Preliminary Analysis on Bio-Acidification Using Coffee Torrefaction Waste and Acetic Acid on Animal Manure from a Dairy Farm
Abstract
:1. Introduction
1.1. State of the Art
1.2. Aims and Objectives of the Research
2. Materials and Methods
2.1. Research Methodology
2.2. Materials Used for Bio-Acidification
- Caffeine: 0.71 ± 0.02;
- 3-CQA: 9.44 ± 0.22;
- 5-CQA: 52.53 ± 0.83;
- 4-CQA: 17.71 ± 0.30;
- HMF: 39.52 ± 1.07.
2.3. Barn Selection and Description
2.4. Laboratory Tests on Manure Samples
2.5. In-Field Applications
- One of the sections was dedicated to the storage of the effluents produced by the cattle, representing the control group (Control SL-A).
- In the other section, both silverskin and acetic acid were spread in the feeding area according to the proportions established during the laboratory analysis, constituting the experimental group (Sample SL-B). The silverskin, manure, and acetic acid were mixed directly on field to simulate the ordinary operative conditions of the dairy barn management.
2.6. Environmental Assessment of Silverskin Valorisation
3. Results
3.1. Laboratory Results
3.2. In-Field Applications
4. Territorial Level
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EEA, 2024, Air Pollution in Europe: 2024 Reporting Status Under the National Emission Reduction Commitments Directive, Briefing No 07/2024. Available online: https://www.eea.europa.eu/publications/national-emission-reduction-commitments-directive-2024 (accessed on 26 April 2025).
- Murawska, A.; Prus, P. The Progress of Sustainable Management of Ammonia Emissions from Agriculture in European Union States Including Poland—Variation, Trends, and Economic Conditions. Sustainability 2021, 13, 1035. [Google Scholar] [CrossRef]
- Erisman, J.W.; Bleeker, A.; Galloway, J.; Sutton, M.S. Reduced Nitrogen in Ecology and the Environment. Environ. Pollut. 2007, 150, 140–149. [Google Scholar] [CrossRef] [PubMed]
- EMEP EEA 2023—Air Pollutant Emission Inventory Guidebook 2023; European Economic Area, Denmark 2023. Available online: https://www.eea.europa.eu/en/analysis/publications/emep-eea-guidebook-2023 (accessed on 26 April 2025).
- Vitaliano, S.; D’Urso, P.R.; Arcidiacono, C.; Cascone, G. Ammonia Emissions and Building-Related Mitigation Strategies in Dairy Barns: A Review. Agriculture 2024, 14, 1148. [Google Scholar] [CrossRef]
- Yan, X.; Ying, Y.; Li, K.; Zhang, Q.; Wang, K. A Review of Mitigation Technologies and Management Strategies for Greenhouse Gas and Air Pollutant Emissions in Livestock Production. J. Environ. Manag. 2024, 352, 120028. [Google Scholar] [CrossRef]
- Schrade, S.; Zeyer, K.; Mohn, J.; Zähner, M. Effect of Diets with Different Crude Protein Levels on Ammonia and Greenhouse Gas Emissions from a Naturally Ventilated Dairy Housing. Sci. Total Environ. 2023, 896, 165027. [Google Scholar] [CrossRef] [PubMed]
- D’Urso, P.R.; Arcidiacono, C. Effect of the Milking Frequency on the Concentrations of Ammonia and Greenhouse Gases within an Open Dairy Barn in Hot Climate Conditions. Sustainability 2021, 13, 9235. [Google Scholar] [CrossRef]
- Bacenetti, J.; Bava, L.; Zucali, M.; Lovarelli, D.; Sandrucci, A.; Tamburini, A.; Fiala, M. Anaerobic Digestion and Milking Frequency as Mitigation Strategies of the Environmental Burden in the Milk Production System. Sci. Total Environ. 2016, 539, 450–459. [Google Scholar] [CrossRef]
- Tullo, E.; Finzi, A.; Guarino, M. Review: Environmental Impact of Livestock Farming and Precision Livestock Farming as a Mitigation Strategy. Sci. Total Environ. 2019, 650, 2751–2760. [Google Scholar] [CrossRef]
- Chiumenti, A.; Da Borso, F.; Pezzuolo, A.; Sartori, L.; Chiumenti, R. Ammonia and Greenhouse Gas Emissions from Slatted Dairy Barn Floors Cleaned by Robotic Scrapers. Res. Agric. Eng. 2018, 64, 26–33. [Google Scholar] [CrossRef]
- Snoek, D.J.W.; Stigter, J.D.; Blaauw, S.K.; Groot Koerkamp, P.W.G.; Ogink, N.W.M. Assessing Fresh Urine Puddle Physics in Commercial Dairy Cow Houses. Biosyst. Eng. 2017, 159, 133–142. [Google Scholar] [CrossRef]
- Vitaliano, S.; Cascone, S.; D’Urso, P.R. Mitigating Built Environment Air Pollution by Green Systems: An In-Depth Review. Appl. Sci. 2024, 14, 6487. [Google Scholar] [CrossRef]
- D’Urso, P.R.; Arcidiacono, C.; Cascone, G. Environmental and Animal-Related Parameters and the Emissions of Ammonia and Methane from an Open-Sided Free-Stall Barn in Hot Mediterranean Climate: A Preliminary Study. Agronomy 2021, 11, 1772. [Google Scholar] [CrossRef]
- D’Urso, P.R.; Arcidiacono, C.; Cascone, G. Ammonia and Greenhouse Gas Distribution in a Dairy Barn during Warm Periods. Front. Agric. Sci. Eng. 2024, 11, 428–441. [Google Scholar] [CrossRef]
- Kai, P.; Pedersen, P.; Jensen, J.E.; Hansen, M.N.; Sommer, S.G. A Whole-Farm Assessment of the Efficacy of Slurry Acidification in Reducing Ammonia Emissions. Eur. J. Agron. 2008, 28, 148–154. [Google Scholar] [CrossRef]
- Garder, I.M.; Gómez-Muñoz, B.; Stoumann Jensen, L.; Regueiro, I. Nitrogen Fertiliser Value of Bioacidified Slurry. Waste Manag. 2023, 166, 86–95. [Google Scholar] [CrossRef]
- Rotz, C.A. Management to Reduce Nitrogen Losses in Animal Production. J. Anim. Sci. 2004, 82, E119–E137. [Google Scholar]
- Hempel, S.; Vu, H.; Amon, T.; Janke, D. The Influence of PH Dynamics on Modeled Ammonia Emission Patterns of a Naturally Ventilated Dairy Cattle Building. Atmosphere 2023, 14, 1534. [Google Scholar] [CrossRef]
- Kavanagh, I.; Burchill, W.; Healy, M.G.; Fenton, O.; Krol, D.J.; Lanigan, G.J. Mitigation of Ammonia and Greenhouse Gas Emissions from Stored Cattle Slurry Using Acidifiers and Chemical Amendments. J. Clean. Prod. 2019, 237, 117822. [Google Scholar] [CrossRef]
- Gioelli, F.; Grella, M.; Scarpeci, T.E.; Rollè, L.; Dela Pierre, F.; Dinuccio, E. Bio-Acidification of Cattle Slurry with Whey Reduces Gaseous Emission during Storage with Positive Effects on Biogas Production. Sustainability 2022, 14, 12331. [Google Scholar] [CrossRef]
- Kuroda, K.; Tanaka, A.; Furuhashi, K.; Fukuju, N. Effect of Waste Cooking Oil Addition on Ammonia Emissions during the Composting of Dairy Cattle Manure. Anim. Biosci. 2022, 35, 1100–1108. [Google Scholar] [CrossRef]
- Kuroda, K.; Tanaka, A.; Furuhashi, K.; Fukuju, N. Evaluation of Ammonia Emission Reducing Effect by Adding Waste Cooking Oil in Pilot-Scale Composting of Dairy Cattle Manure. Anim. Biosci. 2023, 36, 1612–1618. [Google Scholar] [CrossRef] [PubMed]
- Arcidiacono, C.; Porto, S.M.C.; Cascone, G. On Ammonia Concentrations in Naturally Ventilated Dairy Houses Located in Sicily on Ammonia Concentrations in Naturally Ventilateddairy Houses Located in Sicily. Agric. Eng. Int. CIGR 2015, 294. [Google Scholar]
- Lee, Y.G.; Cho, E.J.; Maskey, S.; Nguyen, D.T.; Bae, H.J. Value-Added Products from Coffee Waste: A Review. Molecules 2023, 28, 3562. [Google Scholar] [CrossRef]
- Narita, Y.; Inouye, K. Review on Utilization and Composition of Coffee Silverskin. Food Res. Int. 2014, 61, 16–22. [Google Scholar] [CrossRef]
- Cinardi, G.; D’Urso, P.R.; Arcidiacono, C.; Ingrao, C. Accounting for Circular Economy Principles in Life Cycle Assessments of Extra-Virgin Olive Oil Supply Chains—Findings from a Systematic Literature Review. Sci. Total Environ. 2024, 945, 173977. [Google Scholar] [CrossRef] [PubMed]
- Saenger, M.; Hartge, E.-U.; Werther, J.; Ogada, T.; Siagi, Z. Combustion of Coffee Husks. Renew. Energy 2001, 23, 103–121. [Google Scholar] [CrossRef]
- Angeloni, S.; Scortichini, S.; Fiorini, D.; Sagratini, G.; Vittori, S.; Neiens, S.D.; Steinhaus, M.; Zheljazkov, V.D.; Maggi, F.; Caprioli, G. Characterization of Odor-Active Compounds, Polyphenols, and Fatty Acids in Coffee Silverskin. Molecules 2020, 25, 2993. [Google Scholar] [CrossRef]
- Machado, M.; Espírito Santo, L.; Machado, S.; Lobo, J.C.; Costa, A.S.G.; Oliveira, M.B.P.P.; Ferreira, H.; Alves, R.C. Bioactive Potential and Chemical Composition of Coffee By-Products: From Pulp to Silverskin. Foods 2023, 12, 2354. [Google Scholar] [CrossRef]
- Sistema Informativo Veterinario–Statistiche. Available online: https://www.vetinfo.it/j6_statistiche/#/ (accessed on 23 January 2025).
- Park, S.-H.; Lee, B.-R.; Kim, T.-H. Effects of Cattle Manure and Swine Slurry Acidification on Ammonia Emission as Estimated by an Acid Trap System. J. Korean Soc. Grassl. Forage Sci. 2015, 35, 212–216. [Google Scholar] [CrossRef]
- Sommer, S.G.; Clough, T.J.; Balaine, N.; Hafner, S.D.; Cameron, K.C. Transformation of Organic Matter and the Emissions of Methane and Ammonia during Storage of Liquid Manure as Affected by Acidification. J. Environ. Qual. 2017, 46, 514–521. [Google Scholar] [CrossRef]
- Meisinger, J.J.; Jokela, W.E. Ammonia Volatilization from Dairy and Poultry Manure; Managing nutrients and pathogens from animal agriculture (NRAES-130); Natural Resource, Agriculture, and Engineering Service: Ithaca, NY, USA, 2000. [Google Scholar]
- Blakemore, L.C.; Searle, P.L.; Daly, B.K. Methods for Chemical Analysis of Soils; NZ Soil Bureau Scientific Report 80; Department of Scientific and Industrial Research: Lower Hutt, New Zealand, 1987.
- dos Santos, L.C.; Adarme, O.F.H.; Baêta, B.E.L.; Gurgel, L.V.A.; Aquino, S.F. de Production of Biogas (Methane and Hydrogen) from Anaerobic Digestion of Hemicellulosic Hydrolysate Generated in the Oxidative Pretreatment of Coffee Husks. Bioresour. Technol. 2018, 263, 601–612. [Google Scholar] [CrossRef]
- Fragalà, F.; Salvagno, E.; La Bella, E.; Saccone, R.; Padoan, E.; Montoneri, E.; Miccichè, J.; Ferrarello, D.; Baglieri, A.; Puglisi, I. Enhancing Lettuce Yield through Innovative Foliar Spray of Biopolymers Derived from Municipal Biowastes. Plants 2024, 13, 1664. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.A.; Heleno, S.A.; Pinela, J.; Carocho, M.; Prieto, M.A.; Ferreira, I.C.F.R.; Barros, L. Recovery of Citric Acid from Citrus Peels: Ultrasound-Assisted Extraction Optimized by Response Surface Methodology. Chemosensors 2022, 10, 257. [Google Scholar] [CrossRef]
- Torrado, A.M.; Cortés, S.; Salgado, J.M.; Max, B.; Rodríguez, N.; Bibbins, B.P.; Converti, A.; Manuel Domínguez, J. Citric Acid Production from Orange Peel Wastes by Solid-State Fermentation. Braz. J. Microbiol. 2011, 42, 394–409. [Google Scholar] [CrossRef]
- Available online: https://www.beverfood.com/quantic/negozio/prodotto/coffitalia-2024 (accessed on 20 January 2025).
- Telezhenko, E.; Magnusson, M.; Nilsson, C.; Bergsten, C.; Ventorp, M. Effect of Different Flooring Systems on the Locomotion in Dairy Cows; ISAH: Warsaw, Poland, 2005; Volume 2. [Google Scholar]
- Emmerling, C.; Krein, A.; Junk, J. Meta-Analysis of Strategies to Reduce NH3 Emissions from Slurries in European Agriculture and Consequences for Greenhouse Gas Emissions. Agronomy 2020, 10, 1633. [Google Scholar] [CrossRef]
- Cinardi, G.; D’Urso, P.R.; Arcidiacono, C.; Muradin, M.; Ingrao, C. A Systematic Literature Review of Environmental Assessments of Citrus Processing Systems, with a Focus on the Drying Phase. Sci. Total Environ. 2025, 974, 179219. [Google Scholar] [CrossRef] [PubMed]
- Catalano, G.A.; Maci, F.; D’Urso, P.R.; Arcidiacono, C. GIS and SDM-Based Methodology for Resource Optimisation: Feasibility Study for Citrus in Mediterranean Area. Agronomy 2023, 13, 549. [Google Scholar] [CrossRef]
- de Oliveira Fernandes, M.A.; Baêta, B.E.L.; Adarme, O.F.H.; Fonseca, A. LCA-Based Carbon Footprint Analysis of Anaerobic Digestion of Coffee Husk Waste. Renew. Sustain. Energy Rev. 2025, 207, 114993. [Google Scholar] [CrossRef]
- Glover, C.J.; McDonnell, A.; Rollins, K.S.; Hiibel, S.R.; Cornejo, P.K. Assessing the Environmental Impact of Resource Recovery from Dairy Manure. J. Environ. Manag. 2023, 330, 117150. [Google Scholar] [CrossRef]
- Martins Maciel, A.; Henrique Otenio, M.; Romário de Paula, V.; Mendonça Lourenço Benhami, V.; Moro Piekarski, C.; Marçal da Rocha, C.; Oliveira Barros, N. Life Cycle Assessment of Milk Production System in Brazil: Environmental Impact Reduction Linked with Anaerobic Treatment of Dairy Manure. Sustain. Energy Technol. Assess. 2022, 54, 102883. [Google Scholar] [CrossRef]
Province | Number of Livestock Farms | Number of Cows | Livestock Farm Density | Cow Density |
---|---|---|---|---|
Agrigento | 418 | 8846 | 0.1374 | 2.9081 |
Caltanissetta | 224 | 7166 | 0.1053 | 3.3672 |
Catania | 750 | 28,191 | 0.2111 | 7.9362 |
Enna | 1321 | 39,913 | 0.5156 | 15.5781 |
Messina | 2334 | 43,957 | 0.7187 | 13.5363 |
Palermo | 2507 | 72,992 | 0.5022 | 14.6211 |
Ragusa | 1537 | 75,443 | 0.9523 | 46.7423 |
Syracuse | 882 | 31,275 | 0.4182 | 14.8307 |
Trapani | 228 | 3965 | 0.0893 | 1.5532 |
Total | 10,201 | 311,748 | 0.3954 | 12.0834 |
Parameters | Symbol | Values | Source |
---|---|---|---|
Total surface | Stot | 165 m2 | Measured |
Surface density | Sd | 0.10 kg × m−2 | Calculated |
Coffee silverskin density | Hd | 70 kg × m−3 | Measured |
Lorry inner size | Is | 3.32 m3 | https://www.tkingauto.com/medium-duty-truck/3-5-ton-medium-truck.html (accessed on 14 February 2025) |
Lorry carbon emission | Lc | 0.561 kgCO₂eq.× tkm−1 | EcoInvent v3.11 |
Anaerobic decomposition of agricultural waste carbon emission | ADc | 0.025 kgCH4 × kg−1 | IPCC 2021 |
Methane characterisation as GHG | Mc | 29.80 kgCO2 × kgCH4−1 | IPCC 2021 |
Sample | Mean of pH Value | SD | Tukey Post Hoc Test |
---|---|---|---|
Control | 7.62 | 0.01 | A |
Sample 0 | 6.14 | 0.01 | C |
Sample 1 | 6.65 | 0.03 | B |
Sample 2 | 5.70 | 0.05 | D |
Sample 3 | 4.74 | 0.33 | E |
Sample | % Total N | SD% |
---|---|---|
Silverskin | 2.88 | ±0.13 |
Manure | 2.02 | ±0.21 |
Sample 3 | 2.74 | ±0.16 |
Sample | Moisture Content % | Dry Matter % | Organic Dry Matter % |
---|---|---|---|
Manure | 84.28 | 15.72 | 72.7 |
Silverskin | 5.21 | 94.79 | 90.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cinardi, G.; Vitaliano, S.; Fasciana, A.; Fragalà, F.; La Bella, E.; Santoro, L.M.; D’Urso, P.R.; Baglieri, A.; Cascone, G.; Arcidiacono, C. Preliminary Analysis on Bio-Acidification Using Coffee Torrefaction Waste and Acetic Acid on Animal Manure from a Dairy Farm. Agriculture 2025, 15, 948. https://doi.org/10.3390/agriculture15090948
Cinardi G, Vitaliano S, Fasciana A, Fragalà F, La Bella E, Santoro LM, D’Urso PR, Baglieri A, Cascone G, Arcidiacono C. Preliminary Analysis on Bio-Acidification Using Coffee Torrefaction Waste and Acetic Acid on Animal Manure from a Dairy Farm. Agriculture. 2025; 15(9):948. https://doi.org/10.3390/agriculture15090948
Chicago/Turabian StyleCinardi, Grazia, Serena Vitaliano, Alessandro Fasciana, Ferdinando Fragalà, Emanuele La Bella, Luciano Manuel Santoro, Provvidenza Rita D’Urso, Andrea Baglieri, Giovanni Cascone, and Claudia Arcidiacono. 2025. "Preliminary Analysis on Bio-Acidification Using Coffee Torrefaction Waste and Acetic Acid on Animal Manure from a Dairy Farm" Agriculture 15, no. 9: 948. https://doi.org/10.3390/agriculture15090948
APA StyleCinardi, G., Vitaliano, S., Fasciana, A., Fragalà, F., La Bella, E., Santoro, L. M., D’Urso, P. R., Baglieri, A., Cascone, G., & Arcidiacono, C. (2025). Preliminary Analysis on Bio-Acidification Using Coffee Torrefaction Waste and Acetic Acid on Animal Manure from a Dairy Farm. Agriculture, 15(9), 948. https://doi.org/10.3390/agriculture15090948