Functional Characterization of Herbaceous Peony PTC52 Gene Under High Temperature Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and High Temperature Treatment
2.2. Cloning and Characterization of PlPTC52
2.3. Real-Time Quantitative PCR for PlPTC52 Transcript Levels
2.4. Subcellular Localization
2.5. Gene Silencing in P. lactiflora
2.6. Gene Overexpressing in Nicotiana tabacum
2.7. Physiological Indices Measurement
2.8. Statistical Analysis
3. Results
3.1. Isolation and Sequence Analysis of PlPTC52
3.2. Dynamic Expression of PlPTC52 in Response to High Temperature Stress
3.3. PlPTC52 Is Located in the Chloroplast
3.4. Silencing of PlPTC52 Decreases High Temperature Tolerance of P. lactiflora
3.5. Overexpressing of PlPTC52 Increases High Temperature Tolerance of N. tabacum
3.6. PlPTC52 Regulates High Temperature Tolerance by Reducing Chlorophyll Loss
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Latif, S.; Wang, L.P.; Khan, J.; Ali, Z.; Sehgal, S.K.; Babar, M.A.; Wang, J.P.; Quraishi, U.M. Deciphering the role of stay-green trait to mitigate terminal heat stress in Bread Wheat. Agronomy 2020, 10, 1001. [Google Scholar] [CrossRef]
- Das, S.; Krishnan, P.; Nayak, M.; Ramakrishnan, B. High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environ. Exp. Bot. 2014, 101, 36–46. [Google Scholar] [CrossRef]
- Xiao, Y.H.; Pan, Y.; Luo, L.H.; Zhang, G.L.; Deng, H.B.; Dai, L.Y.; Liu, X.L.; Tang, W.B.; Chen, L.Y.; Wang, G.L. Quantitative trait loci associated with seed set under high temperature stress at the flowering stage in rice (Oryza sativa L.). Euphytica 2011, 178, 331–338. [Google Scholar] [CrossRef]
- Xing, X.J.; Ding, Y.R.; Jin, J.Y.; Song, A.P.; Chen, S.M.; Chen, F.D.; Fang, W.M.; Jiang, J.F. Physiological and transcripts analyses reveal the mechanism by which melatonin alleviates heat stress in chrysanthemum seedlings. Front. Plant Sci. 2021, 12, 673236. [Google Scholar] [CrossRef]
- Shi, Z.J.; Han, X.Y.; Wang, G.H.; Jing, Q.; Zhou, L.J.; Chen, S.M.; Fang, W.M.; Chen, F.D.; Jiang, J.F. Transcriptome analysis reveals chrysanthemum flower discoloration under high-temperature stress. Front. Plant Sci. 2022, 13, 1003635. [Google Scholar] [CrossRef]
- Fan, Y.M.; Jin, X.; Wang, M.S.; Liu, H.D.; Tian, W.L.; Xue, Y.D.; Wang, K.; Li, H.; Wu, Y. Flower morphology, flower color, flowering and floral fragrance in Paeonia L. Front. Plant Sci. 2024, 15, 1467596. [Google Scholar] [CrossRef]
- Zhang, L.X.; Chang, Q.S.; Hou, X.G.; Wang, J.Z.; Chen, S.D.; Zhang, Q.M.; Wang, Z.; Yin, Y.; Liu, J.K. The effect of high-temperature stress on the physiological indexes, chloroplast ultrastructure, and photosystems of two herbaceous peony cultivars. J. Plant Growth Regul. 2023, 42, 1631–1646. [Google Scholar] [CrossRef]
- Mathur, S.; Agrawal, D.; Jajoo, A. Photosynthesis: Response to high temperature stress. J. Photochem. Photobiol. B Biol. 2014, 137, 116–126. [Google Scholar] [CrossRef]
- Pospísil, P. Production of reactive oxygen species by photosystem II. Biochim. Biophys. Acta Bioenerg. 2009, 1787, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- Jespersen, D.; Zhang, J.; Huang, B.R. Chlorophyll loss associated with heat-induced senescence in bentgrass. Plant Sci. 2016, 249, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhao, X.Y.; Gu, L.M.; Liu, P.; Zhao, B.; Zhang, J.W.; Ren, B.Z. The effects of high temperature, drought, and their combined stresses on the photosynthesis and senescence of summer maize. Agric. Water Manag. 2023, 289, 108525. [Google Scholar] [CrossRef]
- Yadav, S.B.K.; Bhatt, S. Heat stress and it’s tolerance in wheat. Cogent Food Agric. 2024, 10, 2413398. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Burgess, P.; Jespersen, D.; Huang, B.R. Heat-induced leaf senescence associated with chlorophyll metabolism in bentgrass lines differing in heat tolerance. Crop Sci. 2017, 57, 169–178. [Google Scholar] [CrossRef]
- Tewari, A.K.; Tripathy, B.C. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiol. 1998, 117, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.K.; Chen, G.L.; He, M.M.; Wu, J.Q.; Wen, W.X.; Gu, Q.S.; Guo, S.R.; Wang, Y.; Sun, J. ABI5 promotes heat stress-induced chlorophyll degradation by modulating the stability of MYB44 in cucumber. Hortic. Res. 2023, 10, uhad089. [Google Scholar] [CrossRef]
- Liu, Z.H.; Guo, Y.; Li, H.W.; Zhang, J.L.; Dong, Y.P.; Hu, C.; Long, J.H.; Chen, Y. The superoxide dismutase (SOD) gene family in perennial ryegrass: Characterization and roles in heat stress tolerance. Plant Physiol. Biochem. 2025, 226, 110061. [Google Scholar] [CrossRef]
- Chakraborty, U.; Pradhan, D. High temperature-induced oxidative stress in Lens culinaris, role of antioxidants and amelioration of stress by chemical pre-treatments. J. Plant Interact. 2011, 6, 43–52. [Google Scholar] [CrossRef]
- Chen, J.X.; Zhang, J.; Liu, Y.H.; Zhang, K.L.; Zhu, F.Y.; Xie, Y.J. Advances in the biosynthetic regulation and functional mechanisms of glycine betaine for enhancing plant stress resilience. Int. J. Mol. Sci. 2025, 26, 7971. [Google Scholar] [CrossRef]
- Tiwari, Y.K. Proline as a key player in heat stress tolerance: Insights from maize. Discov. Agric. 2024, 2, 121. [Google Scholar] [CrossRef]
- Mishra, D.; Shekhar, S.; Chakraborty, S.; Chakraborty, N. Wheat 2-Cys peroxiredoxin plays a dual role in chlorophyll biosynthesis and adaptation to high temperature. Plant J. 2021, 105, 1374–1389. [Google Scholar] [CrossRef]
- Reinbothe, S.; Bartsch, S.; Rossig, C.; Davis, M.Y.; Yuan, S.; Reinbothe, C.; Gray, J. A Protochlorophyllide (Pchlide) a oxygenase for plant viability. Front. Plant Sci. 2019, 10, 593. [Google Scholar] [CrossRef]
- Boij, P.; Patel, R.; Garcia, C.; Jarvis, P.; Aronsson, H. In vivo studies on the roles of Tic55-related proteins in chloroplast protein import in Arabidopsis thaliana. Mol. Plant 2009, 2, 1397–1409. [Google Scholar] [CrossRef]
- Reinbothe, S.; Quigley, F.; Gray, J.; Schemenewitz, A.; Reinbothe, C. Identification of plastid envelope proteins required for import of protochlorophyllide oxidoreductase A into the chloroplast of barley. Proc. Natl. Acad. Sci. USA 2004, 101, 2197–2202. [Google Scholar] [CrossRef]
- Bartsch, S.; Monnet, J.; Selbach, K.; Quigley, F.; Gray, J.; von Wettstein, D.; Reinbothe, S.; Reinbothe, C. Three thioredoxin targets in the inner envelope membrane of chloroplasts function in protein import and chlorophyll metabolism. Proc. Natl. Acad. Sci. USA 2008, 105, 4933–4938. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Luan, Y.T.; Chen, Z.J.; Fang, Z.W.; Meng, J.S.; Tao, J.; Zhao, D.Q. PoWRKY69-PoVQ11 module positively regulates drought tolerance by accumulating fructose in Paeonia ostii. Plant J. 2024, 119, 1782–1799. [Google Scholar] [CrossRef]
- Sunilkumar, G.; Vijayachandra, K.; Veluthambi, K. Preincubation of cut tobacco leaf explants promotes Agrobacterium-mediated transformation by increasing vir gene induction. Plant Sci. 1999, 141, 51–58. [Google Scholar] [CrossRef]
- Zu, M.T.; Qiu, S.Y.; Qian, Y.; Tao, J.; Zhao, D.Q. Transcriptome sequencing provides insights into high-temperature-induced leaf senescence in herbaceous peony. Agriculture 2024, 14, 574. [Google Scholar] [CrossRef]
- Swift, M.L. GraphPad prism, data analysis, and scientific graphing. J. Chem. Inf. Comput. Sci. 1997, 37, 411–412. [Google Scholar] [CrossRef]
- An, W.J.; Zhao, M.J.; Chen, L.; Li, Q.X.; Yu, L.J.; Chen, S.Y.; Ma, J.F.; Cao, X.F.; Zhang, S.B.; Chi, W.; et al. LcASR enhances tolerance to abiotic stress in Leymus chinensis and Arabidopsis thaliana by improving photosynthetic performance. Plant J. 2024, 120, 2752–2769. [Google Scholar] [CrossRef]
- Dhanapal, A.P.; Ray, J.D.; Singh, S.K.; Hoyos-Villegas, V.; Smith, J.R.; Purcell, L.C.; Fritschi, F.B. Genome-wide association mapping of soybean chlorophyll traits based on canopy spectral reflectance and leaf extracts. BMC Plant Biol. 2016, 16, 174. [Google Scholar] [CrossRef]
- Ma, B.L.; Morrison, M.J.; Voldeng, H.D. Leaf greenness and photosynthetic rates in soybean. Crop Sci. 1995, 35, 1411–1414. [Google Scholar] [CrossRef]
- Jiang, H.Z.; Zhang, A.P.; Ruan, B.P.; Hu, H.T.; Guo, R.; Chen, J.G.; Qian, Q.; Gao, Z.Y. Identification of Green-Revertible Yellow 3 (GRY3), encoding a 4-hydroxy- 3-methylbut-2-enyl diphosphate reductase involved in chlorophyll synthesis under high temperature and high light in rice. Crop J. 2023, 11, 1171–1180. [Google Scholar] [CrossRef]
- Ahmad, S.; Tabassum, J.; Sheng, Z.H.; Lv, Y.S.; Chen, W.; Zeb, A.; Dong, N.N.; Ali, U.; Shao, G.N.; Wei, X.J.; et al. Loss-of-function of PGL10 impairs photosynthesis and tolerance to high-temperature stress in rice. Physiol. Plant. 2024, 176, e14369. [Google Scholar] [CrossRef]
- Paddock, T.; Lima, D.; Mason, M.E.; Apel, K.; Armstrong, G.A. Arabidopsis light-dependent protochlorophyllide oxidoreductase A (PORA) is essential for normal plant growth and development. Plant Mol. Biol. 2012, 78, 447–460. [Google Scholar] [CrossRef] [PubMed]
- Reinbothe, C.; Bartsch, S.; Eggink, L.L.; Hoober, J.K.; Brusslan, J.; Andrade-Paz, R.; Monnet, J.; Reinbothe, S. A role for chlorophyllide a oxygenase in the regulated import and stabilization of light-harvesting chlorophyll a/b proteins. Proc. Natl. Acad. Sci. USA 2006, 103, 4777–4782. [Google Scholar] [CrossRef]
- Molinero-Rosales, N.; Martín-Rodríguez, J.A.; Ho-Plágaro, T.; García-Garrido, J.M. Identification and expression analysis of the arbuscular mycorrhiza-inducible Rieske non-heme oxygenase Ptc52 gene from tomato. J. Plant Physiol. 2019, 237, 95–103. [Google Scholar] [CrossRef]
- Berim, A.; Park, J.J.; Gang, D.R. Unexpected roles for ancient proteins: Flavone 8-hydroxylase in sweet basil trichomes is a Rieske-type, PAO-family oxygenase. Plant J. 2014, 80, 385–395. [Google Scholar] [CrossRef]
- Triantaphylidès, C.; Krischke, M.; Hoeberichts, F.A.; Ksas, B.; Gresser, G.; Havaux, M.; Van Breusegem, F.; Mueller, M.J. Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol. 2008, 148, 960–968. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.Q.; Zhang, Y.T.; Yang, Y.; Yang, J.J.; Xu, J. CfCHLM, from Cryptomeria fortunei, promotes chlorophyll synthesis and improves tolerance to abiotic stresses in transgenic Arabidopsis thaliana. Forests 2024, 15, 628. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zu, M.; Tao, J.; Zhao, D. Functional Characterization of Herbaceous Peony PTC52 Gene Under High Temperature Stress. Agriculture 2026, 16, 82. https://doi.org/10.3390/agriculture16010082
Zu M, Tao J, Zhao D. Functional Characterization of Herbaceous Peony PTC52 Gene Under High Temperature Stress. Agriculture. 2026; 16(1):82. https://doi.org/10.3390/agriculture16010082
Chicago/Turabian StyleZu, Mengting, Jun Tao, and Daqiu Zhao. 2026. "Functional Characterization of Herbaceous Peony PTC52 Gene Under High Temperature Stress" Agriculture 16, no. 1: 82. https://doi.org/10.3390/agriculture16010082
APA StyleZu, M., Tao, J., & Zhao, D. (2026). Functional Characterization of Herbaceous Peony PTC52 Gene Under High Temperature Stress. Agriculture, 16(1), 82. https://doi.org/10.3390/agriculture16010082
