Design and Performance Test of Variable-Capacity Spoon-Type Oat Precision Hill Seeder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structure and Working Principle of Hole Seeder
2.1.1. Hill Seeder Structure
2.1.2. Principle of Operation of the Hill Seeder
2.2. Key Component Design
2.2.1. Structural Design of Hill Seeder
2.2.2. Structural Design of Seed Metering Spoon
2.3. Theoretical Analysis
2.3.1. Force Analysis of Seed Filling Process
2.3.2. Force Analysis of the Seed Metering Scoop Cleaning Process
2.3.3. Force Analysis of the Seed Cleaning Process Across the Bridge
2.4. Simulation Test
2.4.1. Simulation Modeling
2.4.2. One-Factor Simulation Test
2.4.3. Response Surface Test
2.5. Field Validation Tests
3. Results
3.1. Hill Seeder Movement Process
3.1.1. Angular Velocity of the Hill Seeder on the Dynamic Performance of Seed Batch
3.1.2. Influence of Inclination Angle of the Seed Guide Spoon on Seed Filling Performance
3.1.3. Influence of Length of the Bridging Groove on Seed Clearing Performance
3.2. Results of the One-Factor Test
3.2.1. Results of a One-Factor Test on the Angular Velocity of the Hill Seeder
3.2.2. Results of a One-Factor Test on the Inclination Angle of the Seed Guide Spoon
3.2.3. Results of One-Factor Test on Length of the Bridging Groove
3.3. Response Surface Test Results
3.4. Field Validation Test Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, M.F.; Chen, Z.W.; Jia, J.Q.; Zhang, X.J.; Li, X.; Zhang, C.L.; Zhang, M.J.; Yang, W.D. Cloning of AP2/ERF transcription factor gene related to oat kernel covering. J. Shanxi Agric. Sci. 2020, 48, 658–663. [Google Scholar] [CrossRef]
- Liu, R.; Li, Y.J.; Liu, C.X.; Liu, L.J. Design and Experiment of Shovel Type Wide Seedling Belt Oat Seeding Furrow Opener. Trans. Chin. Soc. Agric. Mach. 2021, 52, 89–96. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, L.J.; Zheng, D.C.; Liu, Z.J.; Zhao, J.H.; Wang, L. Research Progress of Mechanization Technology and Equipment in Whole Process of Oat Production. Trans. Chin. Soc. Agric. Mach. 2022, 53, 118–139. [Google Scholar] [CrossRef]
- Liu, C.L.; Li, F.L.; Jiang, M.; Huang, R.B.; Dai, L.; Gao, Z.P. Design and experiment of the spotting glue-paper tape precision seeder for small seed vegetables. Trans. Chin. Soc. Agric. Eng. 2022, 38, 20–29. [Google Scholar] [CrossRef]
- Liao, Y.T.; Zhang, B.X.; Zheng, J.; Liao, Q.X.; Liu, J.C.; Li, C.L. Design and Experiment of Pneumatic Needle PlanetaryGear Narrow-row Close Planting Precision Seed-metering Device. Trans. Chin. Soc. Agric. Mach. 2022, 53, 86–99. [Google Scholar] [CrossRef]
- Wu, S. Design and Research of 2BT-4 Type Buckwheat and Oatprecision Seeder; Shanxi Agricultural University: Taiyuan, China, 2022. [Google Scholar] [CrossRef]
- Yu, C.Y.; Chen, Z.; Chen, L.Q. Design and Test of Electronic Control Seeding System for Wheat Plot Drill. Trans. Chin. Soc. Agric. Mach. 2023, 54, 75–83. [Google Scholar] [CrossRef]
- Shang, S.Q.; Wu, X.F.; Yang, R.B.; Li, G.Y.; Yang, X.L.; Chen, B.Q. Research Status and Prospect of Plot-sowing Equipment and Technology. Trans. Chin. Soc. Agric. Mach. 2021, 52, 1–20. [Google Scholar] [CrossRef]
- Li, H.Q.; Yan, B.X.; Meng, Z.J.; Ling, L.; Yin, Y.X.; Zhang, A.Q.; Zhao, C.J.; Wu, G.W. Study on influencing factors of hole-filling performance of rice precision direct seed-metering device with hole ejection. Biosyst. Eng. 2023, 233, 76–92. [Google Scholar] [CrossRef]
- Zhang, Q.S.; Yu, Q.; Wang, L.; Liao, Y.T.; Wang, S.; Liao, Q.X. Design and Experiment of the Buckwheat Hill-Drop Planter Hole Forming Device. Trans. Chin. Soc. Agric. Mach. 2020, 51, 47–54+64. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, Y.; Chen, J.; Zheng, Z.; Hu, C.; Cao, J. Design and Experiment of the Buckwheat Hill-Drop Planter Hole Forming Device. Agriculture 2021, 11, 1085. [Google Scholar] [CrossRef]
- Zhang, G.Z.; Zhang, S.S.; Yang, W.P.; Lu, K.; Lei, Z.Q.; Yang, M. Design and experiment of double cavity side-filled precision hole seed metering device for rice. Trans. Chin. Soc. Agric. Eng. 2016, 32, 9–17. [Google Scholar] [CrossRef]
- Shi, L.R.; Zhao, W.Y. Design and test of rolling spoon type flaxes precision hole sower for caraway in northwest cold and arid agricultural region. J. Jilin Univ. (Eng. Technol. Ed.) 2023, 53, 2706–2717. [Google Scholar] [CrossRef]
- Li, H.; Zhao, W.Y.; Shi, L.R.; Dai, F.; Rao, G.; Wang, Z. Design and Test of Seed Ladle Tongue Type Flax Precision Burrow Planter. Trans. Chin. Soc. Agric. Mach. 2024, 55, 85–95. [Google Scholar] [CrossRef]
- Wang, L.; Liao, Y.T.; Li, M.L.; Ren, N.; Zheng, X.M.; Wang, M.Z.; Liao, Q.X. Motion characteristics of rapeseeds and wheat seeds within mixing components of air-assisted centralized metering device based on DEM-CFD. Comput. Electron. Agric. 2024, 221, 10896. [Google Scholar] [CrossRef]
- Wang, Y.X.; Huang, S.T.; Zhang, W.Y.; Qi, B.; Zhou, X.Z.; Ding, Y.Q. Design and Experiment of Wheat Precision Seed Metering Device with Staggered Hook-tooth. Trans. Chin. Soc. Agric. Mach. 2024, 55, 142–153+167. [Google Scholar] [CrossRef]
- Gao, X.J.; Yu, L.Y.; Wu, X.P.; Huang, Y.X.; Yan, X.L. Design and Experiment of Intelligent Seed Supply System of Air-assisted High Speed Precision Maize Seed Metering Device. Trans. Chin. Soc. Agric. Mach. 2023, 54, 66–75. [Google Scholar] [CrossRef]
- Dong, J.X.; Zhang, S.L.; Zheng, Z.Z.; Wu, J.T.; Huang, Y.X.; Gao, X.J. Development of a novel perforated type precision metering device for efficient and cleaner production of maize. J. Clean. Prod. 2024, 443, 140928. [Google Scholar] [CrossRef]
- Dun, G.; Wei, Y.; Ji, X.; Gao, S.; Pei, Y.; He, Y.; Ma, C. Design and Test of the Outside-Filling Chinese Chive Adjustable-Capacity Precision Seed-Metering Device. Agronomy 2025, 15, 622. [Google Scholar] [CrossRef]
- Ll, W.; Xu, H.; Li, X.H.; Li, H.; Yu, Y.C. Design and Experiment of Soybean Side Nest Seed Meter Based on EDEM. J. Agric. Mech. Res. 2023, 45, 164–169. [Google Scholar] [CrossRef]
- Ding, L.; Dou, Y.F.; Wang, W.Z.; Xu, Y.F.; He, X.; Qu, Z. Design and Experiment of Seed Metering Device with Combination Hole and Inner Filling for Cyperus esculentus. Trans. Chin. Soc. Agric. Mach. 2022, 53, 100–115. [Google Scholar] [CrossRef]
- Zheng, G.; Qi, B.; Zhang, W.; Shao, W.; Zhang, L.; Wang, Y.; Ding, Y. Engineering Discrete Element Method-Based Design and Optimization of the Key Components of a Spoon-Wheel Spinach Seed-Metering Device. Agronomy 2024, 14, 2096. [Google Scholar] [CrossRef]
- Gao, X.J.; Cui, T.; Zhou, Z.Y.; Yu, Y.B.; Xu, Y.; Zhang, D.X.; Song, W. DEM study of particle motion in novel high-speed seed metering device. Adv. Powder Technol. 2021, 32, 1438–1449. [Google Scholar] [CrossRef]
- Hu, H.J.; Zhou, Z.L.; Wu, W.C.; Yang, W.H.; Li, T.; Chang, C.; Ren, W.J.; Lei, X.L. Distribution characteristics and parameter optimisation of an air-assisted centralised seed-metering device for rapeseed using a CFD-DEM coupled simulation. Biosyst. Eng. 2021, 208, 246–259. [Google Scholar] [CrossRef]
- Walunj, A.; Chen, Y.; Tian, Y.; Zeng, Z. Modeling Soil–Plant–Machine Dynamics Using Discrete Element Method: A Review. Agronomy 2023, 13, 1260. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, T.; Liu, F.; Li, N.; Li, J. Sunflower Seed Suction Stability Regulation and Seeding Performance Experiments. Agronomy 2023, 13, 54. [Google Scholar] [CrossRef]
- Albasheer, A.H.; Liao, Q.; Wang, L.; Ibrahim, E.J.; Xiao, W.; Li, X. Design and Optimization of Divider Head Geometry in Air-Assisted Metering Devices for Enhanced Seed Distribution Accuracy. Agronomy 2025, 15, 769. [Google Scholar] [CrossRef]
- Zhou, H.; Dai, F.; Shi, R.; Zhao, C.; Deng, H.; Pan, H.; Zhao, Q. Simulation and Optimization of a Pendulum-Lever-Type Hole-Seeding Device. Agriculture 2024, 14, 750. [Google Scholar] [CrossRef]
- Wu, W.C.; Deng, X.; Li, J.; Hu, J.F.; Cheng, H.; Zhou, W.; Deng, F.; Chen, Y.; Ren, W.J.; Lei, X.L. Micro-level stress characteristics of rapeseed particle during the seeding process using the MFBD-DEM coupled method. Comput. Electron. Agric. 2024, 220, 108929. [Google Scholar] [CrossRef]
- Dong, W.X.; Li, N.; Liu, F.; Zhao, X.; Wang, L.H.; Xuan, D.Z.; Zhong, W.D.; Hu, H.T.; Meng, X.Y.; Li, M.Y.; et al. Study on vibration adsorption characteristics of small-particle-size seeds based on DEM. INMATEH—Agric. Eng. 2023, 71, 3. [Google Scholar] [CrossRef]
- He, S.Y.; Qian, C.; Jiang, Y.C.; Qin, W.; Huang, Z.S.; Huang, D.M.; Wang, Z.M.; Zang, Y. Design and optimization of the seed feeding device with DEM-CFD coupling approach for rice and wheat. Comput. Electron. Agric. 2024, 219, 108814. [Google Scholar] [CrossRef]
- Gu, B.; Hu, C.; Xing, J.; He, X.; Wang, X.; Ren, K.; Wang, L. Establishment of a Discrete Element Model for Wheat Particles Based on the Ellipsoidal Method and CFD–DEM Coupling. Agriculture 2025, 15, 369. [Google Scholar] [CrossRef]
- Tang, H.; Xu, F.D.; Xu, C.S.; Zhao, J.L.; Wang, Y.J. The influence of a seed drop tube of the inside-filling air-blowing precision seed-metering device on seeding quality. Comput. Electron. Agric. 2023, 204, 107555. [Google Scholar] [CrossRef]
- Hui, Y.; Huang, C.; Liao, Y.; Wang, D.; You, Y.; Bai, X. The Medium-Blocking Discharge Vibration-Uniform Material Plasma Seed Treatment Device Based on EDEM. Agronomy 2023, 13, 2055. [Google Scholar] [CrossRef]
Parameters | Numerical Value |
---|---|
Poisson’s ratio for oat | 0.25 |
Young’s modulus for oat/(Pa) | 3.9 × 108 |
Density for oat/(g·cm−3) | 0.87 |
Oat-oat collision coefficient | 0.38 |
Oat-oat coefficient of static friction | 0.47 |
Oat-oat coefficient of rolling friction | 0.12 |
Poisson’s ratio for hill seeder | 0.28 |
Young’s modulus for hill seeder/(Pa) | 3.5 × 1010 |
Density for hill seeder/(g·cm−3) | 7.85 |
Oat-hill seeder collision coefficient | 0.48 |
Oat-hill seeder coefficient of static friction | 0.41 |
Oat-hill seeder coefficient of rolling friction | 0.20 |
Poisson’s ratio for the seed metering spoon | 0.36 |
Young’s modulus for seed metering spoon/(Pa) | 2.35 × 109 |
Density for seed metering spoon/(g·cm−3) | 1.23 |
Oat-seed metering spoon collision coefficient | 0.50 |
Oat-seed metering spoon coefficient of static friction | 0.49 |
Oat-seed metering spoon coefficient of rolling friction | 0.11 |
Encodings | Level of Factors | ||
---|---|---|---|
Angular Velocity of the Hill Seeder A/(rad/s) | Inclination Angle of the Seed Guide Spoon B/(°) | Length of the Bridging Groove C/(mm) | |
1 | 3.5 | 60 | 10 |
0 | 4.5 | 70 | 15 |
−1 | 5.5 | 80 | 20 |
Test Factors | Level | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Angular velocity of the hill seeder/(rad/s) | 0.5 | 2.0 | 3.5 | 5.0 | 6.5 |
Inclination angle of the seed guide spoon/(°) | 40 | 50 | 60 | 70 | 80 |
Length of the bridging groove/(mm) | 5 | 10 | 15 | 20 | 25 |
Test Number | Test Factors | Test Indicators | ||||
---|---|---|---|---|---|---|
A | B | C | Qualified Rate Y1 (%) | Multiple Rate Y2 (%) | Leakage Rate Y3 (%) | |
1 | −1 | 0 | 1 | 60.8 | 8.0 | 31.2 |
2 | 0 | 0 | 0 | 88.1 | 5.3 | 6.6 |
3 | −1 | −1 | 0 | 79.7 | 5.7 | 14.6 |
4 | −1 | 1 | 0 | 91.5 | 3.9 | 4.6 |
5 | 0 | 0 | 0 | 78.6 | 8.2 | 13.2 |
6 | −1 | 0 | −1 | 83.9 | 7.6 | 8.5 |
7 | 1 | 0 | −1 | 88.4 | 1.9 | 9.7 |
8 | 0 | −1 | 1 | 76.2 | 9.0 | 14.8 |
9 | 0 | −1 | −1 | 71.3 | 10.8 | 19.9 |
10 | 1 | 1 | 0 | 73.6 | 3.2 | 23.2 |
11 | 1 | 0 | 1 | 92.4 | 4.3 | 3.3 |
12 | 1 | −1 | 0 | 88.7 | 0.7 | 10.6 |
13 | 0 | 1 | 1 | 78.2 | 8.1 | 13.7 |
14 | 0 | 0 | 0 | 72.2 | 15.6 | 12.2 |
15 | 0 | 1 | −1 | 76.4 | 1.7 | 21.9 |
16 | 0 | 0 | 0 | 87.2 | 4.6 | 8.2 |
17 | 0 | 0 | 0 | 76.6 | 11.0 | 12.4 |
Source of Variance | Qualified RateY1 (%) | |||||
Sum of Squares | Freedom | Mean Square | F-Value | p-Value | Significance | |
Model | 1103 | 9 | 122.56 | 16.67 | 0.0006 | ** |
A | 181.45 | 1 | 181.45 | 24.69 | 0.0016 | ** |
B | 3.64 | 1 | 3.64 | 0.4959 | 0.504 | |
C | 125.61 | 1 | 125.61 | 17.09 | 0.0044 | ** |
AB | 54.02 | 1 | 54.02 | 7.35 | 0.0302 | * |
AC | 6.76 | 1 | 6.76 | 0.9197 | 0.3695 | |
BC | 18.92 | 1 | 18.92 | 2.57 | 0.1526 | |
A2 | 290.76 | 1 | 290.76 | 39.56 | 0.0004 | ** |
B2 | 336.14 | 1 | 336.14 | 45.73 | 0.0003 | ** |
C2 | 26.53 | 1 | 26.53 | 3.61 | 0.0992 | |
Residuals | 51.45 | 7 | 7.35 | |||
Fail to fit | 30.58 | 3 | 10.19 | 1.95 | 0.2629 | |
Error | 20.87 | 4 | 5.22 | |||
Total | 1154.45 | 16 | ||||
Source of Variance | Multiple RateY2 (%) | |||||
Sum of Squares | Freedom | Mean Square | F-Value | p-Value | Significance | |
Model | 208.19 | 9 | 23.13 | 4.69 | 0.0269 | * |
A | 81.28 | 1 | 81.28 | 16.5 | 0.0048 | ** |
B | 17.7 | 1 | 17.7 | 3.59 | 0.0999 | |
C | 11.04 | 1 | 11.04 | 2.24 | 0.178 | |
AB | 33.64 | 1 | 33.64 | 6.83 | 0.0348 | * |
AC | 8.12 | 1 | 8.12 | 1.65 | 0.24 | |
BC | 13.32 | 1 | 13.32 | 2.7 | 0.1441 | |
A2 | 12.53 | 1 | 12.53 | 2.54 | 0.1548 | |
B2 | 17.27 | 1 | 17.27 | 3.5 | 0.1034 | |
C2 | 8.85 | 1 | 8.85 | 1.8 | 0.222 | |
Residuals | 34.49 | 7 | 4.93 | |||
Fail to fit | 27.93 | 3 | 9.31 | 5.68 | 0.0634 | |
Error | 6.56 | 4 | 1.64 | |||
Total | 242.68 | 16 | ||||
Source of Variance | Leakage RateY3 (%) | |||||
Sum of Squares | Freedom | Mean Square | F-Value | p-Value | Significance | |
Model | 799.08 | 9 | 88.79 | 19.12 | 0.0004 | ** |
A | 26.64 | 1 | 26.64 | 5.74 | 0.0478 | * |
B | 37.41 | 1 | 37.41 | 8.06 | 0.0251 | * |
C | 73.81 | 1 | 73.81 | 15.9 | 0.0053 | ** |
AB | 172.92 | 1 | 172.92 | 37.24 | 0.0005 | ** |
AC | 1.56 | 1 | 1.56 | 0.3365 | 0.58 | |
BC | 64 | 1 | 64 | 13.78 | 0.0075 | ** |
A2 | 196.7 | 1 | 196.7 | 42.37 | 0.0003 | ** |
B2 | 186.76 | 1 | 186.76 | 40.22 | 0.0004 | ** |
C2 | 7.23 | 1 | 7.23 | 1.56 | 0.2523 | |
Residuals | 32.5 | 7 | 4.64 | |||
Fail to fit | 5.51 | 3 | 1.84 | 0.2723 | 0.8431 | |
Error | 26.99 | 4 | 6.75 | |||
Total | 831.58 | 16 |
Serial Number | The Number of Grains per Hole | Total Number of Hole | Qualified Rate/% | Leakage Rate/% | Multiple Rate/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0~9 | 10 | 11 | 12 | 13 | 14 | >14 | |||||
1 | 12 | 50 | 37 | 58 | 47 | 31 | 6 | 250 | 92.8 | 4.8 | 2.4 |
2 | 18 | 48 | 39 | 47 | 39 | 52 | 7 | 250 | 90.0 | 7.2 | 2.8 |
3 | 10 | 51 | 42 | 38 | 62 | 31 | 16 | 250 | 89.6 | 4.0 | 6.4 |
4 | 8 | 47 | 52 | 41 | 29 | 60 | 13 | 250 | 91.6 | 3.2 | 5.2 |
5 | 14 | 45 | 37 | 53 | 46 | 46 | 9 | 250 | 90.8 | 5.6 | 3.6 |
6 | 7 | 54 | 68 | 42 | 31 | 36 | 12 | 250 | 92.4 | 2.8 | 4.8 |
Average value | 91.2 | 4.6 | 4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, W.; Zhang, A.; Liu, F.; Zhao, X.; Ren, Y.; Bai, H.; Xuan, D.; Kong, X.; Yang, S.; Yang, X. Design and Performance Test of Variable-Capacity Spoon-Type Oat Precision Hill Seeder. Agriculture 2025, 15, 986. https://doi.org/10.3390/agriculture15090986
Dong W, Zhang A, Liu F, Zhao X, Ren Y, Bai H, Xuan D, Kong X, Yang S, Yang X. Design and Performance Test of Variable-Capacity Spoon-Type Oat Precision Hill Seeder. Agriculture. 2025; 15(9):986. https://doi.org/10.3390/agriculture15090986
Chicago/Turabian StyleDong, Wenxue, Anbin Zhang, Fei Liu, Xuan Zhao, Yuxing Ren, Hongbin Bai, Dezheng Xuan, Xiang Kong, Shuhan Yang, and Xu Yang. 2025. "Design and Performance Test of Variable-Capacity Spoon-Type Oat Precision Hill Seeder" Agriculture 15, no. 9: 986. https://doi.org/10.3390/agriculture15090986
APA StyleDong, W., Zhang, A., Liu, F., Zhao, X., Ren, Y., Bai, H., Xuan, D., Kong, X., Yang, S., & Yang, X. (2025). Design and Performance Test of Variable-Capacity Spoon-Type Oat Precision Hill Seeder. Agriculture, 15(9), 986. https://doi.org/10.3390/agriculture15090986