hou, L.; Lin, R.X.; Wang, X.J.; Li, H.; Zhao, C.Z.; Zhu, X.J.; Li, C.S.; Li, G.H. The Mechanisms of Pod Zone Nitrogen Application on Peanut Pod Yield. Russ. J. Plant Physiol. 2022, 69, 51. [Google Scholar] [CrossRef]
- Cugnon, T.; De Toffoli, M.; Mahillon, J.; Lambert, R. Improving Nitrogen Fertilization Recommendations in Temperate Agricultural Systems: A Study on Walloon Soils Using Anaerobic Incubation and POxC. Nitrogen 2025, 6, 91. [Google Scholar] [CrossRef]
- Zhong, Y.; Tian, J.; Li, X.; Liao, H. Cooperative Interactions Between Nitrogen Fixation and Phosphorus Nutrition in Legumes. New Phytol. 2023, 237, 734–745. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, H.; Yang, Z.; Xing, X.; Fu, Z.; Li, X.; Kong, Y.; Li, W.; Du, H.; Zhang, C. Overexpression of GmPAP4 Enhances Symbiotic Nitrogen Fixation and Seed Yield in Soybean under Phosphorus-Deficient Condition. Int. J. Mol. Sci. 2024, 25, 3649. [Google Scholar] [CrossRef]
- Shani, M.Y.; Ashraf, M.Y.; Butt, A.K.; Abbas, S.; Nasif, M.; Khan, Z.; Mauro, R.P.; Cannata, C.; Gul, N.; Ghaffar, M.; et al. Potassium Nutrition Induced Salinity Mitigation in Mungbean [Vigna radiata (L.) Wilczek] by Altering Biomass and Physio-Biochemical Processes. Horticulturae 2024, 10, 549. [Google Scholar] [CrossRef]
- Kaymak Bayram, G.; Can, M.; Tunalı, U.; Acar, Z.; Ayan, İ. Growth and Physiological Responses and Selection of Tedera (Bituminaria bituminosa L.) Genotypes Under Salt Stress Conditions. Plants 2025, 14, 3618. [Google Scholar] [CrossRef]
- Sharmin, S.; Arfin, M.N.H.; Tareque, A.M.M.M.U.; Kafi, A.A.; Miah, M.S.; Hossen, M.Z.; Talukder, M.A.S.; Robin, A.H.K. Reduction of Potassium Supply Alters the Production and Quality Traits of Ipomoea batatas cv. BAU Sweetpotato-5 Tubers. Stresses 2024, 4, 883–895. [Google Scholar] [CrossRef]
- El-Egami, H.M.; Hegab, R.H.; Montaser, H.; El-Hawary, M.M.; Hasanuzzaman, M. Impact of Potassium-Solubilizing Microorganisms with Potassium Sources on the Growth, Physiology, and Productivity of Wheat Crop under Salt-Affected Soil Conditions. Agronomy 2024, 14, 423. [Google Scholar] [CrossRef]
- Kholdarov, D.; Sobitov, U.; Zakirova, S.; Mirzaev, U.; Kholdarova, M.; Sotiboldieva, G.; Azimov, Z.; Abdukhakimova, K.; Jabbarov, Z.; Kenjaev, Y.; et al. Current State of Saline Soils in the Fergana Valley. E3S Web Conf. 2024, 563, 03053. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, B.; Deng, J.; Li, L.; Yi, T.; Hong, Y. The resistance of peanut to soilborne pathogens improved by rhizosphere probiotics under calcium treatment. BMC Microbiol. 2021, 21, 299. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ding, H.; Zhang, G.C.; Li, Z.; Guo, Q.; Feng, H.; Qin, F.; Dai, L.X.; Zhang, Z. Green manure increases peanut production by shaping the rhizosphere bacterial community and regulating soil metabolites under continuous peanut production systems. BMC Plant Biol. 2023, 23, 69. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, C.B.; He, X.; Wu, Q.; Sun, X.W.; Liu, M.; Shen, P. Multi-year crop rotation and quicklime application promote stable peanut yield and high nutrient-use efficiency by regulating soil nutrient availability and bacterial/fungal community. Front. Microbiol. 2024, 15, 1367184. [Google Scholar] [CrossRef]
- Qin, W.; Li, G.; Chen, X.; Liu, J. Organic amendments enhance peanut nodulation by influencing interactions between rhizobia and arbuscular mycorrhizal fungi in the peanut rhizosphere. Agronomy 2024, 14, 3004. [Google Scholar] [CrossRef]
- Johan, P.D.; Ahmed, O.H.; Omar, L.; Hasbullah, N.A. Phosphorus Transformation in Soils Following Co-Application of Charcoal and Wood Ash. Agronomy 2021, 11, 2010. [Google Scholar] [CrossRef]
- Elbasiouny, H.; Elbehiry, F.; El-Ramady, H.; Brevik, E.C. Phosphorus Availability and Potential Environmental Risk Assessment in Alkaline Soils. Agriculture 2020, 10, 172. [Google Scholar] [CrossRef]
- Silva, L.I.d.; Pereira, M.C.; Carvalho, A.M.X.d.; Buttrós, V.H.; Pasqual, M.; Dória, J. Phosphorus-Solubilizing Microorganisms: A Key to Sustainable Agriculture. Agriculture 2023, 13, 462. [Google Scholar] [CrossRef]
- Tomaz, A.; Martins, I.; Catarino, A.; Mourinha, C.; Dôres, J.; Fabião, M.; Boteta, L.; Coutinho, J.; Patanita, M.; Palma, P. Insights into the Spatial and Temporal Variability of Soil Attributes in Irrigated Farm Fields and Correlations with Management Practices: A Multivariate Statistical Approach. Water 2022, 14, 3216. [Google Scholar] [CrossRef]
- Benslama, A.; Khanchoul, K.; Benbrahim, F.; Boubehziz, S.; Chikhi, F.; Navarro-Pedreño, J. Monitoring the Variations of Soil Salinity in a Palm Grove in Southern Algeria. Sustainability 2020, 12, 6117. [Google Scholar] [CrossRef]
- Retta, A.N.; Kebede, F.; Hailen, M.; Gebresamuel, G.; Zenebe, A.; Girmay, G. Assessing the Spatial Variability of Soil Properties in the Semiarid Areas of Hintalo Wejerat District, Tigray region, Ethiopia. Discov. Sustain. 2025, 6, 502. [Google Scholar] [CrossRef]
- Ahmad, M.; Ishaq, M.; Shah, W.A.; Adnan, M.; Fahad, S.; Saleem, M.H.; Khan, F.U.; Mussarat, M.; Khan, S.; Ali, B.; et al. Managing Phosphorus Availability from Organic and Inorganic Sources for Optimum Wheat Production in Calcareous Soils. Sustainability 2022, 14, 7669. [Google Scholar] [CrossRef]
- Mushtaq, R.; Sharma, M.K.; Mir, J.I.; Mansoor, S.; Mushtaq, K.; Popescu, S.M.; Malik, A.R.; El-Serehy, H.A.; Hefft, D.I.; Bhat, S.A.; et al. Physiological Activity, Nutritional Composition, and Gene Expression in Apple (Malus domestica Borkh) Influenced by Different ETc Levels of Irrigation at Distinct Development Stages. Water 2021, 13, 3208. [Google Scholar] [CrossRef]
- Kim, H.N.; Park, J.H. Monitoring of Soil EC for The Prediction of Soil Nutrient Regime Under Different Soil Water and Organic Matter Contents. Appl. Biol. Chem. 2024, 67, 1. [Google Scholar] [CrossRef]
- Kargas, G.; Londra, P.; Sotirakoglou, K. The Effect of Soil Texture on the Conversion Factor of 1:5 Soil/Water Extract Electrical Conductivity (EC1:5) to Soil Saturated Paste Extract Electrical Conductivity (ECe). Water 2022, 14, 642. [Google Scholar] [CrossRef]
- Salem, O.H.; Jia, Z. Evaluation of Different Soil Salinity Indices Using Remote Sensing Techniques in Siwa Oasis, Egypt. Agronomy 2024, 14, 723. [Google Scholar] [CrossRef]
- Rufaut, C.; Pillai, D.; Craw, D. Enhancement of alkaline saline soil-free bare substrates and specialist ecosystems, southern New Zealand. Environ. Earth Sci. 2023, 82, 440. [Google Scholar] [CrossRef]
- Voltr, V.; Menšík, L.; Hlisnikovský, L.; Hruška, M.; Pokorný, E.; Pospíšilová, L. The Soil Organic Matter in Connection with Soil Properties and Soil Inputs. Agronomy 2021, 11, 779. [Google Scholar] [CrossRef]
- Githongo, M.; Kiboi, M.; Muriuki, A.; Fliessbach, A.; Musafiri, C.; Ngetich, F.K. Organic Carbon Content in Fractions of Soils Managed for Soil Fertility Improvement in Sub-Humid Agroecosystems of Kenya. Sustainability 2023, 15, 683. [Google Scholar] [CrossRef]
- Farhan, M.; Sathish, M.; Kiran, R.; Mushtaq, A.; Baazeem, A.; Hasnain, A.; Hakim, F.; Atif, S.; Naqvi, H.; Mubeen, M.; et al. Plant Nitrogen Metabolism: Balancing Resilience to Nutritional Stress and Abiotic Challenges. Phyton-Int. J. Exp. Bot. 2024, 93, 581–609. [Google Scholar] [CrossRef]
- Luo, Y.; Shi, C.; Yang, S.; Liu, Y.; Zhao, S.; Zhang, C. Characteristics of Soil Calcium Content Distribution in Karst Dry-Hot Valley and Its Influencing Factors. Water 2023, 15, 1119. [Google Scholar] [CrossRef]
- Mohanavelu, A.; Naganna, S.R.; Al-Ansari, N. Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts and Mitigation Strategies. Agriculture 2021, 11, 983. [Google Scholar] [CrossRef]
- AbdelRahman, M.A.E.; Metwaly, M.M.; Afifi, A.A.; D’Antonio, P.; Scopa, A. Assessment of Soil Fertility Status Under Soil Degradation Rate Using Geomatics in West Nile Delta. Land 2022, 11, 1256. [Google Scholar] [CrossRef]
- Țopa, D.-C.; Căpșună, S.; Calistru, A.-E.; Ailincăi, C. Sustainable Practices for Enhancing Soil Health and Crop Quality in Modern Agriculture: A Review. Agriculture 2025, 15, 998. [Google Scholar] [CrossRef]
- Gil-Martínez, M.; Madejón, P.; Madejón, E.; de Sosa, L.L. Compost and Vegetation Cover Drive Soil Fertility, Microbial Activity, and Community in Organic Farming Soils. Plant Soil. 2025, 516, 299–321. [Google Scholar] [CrossRef]
- Niu, Y.; Luo, Z.; Cai, L.; Coulter, J.A.; Zhang, Y.; Berti, M. Continuous Monoculture of Alfalfa and Annual Crops Influence Soil Organic Matter and Microbial Communities in the Rainfed Loess Plateau of China. Agronomy 2020, 10, 1054. [Google Scholar] [CrossRef]
- Cai, Z.; Shi, J.; Fu, S.; Li, F.; Lv, L.; Liu, Q.; Zhang, H.; Bao, S. Effects of Microbial Fertilizer Combined with Organic Fertilizer on Forage Productivity and Soil Ecological Functions in Grasslands of the Muli Mining Area. Plants 2025, 14, 3156. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Gu, X.; Wei, Q.; Liu, L.; Gou, J. Green Manure Rotation Combined with Biochar Application Improves Yield and Economic Stability of Continuous Cropping of Peppers in Southwest China. Plants 2024, 13, 3387. [Google Scholar] [CrossRef]
- Wang, Z.; Xuan, H.; Liu, B.; Zhang, H.; Zheng, T.; Liu, Y.; Dai, L.; Xie, Y.; Shang, X.; Zhang, L.; et al. Diversified Cropping Modulates Microbial Communities and Greenhouse Gas Emissions by Enhancing Soil Nutrients. Agronomy 2025, 15, 1472. [Google Scholar] [CrossRef]
- Al-Musawi, Z.K.; Vona, V.; Kulmány, I.M. Utilizing Different Crop Rotation Systems for Agricultural and Environmental Sustainability: A Review. Agronomy 2025, 15, 1966. [Google Scholar] [CrossRef]
- Ren, Q.; Wang, J.; Qiao, H.; Du, M.; Hu, Q.; Wan, S.; Dong, H.; Zhang, J.; Dong, Z.; Li, T.; et al. Diversified Crop Rotation Improves Soil Quality by Increasing Soil Organic Carbon in Long-Term Continuous Cotton Fields. Agronomy 2025, 15, 2698. [Google Scholar] [CrossRef]







| Parameter | Soil | Value | Sig. |
|---|---|---|---|
| pH | Rhizosphere | 7.80 ± 0.55 | *** |
| Bulk soil | 8.55 ± 0.11 | ||
| EC (µS cm−1) | Rhizosphere | 461.39 ± 115.78 | ns |
| Bulk soil | 451.90± 120.25 | ||
| OM (g kg−1) | Rhizosphere | 8.51 ± 4.59 | ns |
| Bulk soil | 6.78 ± 3.52 | ||
| CaCO3 (g kg−1) | Rhizosphere | 50.17 ± 24.48 | ns |
| Bulk soil | 55.61 ± 35.03 | ||
| AP (mg kg−1) | Rhizosphere | 53.37 ± 30.76 | *** |
| Bulk soil | 22.60 ± 2.34 | ||
| TN (mg kg−1) | Rhizosphere | 23.01 ± 13.01 | *** |
| Bulk soil | 2.38 ± 1.12 | ||
| SNa (mg kg−1) | Rhizosphere | 23.35 ± 3.16 | ns |
| Bulk soil | 23.04 ± 3.25 | ||
| TK (mg kg−1) | Rhizosphere | 64.42 ± 25.52 | ns |
| Bulk soil | 65.48 ± 24.46 |
| Parameter | Model | Nugget | Sill | Range | CV (%) |
|---|---|---|---|---|---|
| pH | Exponential | 0.01 | 0.02 | 18,255 | 7.05 |
| EC (µS cm−1) | Exponential | 11,374 | 11,374 | 1182 | 25.09 |
| OM (g kg−1) | Gaussian | 41 | 41 | 1182 | 54.05 |
| CaCO3 (g kg−1) | Gaussian | 0 | 6.7 | 292 | 44.02 |
| AP (mg kg−1) | Spherical | 2178 | 4204 | 1109 | 65.64 |
| TN (mg kg−1) | Exponential | 0 | 0 | 38,455 | 56.84 |
| SNa (mg kg−1) | Spherical | 7.3 | 11 | 562 | 13.53 |
| TK (mg kg−1) | Spherical | 317 | 402 | 710 | 39.61 |
| Component | Eigenvalue (%) | Variable | Cor. Dim1 | Cor. Dim2 | Cos2 Dim1 | Cos2 Dim2 |
|---|---|---|---|---|---|---|
| comp 1 | 39.73 | pH | −0.728 | −0.597 | 0.530 | 0.357 |
| comp 2 | 31.32 | EC | 0.919 | 0.140 | 0.845 | 0.019 |
| comp 3 | 10.38 | CaCO3 | −0.681 | 0.593 | 0.464 | 0.352 |
| comp 4 | 9.88 | OM | 0.537 | −0.139 | 0.288 | 0.019 |
| comp 5 | 5.89 | SNa | 0.603 | −0.214 | 0.363 | 0.046 |
| comp 6 | 1.38 | TK | −0.709 | 0.595 | 0.502 | 0.354 |
| comp 7 | 1.13 | AP | 0.389 | 0.837 | 0.151 | 0.702 |
| comp 8 | 0.28 | TN | 0.173 | 0.808 | 0.030 | 0.653 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Oulad Heddar, M.; Kraimat, M.; Laouar, B.; Souilem, Z.; Labgaa, I.; Bissati, S. Rhizosphere Versus Bulk Soil Properties of Peanut (Arachis hypogaea L.) Growing Under Field Conditions in Southern Algeria. Agriculture 2026, 16, 319. https://doi.org/10.3390/agriculture16030319
Oulad Heddar M, Kraimat M, Laouar B, Souilem Z, Labgaa I, Bissati S. Rhizosphere Versus Bulk Soil Properties of Peanut (Arachis hypogaea L.) Growing Under Field Conditions in Southern Algeria. Agriculture. 2026; 16(3):319. https://doi.org/10.3390/agriculture16030319
Chicago/Turabian StyleOulad Heddar, Meriem, Mohamed Kraimat, Bouchra Laouar, Zineb Souilem, Imene Labgaa, and Samia Bissati. 2026. "Rhizosphere Versus Bulk Soil Properties of Peanut (Arachis hypogaea L.) Growing Under Field Conditions in Southern Algeria" Agriculture 16, no. 3: 319. https://doi.org/10.3390/agriculture16030319
APA StyleOulad Heddar, M., Kraimat, M., Laouar, B., Souilem, Z., Labgaa, I., & Bissati, S. (2026). Rhizosphere Versus Bulk Soil Properties of Peanut (Arachis hypogaea L.) Growing Under Field Conditions in Southern Algeria. Agriculture, 16(3), 319. https://doi.org/10.3390/agriculture16030319

