The Role of Agricultural Socialized Services in Unlocking Agricultural Productivity in China: A Spatial and Threshold Analysis
Abstract
:1. Introduction
1.1. Background
1.2. Objective
2. Literature Review
2.1. Review of Agricultural Socialized Services
2.2. Agricultural Labor Productivity: Drivers and Development Impacts
2.3. The Nexus Between Agricultural Socialized Services and Agricultural Labor Productivity
3. Materials and Methods
3.1. Data Description
3.2. Variable Selection
3.2.1. Explained Variable
3.2.2. Explanatory Variables
3.2.3. Control Variables
3.3. Calculation Method of Entropy Value Method for Agricultural Socialized Services
3.4. Modeling
3.4.1. Benchmark Model
3.4.2. Threshold Effect Model
3.4.3. Spatial Measurement Model
4. Results
4.1. Benchmark Regression
4.2. Robustness Test
4.3. Endogeneity Test
4.4. Heterogeneity Analysis
4.4.1. Geographic Location Heterogeneity
4.4.2. Heterogeneity of Grain-Producing Areas
4.5. Threshold Effect Analysis
4.6. Spatial Measurement Models
4.6.1. Spatial Correlation Test
4.6.2. Spatial Measurement Model Selection
4.6.3. Spatial Durbin Model
4.6.4. Spatial Durbin Model Robustness Test
5. Discussion
6. Conclusions and Suggestions
6.1. Conclusions
6.2. Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- van Dijk, M.; Morley, T.; Rau, M.L.; van Berkum, S.; Bodirsky, B.L.; Schulte, I.; Sartori, M. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Giller, K.E. The Food Security Conundrum of Sub-Saharan Africa. Glob. Food Secur. 2020, 26, 100431. [Google Scholar] [CrossRef]
- Ricciardi, V.; Ramankutty, N.; Mehrabi, Z.; Jarvis, L.; Chookolingo, B. How Much of the World’s Food Do Smallholders Produce? Glob. Food Secur. 2018, 17, 64–72. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Garnett, T. Food Security and Sustainable Intensification. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20120273. [Google Scholar] [CrossRef]
- Pretty, J.; Benton, T.G.; Bharucha, Z.P.; Dicks, L.V.; Flora, C.B.; Godfray, H.C.J.; Goulson, D.; Hartley, S.; Lampkin, N.; Morris, C.; et al. Global Assessment of Agricultural System Redesign for Sustainable Intensification. Nat. Sustain. 2018, 1, 441–446. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, K.; Wu, H.; Liu, C.; Yu, Z. Land Transfer or Trusteeship: Can Agricultural Production Socialization Services Promote Grain Scale Management? Land 2023, 12, 797. [Google Scholar] [CrossRef]
- Turner, B.L.; Fuhrer, J.; Wuellner, M.; Menendez, H.M.; Dunn, B.H.; Gates, R. Scientific Case Studies in Land-Use Driven Soil Erosion in the Central United States: Why Soil Potential and Risk Concepts Should Be Included in the Principles of Soil Health. Int. Soil Water Conserv. Res. 2018, 6, 63–78. [Google Scholar] [CrossRef]
- Lowder, S.K.; Sánchez, M.V.; Bertini, R. Which Farms Feed the World and Has Farmland Become More Concentrated? World Dev. 2021, 142, 105455. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a Cultivated Planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef]
- Anderson, J.R.; Feder, G. Agricultural Extension: Good Intentions and Hard Realities. World Bank Res. Obs. 2004, 19, 41–60. [Google Scholar] [CrossRef]
- Zang, L.; Wang, Y.; Ke, J.; Su, Y. What Drives Smallholders to Utilize Socialized Agricultural Services for Farmland Scale Management? Insights from the Perspective of Collective Action. Land 2022, 11, 930. [Google Scholar] [CrossRef]
- Baloch, M.A.; Thapa, G.B. Review of the Agricultural Extension Modes and Services with the Focus to Balochistan, Pakistan. J. Saudi Soc. Agric. Sci. 2019, 18, 188–194. [Google Scholar] [CrossRef]
- Emeana, E.M.; Trenchard, L.; Dehnen-Schmutz, K. The Revolution of Mobile Phone-Enabled Services for Agricultural Development (m-Agri Services) in Africa: The Challenges for Sustainability. Sustainability 2020, 12, 485. [Google Scholar] [CrossRef]
- Wang, X.; Yamauchi, F.; Otsuka, K.; Huang, J. Wage Growth, Landholding, and Mechanization in Chinese Agriculture. World Dev. 2016, 86, 30–45. [Google Scholar] [CrossRef]
- Morris, W.; Henley, A.; Dowell, D. Farm Diversification, Entrepreneurship and Technology Adoption: Analysis of Upland Farmers in Wales. J. Rural Stud. 2017, 53, 132–143. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Fu, Z.; Tian, M. A Study on the Impact of Population Aging on the Agricultural Socialized Services. Agriculture 2025, 15, 577. [Google Scholar] [CrossRef]
- Poulton, C.; Dorward, A.; Kydd, J. The Future of Small Farms: New Directions for Services, Institutions, and Intermediation. World Dev. 2010, 38, 1413–1428. [Google Scholar] [CrossRef]
- Ma, W.; Abdulai, A. Does Cooperative Membership Improve Household Welfare? Evidence from Apple Farmers in China. Food Policy 2016, 58, 94–102. [Google Scholar] [CrossRef]
- Abebaw, D.; Haile, M.G. The Impact of Cooperatives on Agricultural Technology Adoption: Empirical Evidence from Ethiopia. Food Policy 2013, 38, 82–91. [Google Scholar] [CrossRef]
- Fischer, E.; Qaim, M. Linking Smallholders to Markets: Determinants and Impacts of Farmer Collective Action in Kenya. World Dev. 2012, 40, 1255–1268. [Google Scholar] [CrossRef]
- Baumgart-Getz, A.; Prokopy, L.S.; Floress, K. Why Farmers Adopt Best Management Practice in the United States: A Meta-Analysis of the Adoption Literature. J. Environ. Manag. 2023, 96, 17–25. [Google Scholar] [CrossRef]
- Klerkx, L.; Leeuwis, C. Establishment and Embedding of Innovation Brokers at Different Innovation System Levels: Insights from the Dutch Agricultural Sector. Technol. Forecast. Soc. Change 2024, 76, 849–860. [Google Scholar] [CrossRef]
- Wossen, T.; Alene, A.; Abdoulaye, T.; Feleke, S.; Rabbi, I.Y.; Manyong, V. Poverty Reduction Effects of Agricultural Technology Adoption: The Case of Improved Cassava Varieties in Nigeria. J. Agric. Econ. 2023, 70, 392–407. [Google Scholar] [CrossRef]
- Aker, J.C. Information from Markets Near and Far: Mobile Phones and Agricultural Markets in Niger. Am. Econ. J. Appl. Econ. 2010, 2, 46–59. [Google Scholar] [CrossRef]
- Nakasone, E.; Torero, M.; Minten, B. The Power of Information: The ICT Revolution in Agricultural Development. Annu. Rev. Resour. Econ. 2014, 6, 533–550. [Google Scholar] [CrossRef]
- Islam, D.; Berkes, F. Can Small-scale Commercial and Subsistence Fisheries Co-exist? Lessons from an Indigenous Community in Northern Manitoba, Canada. Marit. Stud. 2016, 15, 1. [Google Scholar] [CrossRef]
- Zhang, S.; Wolz, A.; Ding, Y. Is There a Role for Agricultural Production Cooperatives in Agricultural Development? Evidence from China. Outlook Agric. 2020, 49, 256–263. [Google Scholar] [CrossRef]
- Chen, Z.; Sarkar, A.; Hossain, M.S.; Li, X.; Xia, X. Household Labour Migration and Farmers’ Access to Productive Agricultural Services: A Case Study from Chinese Provinces. Agriculture 2021, 11, 976. [Google Scholar] [CrossRef]
- Xu, Q.; Zhu, P.; Tang, L. Agricultural Services: Another Way of Farmland Utilization and Its Effect on Agricultural Green Total Factor Productivity in China. Land 2022, 11, 1170. [Google Scholar] [CrossRef]
- Wang, J.; Yang, G.; Zhou, C. Does Internet Use Promote Agricultural Green Development? Evidence from China. Int. Rev. Econ. Financ. 2024, 93, 98–111. [Google Scholar] [CrossRef]
- Giannakis, E.; Bruggeman, A. Exploring the Labour Productivity of Agricultural Systems across European Regions: A Multilevel Approach. Land Use Policy 2018, 77, 94–106. [Google Scholar] [CrossRef]
- Wang, X.; Yamauchi, F.; Huang, J. Rising Wages, Mechanization, and the Substitution between Capital and Labor: Evidence from Small-Scale Farm Systems in China. Agric. Econ. 2016, 47, 309–317. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Z.; Xu, M.; Tan, Z.; Han, J.; Zhang, L.; Chen, S. Agriculture–Tourism Integration’s Impact on Agricultural Green Productivity in China. Agriculture 2023, 13, 1941. [Google Scholar] [CrossRef]
- Liu, Y.; Barrett, C.B.; Pham, T.; Violette, W. The Intertemporal Evolution of Agriculture and Labor over a Rapid Structural Transformation: Lessons from Vietnam. Food Policy 2020, 94, 101913. [Google Scholar] [CrossRef]
- Tiatié, N. Impact of Land Tenure Security through Customary Law on Agricultural Productivity in Burkina Faso: Propensity Score Matching Approaches. Land Use Policy 2023, 134, 106907. [Google Scholar] [CrossRef]
- Ortmann, G.F.; King, R.P. Agricultural Cooperatives I: History, Theory and Problems. Agrekon 2007, 46, 40–68. [Google Scholar] [CrossRef]
- Pardey, P.; Alston, J. Unpacking the Agricultural Black Box: The Rise and Fall of American Farm Productivity Growth. J. Econ. Hist. 2021, 81, 114–155. [Google Scholar] [CrossRef]
- Swinnen, J.F.; Vranken, L. Reforms and Agricultural Productivity in Central and Eastern Europe and the Former Soviet Republics: 1989–2005. J. Prod. Anal. 2023, 33, 241–258. [Google Scholar] [CrossRef]
- Owens, T.; Hoddinott, J.; Kinsey, B. The Impact of Agricultural Extension on Farm Production in Resettlement Areas of Zimbabwe. Econ. Dev. Cult. Change 2023, 51, 337–357. [Google Scholar] [CrossRef]
- Jin, S.; Ma, H.; Huang, J.; Hu, R.; Rozelle, S. Productivity, Efficiency and Technical Change: Measuring the Performance of China’s Transforming Agriculture. J. Prod. Anal. 2010, 33, 191–207. [Google Scholar] [CrossRef]
- Ragasa, C.; Mazunda, J.; Kadzamira, M. The Impact of Farmer Field Schools on Agricultural Productivity and Poverty in Malawi. World Dev. 2016, 78, 57–75. [Google Scholar] [CrossRef]
- Cai, B.; Shi, F.; Meseretchanie, A.; Betelhemabraham, G.; Zeng, R. Agricultural socialized services empowering smallholder rice producers to achieve high technical efficiency: Empirical evidence from southern China. Front. Sustain. Food Syst. 2024, 8, 1329872. [Google Scholar] [CrossRef]
- İmrohoroğlu, A.; İmrohoroğlu, S.; Üngör, M. Agricultural Productivity and Growth in Turkey. Macroecon. Dyn. 2014, 18, 998–1017. [Google Scholar] [CrossRef]
- Niftiyev, I. Performance Evaluation of the Fruit and Vegetable Subsectors in the Azerbaijani Economy: A Combinatorial Analysis Using Regression and Principal Component Analysis. Zagreb Int. Rev. Econ. Bus. 2021, 24, 27–47. [Google Scholar] [CrossRef]
- Takahashi, K.; Muraoka, R.; Otsuka, K. Technology Adoption, Impact, and Extension in Developing Countries’ Agriculture: A Review of the Recent Literature. Agric. Econ. 2020, 51, 31–45. [Google Scholar] [CrossRef]
- López-Ridaura, S.; Frelat, R.; van Wijk, M.T.; Valbuena, D.; Krupnik, T.J.; Jat, M.L. Climate Smart Agriculture, Farm Household Typologies and Food Security: An Ex-ante Assessment from Eastern India. Agric. Syst. 2023, 159, 57–68. [Google Scholar] [CrossRef]
- Suri, T.; Udry, C. Agricultural Technology in Africa. J. Econ. Perspect. 2024, 36, 33–56. [Google Scholar] [CrossRef]
- Kassie, M.; Teklewold, H.; Jaleta, M.; Marenya, P.; Erenstein, O. Understanding the Adoption of a Portfolio of Sustainable Intensification Practices in Eastern and Southern Africa. Land Use Policy 2023, 42, 400–411. [Google Scholar] [CrossRef]
- Campi, M. The effect of intellectual property rights on agricultural productivity. Agric. Econ. 2017, 48, 327–339. [Google Scholar] [CrossRef]
- Zhang, L.; Hong, M.; Guo, X.; Qian, W. How Does Land Rental Affect Agricultural Labor Productivity? An Empirical Study in Rural China. Land 2022, 11, 653. [Google Scholar] [CrossRef]
- Chen, X.; An, Y.; Pan, W.; Wang, Y.; Chen, L.; Gu, Y.; Liu, H.; Yang, F. Dynamic Transfer and Driving Mechanisms of the Coupling and Coordination of Agricultural Resilience and Rural Land Use Efficiency in China. J. Geogr. Sci. 2024, 34, 1589–1614. [Google Scholar] [CrossRef]
- Liao, R.; Chen, Z.; Sirisrisakulchai, J.; Liu, J. Enhancing Rural Economic Sustainability in China Through Agricultural Socialization Services: A Novel Perspective on Spatial-Temporal Dynamics. Agriculture 2025, 15, 267. [Google Scholar] [CrossRef]
- Baležentis, T.; Štreimikienė, D.; Melnikienė, R.; Zeng, S. Agricultural Sustainability Assessment Framework Integrating Sustainable Development Goals and Interlinked Priorities of Environmental, Climate and Agriculture Policies. Sustain. Dev. 2020, 28, 1702–1712. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, F.; Li, Y. Key Issues of Land Use in China and Implications for Policy Making. Land Use Policy 2014, 40, 6–12. [Google Scholar] [CrossRef]
- Jia, L.; Petrick, M. How Does Land Fragmentation Affect Off-Farm Labor Supply: Panel Data Evidence from China. Agric. Econ. 2014, 45, 369–380. [Google Scholar] [CrossRef]
- Huang, J.; Ding, J. Institutional Innovation and Policy Support to Facilitate Small-Scale Farming Transformation in China. Agric. Econ. 2016, 47, 227–237. [Google Scholar] [CrossRef]
- Cai, B.; Wangda, L.; Shi, F.; Abate, M.C.; Geremew, B.; Addis, A.K. Agricultural socialized services and Chinese food security: Examining the threshold effect of land tenure change. Front. Sustain. Food Syst. 2024, 8, 1371520. [Google Scholar] [CrossRef]
- Wang, L.; Gao, X.; Yuan, R.; Luo, M. Impact and Spatial Effect of Socialized Services on Agricultural Eco-Efficiency in China: Evidence from Jiangxi Province. Sustainability 2024, 16, 360. [Google Scholar] [CrossRef]
- Li, R.; Chen, J.; Xu, D. The Impact of Agricultural Socialized Service on Grain Production: Evidence from Rural China. Agriculture 2024, 14, 785. [Google Scholar] [CrossRef]
- Zhang, H.; Bai, X.; Zhao, M. How Socialized Services Affect Agricultural Economic Resilience—Empirical Evidence from China. Agriculture 2024, 14, 1773. [Google Scholar] [CrossRef]
Variable | Obs | Mean | Std. Dev. | Min | Max | |
---|---|---|---|---|---|---|
Explain variable | ALP | 360 | 3.311 | 1.829 | 0.608 | 11.396 |
Explanatory variables | ASS | 360 | 0.236 | 0.121 | 0.045 | 0.543 |
Control variables | GAP | 360 | 2.547 | 0.379 | 1.827 | 3.672 |
AFT | 360 | 32.105 | 16.557 | 3.353 | 91.111 | |
OPEN | 360 | 0.266 | 0.287 | 0.008 | 1.548 | |
AFL | 360 | 0.031 | 0.021 | 0.006 | 0.110 | |
CMS | 360 | 0.060 | 0.092 | 0.002 | 0.566 |
Primary Categories | Secondary Indicators | Interpretation of Indicators | Unit (of Measure) | Weights | Expected Effects |
---|---|---|---|---|---|
Agricultural management services | Extent of Land Trusteeship | Proportion of Land Under Trusteeship Relative to Cultivated Area | % | 0.047 | Positive |
Land Productivity Associated with Scaled Operations | Ratio of gross agricultural output to area sown to crops | % | 0.038 | Positive | |
Agricultural operation services | Professionals in Mechanized Agricultural Services | Number of specialized households in agricultural mechanization services | - | 0.105 | Positive |
Extent of Agricultural Mechanization | Total area of machine-ploughing, machine-irrigation, machine-planting, machine-harves ting, and machine-sowing | Khm2 | 0.068 | Positive | |
Agricultural Mechanization Service Organization | Number of agricultural mechanization service organizations | - | 0.056 | Positive | |
Agricultural informatization services | Levels of Internet Connectivity in Rural Areas | Number of rural Internet broadband accesses | - | 0.080 | Positive |
Rate of Telephone Access in Rural Regions | Rural telephone penetration | % | 0.002 | Positive | |
Percentage of Villages with Access to Postal Services | Number of postal villages as a percentage of villages | % | 0.035 | Positive | |
Length of rural postal delivery routes | Length of rural postal routes | km | 0.015 | Positive | |
Level of digitization of agriculture | Rural Digital Financial Inclusion Investment Index | % | 0.053 | Positive | |
Agricultural infrastructure services | Degree of Rural Water Infrastructure Development | Effective irrigated area | hm2 | 0.070 | Positive |
Efficiency Ratio of Irrigation Water Utilization | Ratio of effective irrigated area to area sown to crops | % | 0.031 | Positive | |
Total Length of Rural Road Infrastructure | Length of rural roads | km | 0.070 | Positive | |
Per capita investment in agriculture, forestry and water | Ratio of investment in fixed assets in agriculture, forestry and water to rural population | Hundred million CNY/person | 0.022 | Positive | |
Reservoir ownership | Number of reservoirs | - | 0.085 | Positive | |
Agricultural technology services | Rural technicians | Number of R&D persons (GDP of agriculture, forestry and fisheries/GDP of the region) | - | 0.061 | Positive |
Agrometeorological observation stations | Number of agrometeorological observation stations | - | 0.022 | Positive | |
Level of development of agricultural loans | Total agriculture-related loans | billion | 0.054 | Positive | |
Agricultural ecological services | Capacity for Responding to Natural Disasters | 1—Affected area/affected area | % | 0.002 | Positive |
Rate of Fertilizer Application | Ratio of fertilizer application to area sown to crops | Tons/km2 | 0.010 | Negative | |
Rate of Pesticide Application | Ratio of pesticide application to area sown to crops | Tons/km2 | 0.004 | Negative | |
Amount of agricultural film applied | Ratio of the amount of agricultural film applied to the area sown to crops | Tons/km2 | 0.005 | Negative | |
Effectiveness of Soil Erosion Control Measures | Area of soil and water conservation | Km2 | 0.049 | Positive |
Variables | ALP | |||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
ASS | 7.370 *** | 7.265 *** | 7.326 *** | 6.870 *** | 6.474 *** | 6.866 *** |
(2.468) | (2.476) | (2.471) | (2.329) | (2.319) | (2.310) | |
GAP | 1.368 * | 1.357 * | 1.794 ** | 2.073 *** | 2.287 *** | |
(0.771) | (0.753) | (0.783) | (0.789) | (0.793) | ||
AFT | 0.001 | 0.001 | 0.001 | 0.001 | ||
(0.003) | (0.003) | (0.003) | (0.003) | |||
OPEN | 1.122 ** | 1.230 ** | 1.305 ** | |||
(0.557) | (0.556) | (0.556) | ||||
AFL | 16.199 *** | −16.334 *** | ||||
(5.943) | (6.057) | |||||
CMS | −4.965 | |||||
(3.453) | ||||||
Constant | 1.575 *** | −1.885 | −1.911 | −3.221 | −3.346 | −3.699 * |
(0.580) | (1.837) | (1.853) | (2.053) | (2.043) | (2.027) | |
Province/year fixed effect | YES | YES | YES | YES | YES | YES |
N | 360 | 360 | 360 | 360 | 360 | 360 |
R2 | 0.898 | 0.899 | 0.899 | 0.901 | 0.903 | 0.904 |
Variables | Control City Samples | Excluding Outliers | Replacing the Regression Model | Lagged Variables | 2SLS | ||
---|---|---|---|---|---|---|---|
(1) ALP | (2) ALP | (3) ALP | (4) L.ALP | (5) ALP | (6) ALP | (7) ALP | |
ASS | 3.859 * | 7.561 *** | 2.206 *** | 8.638 *** | 6.087 ** | 104.128 *** | |
(2.147) | (2.296) | (0.777) | (2.616) | (2.710) | (42.559) | ||
L.ALP | 0.011 ** | ||||||
(0.004) | |||||||
Constant | −1.234 *** | −3.783 *** | 10.203 *** | −3.414 *** | −2.822 *** | 0.400 *** | −41.446 * |
(2.257) | (2.007) | (0.770) | (1.990) | (0.470) | (0.066) | (22.028) | |
Controls | YES | YES | YES | YES | YES | YES | YES |
Province/year fixed effect | YES | YES | NO | YES | YES | YES | YES |
N | 312 | 360 | 360 | 330 | 330 | 330 | 330 |
R2 | 0.924 | 0.910 | 0.379 | 0.901 | 0.913 |
Variables | Regional Heterogeneity Analysis | Main Grain Producing Areas or Not | |||
---|---|---|---|---|---|
(1) East | (2) Middle | (3) West | (4) Main Area | (5) Not Main Area | |
ASS | 13.950 *** | 11.965 *** | −7.019 *** | 25.128 *** | 8.156 *** |
(4.696) | (3.643) | (1.775) | (4.809) | (2.779) | |
Constant | −9.043 *** | −2.642 | 9.492 *** | −7.601 *** | 0.650 |
(5.587) | (2.651) | (1.599) | (3.495) | (2.677) | |
Controls | YES | YES | YES | YES | YES |
Province/year fixed effect | YES | YES | YES | YES | YES |
N | 132 | 96 | 132 | 204 | 156 |
R2 | 0.883 | 0.952 | 0.968 | 0.927 | 0.950 |
Threshold Type | Fstat | Prob | Crit10 | Crit5 | Crit1 |
---|---|---|---|---|---|
Single | 175.95 | 0.000 | 37.825 | 46.491 | 78.541 |
Double | 129.17 | 0.002 | 31.7349 | 42.618 | 166.601 |
Variables | ALP |
---|---|
ASS × I (ALP ≤ 5.254) | 10.859 *** |
(2.172) | |
ASS × I (5.254 ≤ ALP ≤ 8.478) | 15.102 *** |
(2.222) | |
ASS × I (ALP ≥ 8.478) | 27.374 *** |
(2.298) | |
Constant | 12.552 *** |
(1.870) | |
Controls | YES |
N | 360 |
R2 | 0.866 |
ALP | |||||||
---|---|---|---|---|---|---|---|
Year | Moran’s I Index | Z Value | p Value | Year | Moran’s I Index | Z Value | p Value |
2011 | 0.117 *** | 3.437 | 0.000 | 2017 | 0.045 ** | 1.818 | 0.035 |
2012 | 0.128 *** | 3.662 | 0.000 | 2018 | 0.029 * | 1.466 | 0.071 |
2013 | 0.110 *** | 3.263 | 0.001 | 2019 | 0.022 * | 1.313 | 0.095 |
2014 | 0.100 *** | 3.047 | 0.001 | 2020 | 0.020 * | 1.309 | 0.095 |
2015 | 0.085 *** | 2.735 | 0.003 | 2021 | 0.015 | 1.157 | 0.124 |
2016 | 0.057 ** | 2.017 | 0.018 | 2022 | 0.013 | 1.103 | 0.135 |
Model Selection | Statistical Result | p Value | |
---|---|---|---|
LM test | Moran’s I | 20.361 | 0.000 |
LM—test—erorr | 381.946 | 0.000 | |
Robust_LM—test—erorr | 20.890 | 0.000 | |
LM—test—lag | 460.413 | 0.000 | |
Robust_LM—test—lag | 99.357 | 0.000 | |
Wald test | Wald—SDM/SAR | 12.17 | 0.033 |
Wald—SDM/SEM | 11.93 | 0.064 | |
LR test | LR—SDM/SAR | 12.52 | 0.051 |
LR—SDM/SEM | 11.77 | 0.067 | |
LR test | LR—both/ind | 33.00 | 0.000 |
LR—both/time | 418.33 | 0.000 |
Variables | Spatial Fixed Effect | Time Fixed Effect | Spatio-Temporal Fixed Effect |
---|---|---|---|
(1) ALP | (2) ALP | (3) ALP | |
ASS | 6.480 *** | 1.045 | 7.451 *** |
(2.037) | (0.640) | (2.037) | |
W × ASS | 18.473 *** | −3.277 | 33.830 *** |
(5.416) | (5.880) | (10.335) | |
rho | 0.462 *** | −0.318 | −0.411 * |
(0.100) | (0.246) | (0.241) | |
Controls | YES | YES | YES |
Total effect | 7.328 *** | 1.119 * | 7.038 *** |
(2.109) | (0.626) | (2.095) | |
Indirect effect | 39.307 *** | −2.576 | 22.437 *** |
(10.362) | (4.879) | (8.830) | |
Direct effect | 46.635 *** | −1.456 | 29.474 *** |
(10.937) | (5.136) | (9.187) | |
N | 360 | 360 | 360 |
R2 | 0.823 | 0.595 | 0.774 |
Variables | Geographic Distance Matrix | Inverse Geographic Distance Square Matrix | Economic Geography Nested Matrix |
---|---|---|---|
(1) ALP | (2) ALP | (3) ALP | |
ASS | 7.519 *** | 8.078 *** | 7.881 *** |
(1.945) | (2.027) | (1.888) | |
W × ASS | 42.330 *** | 10.982 ** | 26.461 ** |
(12.345) | (4.974) | (11.506) | |
rho | −0.772 *** | −0.280 *** | −0.706 *** |
(0.244) | (0.102) | (0.220) | |
Controls | YES | YES | YES |
Total effect | 6.479 *** | 7.754 *** | 7.304 *** |
(2.107) | (2.173) | (2.001) | |
Indirect effect | 21.435 *** | 7.077 * | 12.494 ** |
(6.654) | (3.954) | (6.377) | |
Direct effect | 27.915 *** | 14.831 *** | 19.798 *** |
(6.351) | (3.736) | (6.210) | |
N | 360 | 360 | 360 |
R2 | 0.721 | 0.663 | 0.730 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Wei, Y.; Liao, R.; Liu, J. The Role of Agricultural Socialized Services in Unlocking Agricultural Productivity in China: A Spatial and Threshold Analysis. Agriculture 2025, 15, 957. https://doi.org/10.3390/agriculture15090957
Bai Y, Wei Y, Liao R, Liu J. The Role of Agricultural Socialized Services in Unlocking Agricultural Productivity in China: A Spatial and Threshold Analysis. Agriculture. 2025; 15(9):957. https://doi.org/10.3390/agriculture15090957
Chicago/Turabian StyleBai, Yu, Yuheng Wei, Ruofan Liao, and Jianxu Liu. 2025. "The Role of Agricultural Socialized Services in Unlocking Agricultural Productivity in China: A Spatial and Threshold Analysis" Agriculture 15, no. 9: 957. https://doi.org/10.3390/agriculture15090957
APA StyleBai, Y., Wei, Y., Liao, R., & Liu, J. (2025). The Role of Agricultural Socialized Services in Unlocking Agricultural Productivity in China: A Spatial and Threshold Analysis. Agriculture, 15(9), 957. https://doi.org/10.3390/agriculture15090957