Leveraging Text Mining and Network Analysis for the Diffusion of Agricultural Science and Technology Policies in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Policy Citation Network Construction
2.3. Diffusion Pattern Analysis
2.3.1. Network Topological Structure Metrics
- (1)
- Network Density (D): Network density, which characterizes the density of the citation network, is defined as the ratio of the actual value of citation count to the theoretical maximum.
- (2)
- Average Clustering Coefficient (C): The average clustering coefficient, which reflects the agglomeration degree of the network, is calculated as the mean clustering coefficient of all nodes.
- (3)
- Connectivity is used to measure the connectivity of each node in the network, which is an important indicator of the performance of the network structure. It is defined as the proportion of nodes contained in the maximum connected subgraph relative to the total number of nodes in the network. For the policy citation network, we obtain the maximum connected subgraph by the assumption that two nodes are connected by a citation link.
- (4)
- Power-law Distribution Exponent, which refers to the index when the degree distribution of network nodes conforms to the power-law distribution, is defined as the probability that a randomly selected node in the network has a degree of :
2.3.2. Policy Diffusion Indicators
- (1)
- Diffusion Speed characterizes the dissemination dynamics of policy documents from the perspective of the policy implementation timeline. The shorter the time for a policy to be adopted, the faster its diffusion speed, and this indicates a quicker policy response. The following formula, adapted from the Walker [43] innovation diffusion approach, is used to calculate the diffusion speed of policy i in year j:
- (2)
- Short-term impact describes policy diffusion from an immediate response. Based on the time interval characteristics of China’s science and technology planning, the short-term impact of a policy is calculated using its cited count for the first five years after it was enacted. It is calculated as the cited count for policy within five years of its issuance to the total number of policies issued in its promulgation year, calculated as follows:
- (3)
- Long-term impact is used to describe policy diffusion from the perspective of its lasting influence. The longer the time interval between a policy and its cited policies, the greater its long-term impact. In contrast to short-term impact, long-term impact is calculated by the cited count after five years of its issuance. The calculation formula is as follows:
2.4. Policy Topic Clustering
2.5. Tracking Diffusion Paths
3. Results
3.1. Patterns of ASTPs Diffusion
3.2. Topic Dynamics of ASTPs Diffusion
3.3. Historical Trajectory of ASTPs Diffusion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrew, A.A.; Adebayo, T.S.; Lasisi, T.T.; Muoneke, O.B. Moderating roles of technological innovation and economic complexity in financial development-environmental quality nexus of the BRICS economies. Technol. Soc. 2024, 78, 102581. [Google Scholar] [CrossRef]
- Wang, F.; Wong, W.-K.; Wang, Z.; Albasher, G.; Alsultan, N.; Fatemah, A. Emerging pathways to sustainable economic development: An interdisciplinary exploration of resource efficiency, technological innovation, and ecosystem resilience in resource-rich regions. Resour. Policy 2023, 85, 103747. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Shaxson, F.; Bartz, H.; Mello, I.; Kienzle, J.; Pretty, J. The spread of conservation agriculture: Policy and institutional support for adoption and uptake. Field Actions Sci. Rep. J. Field Actions 2014, 1, 7. [Google Scholar]
- Pretty, J. Agricultural sustainability: Concepts, principles and evidence. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 447–465. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yang, Y.; Ni, J.; Xie, D. Adoption behavior of cleaner production techniques to control agricultural non-point source pollution: A case study in the Three Gorges Reservoir Area. J. Clean. Prod. 2019, 223, 897–906. [Google Scholar] [CrossRef]
- Mwalupaso, G.E.; Korotoumou, M.; Eshetie, A.M.; Alavo, J.-P.E.; Tian, X. Recuperating dynamism in agriculture through adoption of sustainable agricultural technology-Implications for cleaner production. J. Clean. Prod. 2019, 232, 639–647. [Google Scholar] [CrossRef]
- Hicks, C.; Dietmar, R. Improving cleaner production through the application of environmental management tools in China. J. Clean. Prod. 2007, 15, 395–408. [Google Scholar] [CrossRef]
- Yang, Z.; Solangi, Y.A. Analyzing the relationship between natural resource management, environmental protection, and agricultural economics for sustainable development in China. J. Clean. Prod. 2024, 450, 141862. [Google Scholar] [CrossRef]
- Pretty, J. Intensification for redesigned and sustainable agricultural systems. Science 2018, 362, eaav0294. [Google Scholar] [CrossRef]
- Sassenrath, G.F.; Heilman, P.; Luschei, E.; Bennett, G.L.; Fitzgerald, G.; Klesius, P.; Tracy, W.; Williford, J.R.; Zimba, P.V. Technology, complexity and change in agricultural production systems. Renew. Agric. Food Syst. 2008, 23, 285–295. [Google Scholar] [CrossRef]
- Zhao, J.; Luo, Q.; Deng, H.; Yan, Y. Opportunities and challenges of sustainable agricultural development in China. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 893–904. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Cui, Z.; Miao, Y.; Mi, G.; Zhang, H.; Fan, M.; Zhang, C.; Jiang, R.; Zhang, W.; Li, H. Transforming agriculture in China: From solely high yield to both high yield and high resource use efficiency. Glob. Food Secur. 2013, 2, 1–8. [Google Scholar] [CrossRef]
- Du, Y.; Liu, H.; Huang, H.; Li, X. The carbon emission reduction effect of agricultural policy—Evidence from China. J. Clean. Prod. 2023, 406, 137005. [Google Scholar] [CrossRef]
- Ni, A.; Huang, L.; Xiong, F. A new perspective of innovation-driven agricultural sustainable development: A case of China. In IOP Conference Series: Earth and Environmental Science, Proceedings of the 2nd International Conference on Agriculture and Bio-Industry, Banda Aceh, Indonesia, 27–28 October 2020; IOP Publishing: Bristol, UK, 2021; p. 012096. [Google Scholar]
- Glauber, J.; Baldwin, K.; Antón, J.; Ziebinska, U. Design Principles for Agricultural Risk Management Policies; Organisation for Economic Cooperation and Development (OECD): Paris, France, 2021. [Google Scholar]
- Wang, P.; Lai, X. A Study on the Model and Mechanism of Public Policy Diffusion in China. J. Peking Univ. (Philos. Soc. Sci. Ed.) 2013, 50, 14–23. [Google Scholar]
- Zhang, H.; Cheng, G. China’s food security strategy reform: An emerging global agricultural policy. In China’s Global Quest for Resources; Routledge: London, UK, 2016; pp. 35–53. [Google Scholar]
- Anderson, J.E.; Giertz, S.H.; Shimul, S.N. Reducing property taxes for agriculture: Diffusion of use-value assessment policy across the United States. Land Use Policy 2022, 120, 106298. [Google Scholar] [CrossRef]
- Chen, J.; Huang, C. Policy Reinvention and Diffusion: Evidence from Chinese Provincial Governments. J. Chin. Political Sci. 2021, 26, 723–741. [Google Scholar] [CrossRef]
- Li, Y.F.; Herzog, F.; Levers, C.; Mohr, F.; Verburg, P.H.; Bürgi, M.; Dossche, R.; Williams, T.G. Agricultural technology as a driver of sustainable intensification: Insights from the diffusion and focus of patents. Agron. Sustain. Dev. 2024, 44, 14. [Google Scholar] [CrossRef]
- El Bakali, I.; Brouziyne, Y.; El Mekki, A.A.; Maatala, N.; Harbouze, R. The impact of policies on the diffusion of agricultural innovations: Systematic review on evaluation approaches. Outlook Agric. 2024, 53, 3–14. [Google Scholar] [CrossRef]
- Zhang, J.; Su, J.; Huang, C.; Ye, X.T. Measurement on the policy diffusion: Evidence from China’s policy documents. Technol. Anal. Strateg. Manag. 2022, 34, 71–84. [Google Scholar] [CrossRef]
- Yang, A.R.; Xia, Y. Study of agricultural finance policy information extraction based on ELECTRA-BiLSTM-CRF. Appl. Math. Nonlinear Sci. 2022, 8, 2541–2550. [Google Scholar] [CrossRef]
- Mennig, P. Who cares about agriculture? Analyzing German parliamentary debates on agriculture and food with structural topic modeling. Food Policy 2025, 130, 102788. [Google Scholar] [CrossRef]
- Thies, C.G. The declining exceptionalism of agriculture: Identifying the domestic politics and foreign policy of agricultural trade protectionism. Rev. Int. Political Econ. 2015, 22, 339–359. [Google Scholar] [CrossRef]
- Wu, P.Y.; Ma, J.; Jiang, X.F. A model of innovation diffusion based on policy incentives. Commun. Stat.-Simul. Comput. 2021, 50, 2544–2560. [Google Scholar] [CrossRef]
- Peña-Campello, L.; Espín-Gallardo, E.; López-Sánchez, M.J.; Sánchez, M. Social Learning for Policy Design: A Bibliometric Analysis. Soc. Sci. 2024, 13, 504. [Google Scholar] [CrossRef]
- Maffra, L. Foreign Policy Analysis Methodology to Understand the Diffusion of Brazil’s Agri-Food Policy Under Lula’s Government; Ambitos-Revista De Estudios De Ciencias Sociales Y Humanidades; Asociación de Estudios de Ciencias Sociales y Humanidades: Córdoba, Spain, 2021; pp. 77–88. [Google Scholar]
- Xu, Z.H.; Adeyemi, A.E.; Landaverde, R.; Kogut, A.; Baker, M. A Scoping Review on the Impact of Educational Technology in Agricultural Education. Educ. Sci. 2023, 13, 910. [Google Scholar] [CrossRef]
- Ehlers, M.H.; Huber, R.; Finger, R. Agricultural policy in the era of digitalisation. Food Policy 2021, 100, 102019. [Google Scholar] [CrossRef]
- Fusco, G. Twenty Years of Common Agricultural Policy in Europe: A Bibliometric Analysis. Sustainability 2021, 13, 10650. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.Y.; Wang, Y.J.; IEEE. Modular Policy Evaluation System: A Policy Evaluation Framework Based on Text Mining. In Proceedings of the IEEE 6th International Conference on Big Data Analytics (ICBDA), Xiamen, China, 5–8 March 2021; pp. 204–209. [Google Scholar]
- Pedro, S.D.; de Souza, F.E.R.; Garzaro, D.M.; Cirani, C.B.S.; de Souza, M.T.S. Innovation in public policies: A bibliometric study for new research. Int. J. Innov. 2021, 9, 496–521. [Google Scholar] [CrossRef]
- Coderoni, S.; Helming, J.; Pérez-Soba, M.; Sckokai, P.; Varacca, A. Key policy questions for ex-ante impact assessment of European agricultural and rural policies. Environ. Res. Lett. 2021, 16, 094044. [Google Scholar] [CrossRef]
- Thabet, C.; Rached, Z.; Chebil, A. Improving agricultural policies to enhance food security in Tunisia: A retrospective and prospective analysis. New Medit 2024, 23, 91–102. [Google Scholar] [CrossRef]
- Rodríguez, M.L.Z.; Hierrezuelo, N.D.A.; Roca, R.A. Open innovation in Cuba: Experience of the Local Agricultural Innovation Program (PIAL). Gecontec-Rev. Int. Gest. Conoc. Tecnol. 2023, 11, 75–89. [Google Scholar]
- Mäkinen-Rostedt, K.; Hakkarainen, V.; Eriksson, M.; Andrade, R.; Horcea-Milcu, A.; Anderson, C.B.; van Riper, C.J.; Raymond, C.M. Engaging diverse experts in the global science-policy interface: Learning experiences from the process of the IPBES Values Assessment. Environ. Sci. Policy 2023, 147, 215–227. [Google Scholar] [CrossRef]
- Sun, Y.; Latora, V. The evolution of knowledge within and across fields in modern physics. Sci. Rep. 2020, 10, 12097. [Google Scholar] [CrossRef]
- Wider, W.; Gao, Y.; Chan, C.K.; Lin, J.; Li, J.; Tanucan, J.C.M.; Fauzi, M.A. Unveiling trends in digital tourism research: A bibliometric analysis of co-citation and co-word analysis. Environ. Sustain. Indic. 2023, 20, 100308. [Google Scholar] [CrossRef]
- Zhang, C.; Guan, J. How policies emerge and interact with each other? A bibliometric analysis of policies in China. Sci. Public Policy 2022, 49, 441–459. [Google Scholar] [CrossRef]
- Szomszor, M.; Adie, E. Overton: A bibliometric database of policy document citations. Quant. Sci. Stud. 2022, 3, 624–650. [Google Scholar] [CrossRef]
- Rogers, E.M.; Singhal, A.; Quinlan, M.M. Diffusion of innovations. In An Integrated Approach to Communication Theory and Research; Routledge: London, UK, 2014; pp. 432–448. [Google Scholar]
- Walker, J.L. The diffusion of innovations among the American states. Am. Political Sci. Rev. 1969, 63, 880–899. [Google Scholar] [CrossRef]
- Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef]
- Hummon, N.P.; Dereian, P. Connectivity in a citation network: The development of DNA theory. Soc. Netw. 1989, 11, 39–63. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, L.Y. Literature Review about Main Path Analysis Method. Digital Library Forum. 2019, 10, 8–15. [Google Scholar]
- Barabási, A.-L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.A.; Cox, K.R. Empirical regularities in the diffusion of innovation. Ann. Assoc. Am. Geogr. 1971, 61, 551–559. [Google Scholar] [CrossRef]
- Renard, D.; Tilman, D. Cultivate biodiversity to harvest food security and sustainability. Curr. Biol. 2021, 31, R1154–R1158. [Google Scholar] [CrossRef]
- Liu, Y.; Xi, S.; Wei, J.; Li, X. Exploring interventions for improving rural digital governance performance: A simulation study of the data-driven institutional pressure transmission mechanism. Technol. Forecast. Soc. Chang. 2024, 208, 123695. [Google Scholar] [CrossRef]
- Wu, L.-R.; Chen, W. Technological achievements in regional economic development: An econometrics analysis based on DEA. Heliyon 2023, 9, e17023. [Google Scholar] [CrossRef]
- Li, W.; Qiao, Y.; Xu, Y.; Guo, L. Effect evaluation of scientific and technological achievements transformation policy mix: Evidence from China’s provincial panel data. Procedia Comput. Sci. 2022, 214, 951–958. [Google Scholar] [CrossRef]
- Meng, X.; Yang, S.; Pan, G. Innovation practices in agricultural transformation in East China: Exploring the impact and implications of the new professional farmer training model. Heliyon 2024, 10, e34671. [Google Scholar] [CrossRef]
- Luo, J.; Jin, X.; Hu, Y. Top-down or bottom-up? Government policies, public awareness and carbon reduction. Econ. Anal. Policy 2024, 83, 118–129. [Google Scholar] [CrossRef]
- Morton, C.; Wilson, C.; Anable, J. The diffusion of domestic energy efficiency policies: A spatial perspective. Energy Policy 2018, 114, 77–88. [Google Scholar] [CrossRef]
- Timilsina, G.R.; Pang, J.; Xi, Y. Enhancing the quality of climate policy analysis in China: Linking bottom-up and top-down models. Renew. Sustain. Energy Rev. 2021, 151, 111551. [Google Scholar] [CrossRef]
- Liu, P.; Ravenscroft, N. Collective action in implementing top-down land policy: The case of Chengdu, China. Land Use Policy 2017, 65, 45–52. [Google Scholar] [CrossRef]
- Ba, Z.; Ma, Y.; Cai, J.; Li, G. A citation-based research framework for exploring policy diffusion: Evidence from China’s new energy policies. Technol. Forecast. Soc. Chang. 2023, 188, 122273. [Google Scholar] [CrossRef]
- Chen, C.; Gao, J.; Cao, H.; Chen, W. Unpacking the agricultural innovation and diffusion for modernizing the smallholders in rural China: From the perspective of agricultural innovation system and its governance. J. Rural Stud. 2024, 110, 103385. [Google Scholar] [CrossRef]
- Shi, Z.; Ma, L.; Wang, X.; Wu, S.; Bai, J.; Li, Z.; Zhang, Y. Efficiency of agricultural modernization in China: Systematic analysis in the new framework of multidimensional security. J. Clean. Prod. 2023, 432, 139611. [Google Scholar] [CrossRef]
- Casanova, L.; Cornelius, P.K.; Dutta, S. The Impact of Science and Technology Policies on Rapid Economic Development in China. Glob. Innov. Index 2015, 1, 105. Available online: https://lucris.lub.lu.se/ws/files/37541091/gii_2015_v5.pdf#page=140 (accessed on 18 April 2025).
- Gao, Q.; Sun, M.; Chen, L. The impact of digital inclusive finance on agricultural economic resilience. Financ. Res. Lett. 2024, 66, 105679. [Google Scholar] [CrossRef]
- Quan, T.; Zhang, H.; Quan, T.; Yu, Y. Unveiling the impact and mechanism of digital technology on agricultural economic resilience. Chin. J. Popul. Resour. Environ. 2024, 22, 136–145. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, J.; Zhang, S.; Liu, Y.; Xu, H.; Liu, P. New mechanisms for increasing agricultural total factor productivity: Analysis of the regional effects of the digital economy. Econ. Anal. Policy 2024, 83, 766–785. [Google Scholar] [CrossRef]
- Elkins, Z.; Guzman, A.T.; Simmons, B.A. Competing for capital: The diffusion of bilateral investment treaties, 1960–2000. Int. Organ. 2006, 60, 811–846. [Google Scholar] [CrossRef]
- Elkins, Z.; Guzman, A.T.; Simmons, B. The Diffusion of Bilateral Investment Treaties, 1060–2000. In Berkeley Program in Law and Economics; UC Berkeley: Berkeley, CA, USA, 2005. [Google Scholar]
- Zhou, X.; Dai, M.; Ma, X.; Charles, V.; Shahzad, U.; Zhao, X. Economic policy uncertainty and the inhibitory effect of firms’ green technology innovation. Glob. Financ. J. 2024, 60, 100960. [Google Scholar] [CrossRef]
- Zhang, K.; Tan, R. Land policy making in a complex system: The innovation and diffusion logic of China’s retained land policy reform. Land Use Policy 2024, 144, 107263. [Google Scholar] [CrossRef]
- Kyriakopoulos, P. Revisiting research on firm-level innovation in rural areas: A systematic literature review and future research directions. J. Rural Stud. 2024, 111, 103437. [Google Scholar] [CrossRef]
- Wang, X.; Shu, H.; Hu, A.; Wang, H.; Chen, W. Research on the construction of scientific and technological achievements management index system. Procedia Comput. Sci. 2023, 221, 81–85. [Google Scholar] [CrossRef]
- Yang, H.; Li, P. Inter-Governmental Learning Mechanism for the Championship Model of Policy Innovation. J. Public Manag. 2019, 16, 1–14+168. [Google Scholar] [CrossRef]
- Liang, T. Innovating Regional Policy Frameworks in China: The Strategic Zone + Type Zone Model for Sustainable Growth. J. Knowl. Econ. 2024. [Google Scholar] [CrossRef]
- Zimm, C. Improving the understanding of electric vehicle technology and policy diffusion across countries. Transp. Policy 2021, 105, 54–66. [Google Scholar] [CrossRef]
- Mansoor, M. Citizens’ trust in government as a function of good governance and government agency’s provision of quality information on social media during COVID-19. Gov. Inf. Q. 2021, 38, 101597. [Google Scholar] [CrossRef]
- Hartley, K.; Aldag, A. Public trust and support for government technology: Survey insights about Singapore’s smart city policies. Cities 2024, 154, 105368. [Google Scholar] [CrossRef]
- Jiménez, J.R.P.; Ziesemer, T.H.W. Technology adoption, innovation policy and catching-up. Econ. Chang. Restruct. 2024, 57, 60. [Google Scholar] [CrossRef]
- Lahiri, R.; Chinzara, Z. Institutional reform, technology adoption and redistribution: A political economy perspective. Soc. Choice Welf. 2022, 59, 361–400. [Google Scholar] [CrossRef]
- Xu, W.; Shi, X. Who decided the new energy vehicles policy in China? From the perspective of policy objects and policy makers. Heliyon 2023, 9, e21480. [Google Scholar] [CrossRef] [PubMed]
- Ikazaki, D.; Naito, T. Optimal environmental and industrial policies and imperfect agglomeration effects. Reg. Sci. Policy Pract. 2009, 1, 141–157. [Google Scholar] [CrossRef]
- Huynh, T.N.; Nguyen, P.V.; Do, A.M.; Dinh, P.U.; Vo, H.T. Fostering organizational performance through innovation: The roles of environmental policy instruments, organizational learning supports, and intellectual capital. Heliyon 2024, 10, e39361. [Google Scholar] [CrossRef]
- Ossenbrink, J.; Finnsson, S.; Bening, C.R.; Hoffmann, V.H. Delineating policy mixes: Contrasting top-down and bottom-up approaches to the case of energy-storage policy in California. Res. Policy 2019, 48, 103582. [Google Scholar] [CrossRef]
- Arundel, A.; Casali, L.; Hollanders, H. How European public sector agencies innovate: The use of bottom-up, policy-dependent and knowledge-scanning innovation methods. Res. Policy 2015, 44, 1271–1282. [Google Scholar] [CrossRef]
- Lee, H. Uncovering the multidisciplinary nature of technology management: Journal citation network analysis. Scientometrics 2015, 102, 51–75. [Google Scholar] [CrossRef]
- An, B.Y.; Butz, A.M.; Cha, M.-K.; Mitchell, J.L. Following neighbors or regional leaders? Unpacking the effect of geographic proximity in local climate policy diffusion. Policy Sci. 2023, 56, 825–868. [Google Scholar] [CrossRef]
- Piccoli, A.; Agresti, V.; Bedogni, M.; Lonati, G.; Pirovano, G. A bottom-up modelling chain to evaluate the impact of urban road transport policies on air quality and human health. Urban Clim. 2024, 55, 101893. [Google Scholar] [CrossRef]
- Vieira, A.S.; Stewart, R.A.; Lamberts, R.; Beal, C.D. Renewable energy and energy conservation area policy (REECAP) framework: A novel methodology for bottom-up and top-down principles integration. Energy Strategy Rev. 2020, 32, 100544. [Google Scholar] [CrossRef]
Policy Source | Major Issuing Authorities | No. of ASTPs | Citing Count | Proportion of Citing (%) | No. of Cited | Proportion of Cited (%) |
---|---|---|---|---|---|---|
National Level | Central Committee of the Communist Party of China, State Council, Standing Committee of the National People’s Congress, National People’s Congress | 186 | 126 | 3.38 | 1707 | 45.7 |
Ministerial Level | National Development and Reform Commission, Ministry of Science and Technology, Ministry of Agriculture and Rural Affairs, Ministry of Education, Ministry of Human Resources and Social Security, Ministry of Industry and Information Technology, Ministry of Commerce, State Education Commission, State Science and Technology Commission | 840 | 1096 | 29.36 | 1835 | 49.2 |
Provincial Level | Beijing, Chongqing, Anhui, Zhejiang, Yunnan, Sichuan, Shanghai, Shaanxi, Shandong, Qinghai, Liaoning, Jiangxi, Jiangsu, Hunan, Hubei, Heilongjiang, Henan, Hainan, Guangxi, Guangdong, Gansu, Fujian, Xinjiang, Xizang, Tianjin, Shanxi, Hebei, Ningxia, Inner Mongolia, Jilin, Guizhou | 2171 | 2511 | 67.26 | 191 | 5.1 |
Policy Topics | Internal Structure | External Links | Administrative Levels | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Node | Edge | Network Density | Average Degree | Average Clustering Coefficient | Average Path Length | In-Degree | Out-Degree | National | Ministerial | Provincial | |
1. Basic research (BR) | 546 | 688 | 0.002 | 1.26 | 0.033 | 1.709 | 757 | 190 | 34 | 159 | 351 |
2. Transformation of scientific and technological achievements (TSTAs) | 417 | 487 | 0.003 | 1.168 | 0.042 | 1.415 | 542 | 55 | 19 | 83 | 315 |
3. Agricultural Science and Technology Industrialization (ASTI) | 405 | 457 | 0.003 | 1.128 | 0.024 | 1.662 | 478 | 21 | 21 | 96 | 288 |
4. Rural Technological Innovation (RTI) | 391 | 444 | 0.003 | 1.136 | 0.027 | 1.482 | 458 | 14 | 11 | 90 | 290 |
5. Intellectual Property Protection (IPP) | 294 | 337 | 0.004 | 1.146 | 0.035 | 1.405 | 385 | 48 | 28 | 92 | 174 |
6. Talent Incentives (TIs) | 231 | 253 | 0.005 | 1.095 | 0.026 | 1.648 | 272 | 19 | 12 | 46 | 173 |
7. Agricultural Technology Promotion (ATP) | 226 | 258 | 0.005 | 1.142 | 0.032 | 1.723 | 286 | 28 | 5 | 58 | 163 |
8. Science and Technology System Reform (STSR) | 179 | 213 | 0.007 | 1.19 | 0.053 | 1.354 | 230 | 17 | 25 | 70 | 84 |
9. Agricultural Machinery Equipment Innovation (AMEI) | 113 | 133 | 0.011 | 1.177 | 0.045 | 1.498 | 154 | 21 | 4 | 32 | 77 |
Periods | 1978–2001 | 2002–2011 | 2012–2023 | |
---|---|---|---|---|
Number of ASTPs | 415 | 914 | 1860 | |
Number of ASTPs with citations (Nodes) | 402 | 807 | 1403 | |
Number of internal citations | 464 | 916 | 1621 | |
Number of external citations | Cited count | 358 | 1289 | 0 |
Citation count | 0 | 145 | 587 | |
Agency distribution | Number of national agencies | 6 | 6 | 6 |
Number of ministerial agencies | 54 | 37 | 70 | |
Number of provincial agencies | 88 | 176 | 368 | |
Average time interval (Years) | 1.7 | 2.23 | 3.14 | |
Average diffusion speed | 0.071 | 0.058 | 0.045 | |
Average short-term impact | 0.207 | 0.035 | 0.029 | |
Average long-term impact | 0.264 | 0.043 | 0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Wu, Y.; Liu, J.; Zhuang, J.; Yuan, T.; Chen, Y.; Cui, L.; Zhou, A.; Zhou, J.; Li, T. Leveraging Text Mining and Network Analysis for the Diffusion of Agricultural Science and Technology Policies in China. Agriculture 2025, 15, 959. https://doi.org/10.3390/agriculture15090959
Liang X, Wu Y, Liu J, Zhuang J, Yuan T, Chen Y, Cui L, Zhou A, Zhou J, Li T. Leveraging Text Mining and Network Analysis for the Diffusion of Agricultural Science and Technology Policies in China. Agriculture. 2025; 15(9):959. https://doi.org/10.3390/agriculture15090959
Chicago/Turabian StyleLiang, Xiaohe, Yu Wu, Jiajia Liu, Jiayu Zhuang, Tong Yuan, Ying Chen, Lizhen Cui, Ailian Zhou, Jiajia Zhou, and Tong Li. 2025. "Leveraging Text Mining and Network Analysis for the Diffusion of Agricultural Science and Technology Policies in China" Agriculture 15, no. 9: 959. https://doi.org/10.3390/agriculture15090959
APA StyleLiang, X., Wu, Y., Liu, J., Zhuang, J., Yuan, T., Chen, Y., Cui, L., Zhou, A., Zhou, J., & Li, T. (2025). Leveraging Text Mining and Network Analysis for the Diffusion of Agricultural Science and Technology Policies in China. Agriculture, 15(9), 959. https://doi.org/10.3390/agriculture15090959