May the Extensive Farming System of Small Ruminants Be Smart?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Precision Livestock Farming in Extensive Small Ruminant Farming
Device | Position | Application | Technology | Recorded Parameters | References |
---|---|---|---|---|---|
Electronic animal identification | Ear tag Ruminal bolus Injectable transponder | Sorting gate, feeder, mating | Radio frequency | Individual data | [4,6,24,45] |
GPS and localisation | Collar | Virtual fence, localisation, grazing | Satellite net-work | Location | [16,29,42,43,46,47] |
Sensors to measure physiological activity: Temperature | Ear tag Bolus Injectable transponder | Health (fever), stress, heat, drinking | Thermistor | Rectal, rumen, or vaginal temperature | [4,5,7,48,49,50] |
Sensors to measure physiological activity: pH | Bolus | Stress sensor data | Rumen pH | [37,51] | |
Sensors to measure behaviour | Ear tag Bolus Collar Pedometer Harness | Grazing behaviour, localisation | Triaxial piezoelectric, accelerometer, jaw-movement recording system | Behaviour, feeding, rest, rumination, lameness, behaviour during parturition, mating | [7,32,42,44,52,53,54,55,56,57,58,59,60,61] |
Virtual fencing technology | Collars with position, acoustic and electrical stimuli | Collars with position, acoustic and electrical stimuli | Coordinates and GPS or satellite signals or by a ground cable that communicates with the collars | livestock management for welfare monitoring, pasture management | [15,24,27,28,62,63,64] |
Network technologies | Collars with accelerometers and position sensors; | Sensor nodes with data storage and processing capabilities, gateway, web server, algorithm | IoT, big data, and machine learning (ML) technologies | livestock management for welfare monitoring, and pasture management | [52,65,66] |
Device | Position | Application | Technology | Recorded parameters | References |
---|---|---|---|---|---|
Camera | fixed in the stable or in the field | handheld or fixed camera | Optical image | Posture | [67] |
Camera coupled with remote sensing techniques | mounted on remotely controlled drones | fixed camera | Optical, infrared | Behaviour, growth, supervision, body condition, and pasture biomass | [30,42] |
GPS devices coupled with remote sensing techniques | mounted on remotely controlled camera | Collar with GPS device; handheld or fixed camera | Satellite network; LiDAR or multispectral camera; ultrawideband real-time tracking system (UWB RTLS) | Behaviour, supervision, pasture biomass, position, and a more accurate evaluation | [43,64,68,69,70,71] |
Wireless (WSN) technologies | sensor nodes with data storage and processing capabilities | sensor nodes with data storage and processing capabilities | Transceiver, sensors, microcontrollers, and energy sources | monitoring grazing livestock, and their activity in real time using Wi-Fi | [16,46,59,72] |
3.2. Wearable Sensors
3.2.1. Electronic Animal Identification
3.2.2. GPS and Localisation
3.2.3. Sensors to Measure Physiological Activity
3.2.4. Sensors to Measure Behaviour
3.2.5. Virtual Fencing
3.3. Non-Wearable Sensors and Network Technologies
Device | Position | Positive Aspects | Negative Aspects | References |
---|---|---|---|---|
Camera | fixed in the stable or in the field | Easy installation and data acquisition | Need to adapt structures to eliminate obstacles; limited use on pasture | [67] |
Camera coupled with remote sensing techniques | mounted on remotely controlled drones | Useful for extensive farming | Evaluating drone images can be a time-consuming manual task | [30,42] |
GPS devices coupled with remote sensing techniques | mounted on remotely controlled camera | Useful for extensive farming; GPS collars are readily available on the market; real-time location and health status of the animal can be recorded | GPS collars’ costs to equip every animal make them unsuitable for wide deployment on small ruminant farms; farmers’ inability to manage the drone; internet connection difficulties; the algorithms for automatic detection of animals and/or the characterisation of their behaviours are only at the research stage | [37,47,64] |
Wireless (WSN) technologies | sensor nodes with data storage and processing capabilities | Useful for extensive farming | Internet connection difficulties | [1,37,59] |
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arshad, M.F.; Burrai, G.P.; Varcasia, A.; Sini, M.F.; Ahmed, F.; Lai, G.; Polinas, M.; Antuofermo, E.; Tamponi, C.; Cocco, R.; et al. The Groundbreaking Impact of Digitalization and Artificial Intelligence in Sheep Farming. Res. Vet. Sci. 2024, 170, 105197. [Google Scholar] [CrossRef] [PubMed]
- Kleen, J.L.; Guatteo, R. Precision Livestock Farming: What Does It Contain and What Are the Perspectives? Animals 2023, 13, 779. [Google Scholar] [CrossRef] [PubMed]
- Papakonstantinou, G.I.; Voulgarakis, N.; Terzidou, G.; Fotos, L.; Giamouri, E.; Papatsiros, V.G. Precision Livestock Farming Technology: Applications and Challenges of Animal Welfare and Climate Change. Agriculture 2024, 14, 620. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Guarino, M. A Review on Dairy Cattle Farming: Is Precision Livestock Farming the Compromise for an Environmental, Economic and Social Sustainable Production? J. Clean. Prod. 2020, 262, 121409. [Google Scholar] [CrossRef]
- Aquilani, C.; Confessore, A.; Bozzi, R.; Sirtori, F.; Pugliese, C. Review: Precision Livestock Farming Technologies in Pasture-Based Livestock Systems. Animal 2022, 16, 100429. [Google Scholar] [CrossRef]
- Himu, H.A.; Raihan, A. An Overview of Precision Livestock Farming (PLF) Technologies for Digitalizing Animal Husbandry toward Sustainability. Glob. Sustain. Res. 2024, 3, 1–14. [Google Scholar] [CrossRef]
- Tzanidakis, C.; Tzamaloukas, O.; Simitzis, P.; Panagakis, P. Precision Livestock Farming Applications (PLF) for Grazing Animals. Agriculture 2023, 13, 288. [Google Scholar] [CrossRef]
- Bordignon, F.; Provolo, G.; Riva, E.; Caria, M.; Todde, G.; Sara, G.; Cesarini, F.; Grossi, G.; Vitali, A.; Lacetera, N.; et al. Smart Technologies to Improve the Management and Resilience to Climate Change of Livestock Housing: A Systematic and Critical Review. Ital. J. Anim. Sci. 2025, 24, 376–392. [Google Scholar] [CrossRef]
- Giovanna Ciliberti, M.; Caroprese, M.; Albenzio, M. Advanced Technologies in Sheep Extensive Farming on a Climate Change Context. In Agricultural Sciences; Kukovics, S., Ed.; IntechOpen: London, UK, 2024; Volume 12, ISBN 978-0-85014-282-2. [Google Scholar]
- Pereira, G.M.; Sharpe, K.T.; Heins, B.J. Evaluation of the RumiWatch System as a Benchmark to Monitor Feeding and Locomotion Behaviors of Grazing Dairy Cows. J. Dairy. Sci. 2021, 104, 3736–3750. [Google Scholar] [CrossRef]
- Silva, F.G.; Conceição, C.; Pereira, A.M.F.; Cerqueira, J.L.; Silva, S.R. Literature Review on Technological Applications to Monitor and Evaluate Calves’ Health and Welfare. Animals 2023, 13, 1148. [Google Scholar] [CrossRef]
- Michelena, Á.; Fontenla-Romero, Ó.; Luis Calvo-Rolle, J. A Review and Future Trends of Precision Livestock over Dairy and Beef Cow Cattle with Artificial Intelligence. Log. J. IGPL 2024, jzae111. [Google Scholar] [CrossRef]
- Abeni, F.; Petrera, F.; Galli, A. A Survey of Italian Dairy Farmers’ Propensity for Precision Livestock Farming Tools. Animals 2019, 9, 202. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.W.; Draganova, I.; Morel, P.C.H.; Morris, S.T. Validation of an Accelerometer Sensor-Based Collar for Monitoring Grazing and Rumination Behaviours in Grazing Dairy Cows. Animals 2021, 11, 2724. [Google Scholar] [CrossRef] [PubMed]
- Caja, G.; Castro-Costa, A.; Salama, A.A.K.; Oliver, J.; Baratta, M.; Ferrer, C.; Knight, C.H. Sensing Solutions for Improving the Performance, Health and Wellbeing of Small Ruminants. J. Dairy. Res. 2020, 87, 34–46. [Google Scholar] [CrossRef]
- Silva, S.R.; Sacarrão-Birrento, L.; Almeida, M.; Ribeiro, D.M.; Guedes, C.; González Montaña, J.R.; Pereira, A.F.; Zaralis, K.; Geraldo, A.; Tzamaloukas, O.; et al. Extensive Sheep and Goat Production: The Role of Novel Technologies towards Sustainability and Animal Welfare. Animals 2022, 12, 885. [Google Scholar] [CrossRef]
- Olejnik, K.; Popiela, E.; Opaliński, S. Emerging Precision Management Methods in Poultry Sector. Agriculture 2022, 12, 718. [Google Scholar] [CrossRef]
- Liu, G.; Guo, H.; Ruchay, A.; Pezzuolo, A. Recent Advancements in Precision Livestock Farming. Agriculture 2023, 13, 1652. [Google Scholar] [CrossRef]
- Morrone, S.; Dimauro, C.; Gambella, F.; Cappai, M.G. Industry 4.0 and Precision Livestock Farming (PLF): An up to Date Overview across Animal Productions. Sensors 2022, 22, 4319. [Google Scholar] [CrossRef]
- BND Dati Forniti Dalla BDN Dell’Anagrafe Zootecnica Istituita Dal Ministero Della Salute Presso Il CSN Dell’Istituto “G. Caporale Di Teramo”. Available online: https://www.vetinfo.it/j6_statistiche/#/info (accessed on 9 April 2025).
- Bionda, A.; Cortellari, M.; Negro, A.; Crepaldi, P. 70 Years of Heat Waves and Summer Climate Change Affecting Italian Small Ruminant Populations. Pastor. Res. Policy Pract. 2024, 14, 12848. [Google Scholar] [CrossRef]
- Deepika, S.; Jayati, M.; Nibedita, T. Application of Precision Livestock Farming for Improved Goat Management and Production. Rev. Electron. Vet. 2023, 24, 461–470. Available online: https://veterinaria.org/index.php/redvet/article/view/361 (accessed on 5 May 2024).
- Dida, M.F.; Shirvan, M.B.; Kawaguchi, T.; Garcia, S.C.; Gonzalez, L.A. Potential Applications of a Low-Cost Gas Sensor to Monitor Enteric Methane Emission from Ruminant Animals. Smart Agric. Technol. 2025, 10, 100706. [Google Scholar] [CrossRef]
- Odintsov Vaintrub, M.; Levit, H.; Chincarini, M.; Fusaro, I.; Giammarco, M.; Vignola, G. Review: Precision Livestock Farming, Automats and New Technologies: Possible Applications in Extensive Dairy Sheep Farming. Animal 2021, 15, 100143. [Google Scholar] [CrossRef] [PubMed]
- Herlin, A.; Brunberg, E.; Hultgren, J.; Högberg, N.; Rydberg, A.; Skarin, A. Animal Welfare Implications of Digital Tools for Monitoring and Management of Cattle and Sheep on Pasture. Animals 2021, 11, 829. [Google Scholar] [CrossRef]
- Confessore, A.; Aquilani, C.; Nannucci, L.; Fabbri, M.C.; Accorsi, P.A.; Dibari, C.; Argenti, G.; Pugliese, C. Application of Virtual Fencing for the Management of Limousin Cows at Pasture. Livest. Sci. 2022, 263, 105037. [Google Scholar] [CrossRef]
- Eftang, S.; Vas, J.B.; Holand, Ø.; Bøe, K.E.; Andersen, I.L. Sheep’s Learning Ability and Behavioural Response to a Fully Automated Virtual Fencing System. Appl. Anim. Behav. Sci. 2023, 269, 106112. [Google Scholar] [CrossRef]
- Aaser, M.F.; Staahltoft, S.K.; Korsgaard, A.H.; Trige-Esbensen, A.; Alstrup, A.K.O.; Sonne, C.; Pertoldi, C.; Bruhn, D.; Frikke, J.; Linder, A.C. Is Virtual Fencing an Effective Way of Enclosing Cattle? Personality, Herd Behaviour and Welfare. Animals 2022, 12, 842. [Google Scholar] [CrossRef]
- Di Virgilio, A.; Morales, J.M.; Lambertucci, S.A.; Shepard, E.L.C.; Wilson, R.P. Multi-Dimensional Precision Livestock Farming: A Potential Toolbox for Sustainable Rangeland Management. PeerJ 2018, 6, e4867. [Google Scholar] [CrossRef]
- Yin, M.; Ma, R.; Luo, H.; Li, J.; Zhao, Q.; Zhang, M. Non-Contact Sensing Technology Enables Precision Livestock Farming in Smart Farms. Comput. Electron. Agric. 2023, 212, 108171. [Google Scholar] [CrossRef]
- Wild, M.; Gauly, M.; Zanon, T.; Isselstein, J.; Komainda, M. Tracking Free-Ranging Sheep to Evaluate Interrelations between Selective Grazing, Movement Patterns and the Botanical Composition of Alpine Summer Pastures in Northern Italy. Pastoralism 2023, 13, 25. [Google Scholar] [CrossRef]
- Keshavarzi, H.; Lee, C.; Johnson, M.; Abbott, D.; Ni, W.; Campbell, D.L.M. Validation of Real-Time Kinematic (RTK) Devices on Sheep to Detect Grazing Movement Leaders and Social Networks in Merino Ewes. Sensors 2021, 21, 924. [Google Scholar] [CrossRef]
- Mao, A.; Huang, E.; Wang, X.; Liu, K. Deep Learning-Based Animal Activity Recognition with Wearable Sensors: Overview, Challenges, and Future Directions. Comput. Electron. Agric. 2023, 211, 108043. [Google Scholar] [CrossRef]
- Rosa, G.J.M. Grand Challenge in Precision Livestock Farming. Front. Anim. Sci. 2021, 2, 650324. [Google Scholar] [CrossRef]
- Tuyttens, F.A.M.; Molento, C.F.M.; Benaissa, S. Twelve Threats of Precision Livestock Farming (PLF) for Animal Welfare. Front. Vet. Sci. 2022, 9, 889623. [Google Scholar] [CrossRef]
- Jiang, B.; Tang, W.; Cui, L.; Deng, X. Precision Livestock Farming Research: A Global Scientometric Review. Animals 2023, 13, 2096. [Google Scholar] [CrossRef] [PubMed]
- Morgan-Davies, C.; Tesnière, G.; Gautier, J.M.; Jørgensen, G.H.M.; González-García, E.; Patsios, S.I.; Sossidou, E.N.; Keady, T.W.J.; McClearn, B.; Kenyon, F.; et al. Review: Exploring the Use of Precision Livestock Farming for Small Ruminant Welfare Management. Animal 2024, 18, 101233. [Google Scholar] [CrossRef]
- Claps, S.; Mecca, M.; Di Trana, A.; Sepe, L. Local Small Ruminant Grazing in the Monti Foy Area (Italy): The Relationship Between Grassland Biodiversity Maintenance and Added-Value Dairy Products. Front. Vet. Sci. 2020, 7, 546513. [Google Scholar] [CrossRef]
- Bernabucci, G.; Evangelista, C.; Girotti, P.; Viola, P.; Spina, R.; Ronchi, B.; Bernabucci, U.; Basiricò, L.; Turini, L.; Mantino, A.; et al. Precision Livestock Farming: An Overview on the Application in Extensive Systems. Ital. J. Anim. Sci. 2025, 24, 859–884. [Google Scholar] [CrossRef]
- Simitzis, P.; Tzanidakis, C.; Tzamaloukas, O.; Sossidou, E. Contribution of Precision Livestock Farming Systems to the Improvement of Welfare Status and Productivity of Dairy Animals. Dairy 2021, 3, 12–28. [Google Scholar] [CrossRef]
- Rieple, A.; Snijders, S. The Role of Emotions in the Choice to Adopt, or Resist, Innovations by Irish Dairy Farmers. J. Bus. Res. 2018, 85, 23–31. [Google Scholar] [CrossRef]
- Nóbrega, L.; Gonçalves, P.; Antunes, M.; Corujo, D. Assessing Sheep Behavior through Low-Power Microcontrollers in Smart Agriculture Scenarios. Comput. Electron. Agric. 2020, 173, 105444. [Google Scholar] [CrossRef]
- Bunyaga, A.; Corner-Thomas, R.; Draganova, I.; Kenyon, P.; Burkitt, L. The Behaviour of Sheep around a Natural Waterway and Impact on Water Quality during Winter in New Zealand. Animals 2023, 13, 1461. [Google Scholar] [CrossRef] [PubMed]
- Kleanthous, N.; Hussain, A.; Khan, W.; Sneddon, J.; Liatsis, P. Deep Transfer Learning in Sheep Activity Recognition Using Accelerometer Data. Expert Syst. Appl. 2022, 207, 117925. [Google Scholar] [CrossRef]
- Cappai, M.G.; Rubiu, N.G.; Nieddu, G.; Bitti, M.P.L.; Pinna, W. Analysis of Fieldwork Activities during Milk Production Recording in Dairy Ewes by Means of Individual Ear Tag (ET) Alone or plus RFID Based Electronic Identification (EID). Comput. Electron. Agric. 2018, 144, 324–328. [Google Scholar] [CrossRef]
- Monteiro, H.F.; Zhou, Z.; Gomes, M.S.; Peixoto, P.M.G.; Bonsaglia, E.C.R.; Canisso, I.F.; Weimer, B.C.; Lima, F.S. Rumen and Lower Gut Microbiomes Relationship with Feed Efficiency and Production Traits throughout the Lactation of Holstein Dairy Cows. Sci. Rep. 2022, 12, 4904. [Google Scholar] [CrossRef]
- Nóbrega, L.; Gonçalves, P.; Pedreiras, P.; Pereira, J. An IoT-Based Solution for Intelligent Farming. Sensors 2019, 19, 603. [Google Scholar] [CrossRef]
- Lewis Baida, B.E.; Swinbourne, A.M.; Barwick, J.; Leu, S.T.; Van Wettere, W.H.E.J. Technologies for the Automated Collection of Heat Stress Data in Sheep. Anim. Biotelem. 2021, 9, 4. [Google Scholar] [CrossRef]
- Fuchs, B.; Sørheim, K.M.; Chincarini, M.; Brunberg, E.; Stubsjøen, S.M.; Bratbergsengen, K.; Hvasshovd, S.O.; Zimmermann, B.; Lande, U.S.; Grøva, L. Heart Rate Sensor Validation and Seasonal and Diurnal Variation of Body Temperature and Heart Rate in Domestic Sheep. Vet. Anim. Sci. 2019, 8, 100075. [Google Scholar] [CrossRef]
- Abecia, J.A.; María, G.A.; Estévez-Moreno, L.X.; Miranda-De La Lama, G.C. Daily Rhythms of Body Temperature around Lambing in Sheep Measured Non-Invasively. Biol. Rhythm. Res. 2020, 51, 988–993. [Google Scholar] [CrossRef]
- Schneidewind, S.J.; Al Merestani, M.R.; Schmidt, S.; Schmidt, T.; Thöne-Reineke, C.; Wiegard, M. Rumination Detection in Sheep: A Systematic Review of Sensor-Based Approaches. Animals 2023, 13, 3756. [Google Scholar] [CrossRef]
- Gonçalves, R.P.; Bremm, C.; Moojen, F.G.; Marchi, D.; Zubricki, G.; Caetano, L.A.M.; Neto, A.B.; Carvalho, P.C.D.F. Grazing down Process: The Implications of Sheep’s Ingestive Behavior for Sward Management. Livest. Sci. 2018, 214, 202–208. [Google Scholar] [CrossRef]
- Almasi, F.; Nguyen, H.; Heydarian, D.; Sohi, R.; Nikbin, S.; Jenvey, C.J.; Halliwell, E.; Ponnampalam, E.N.; Desai, A.; Jois, M.; et al. Quantification of Behavioural Variation among Sheep Grazing on Pasture Using Accelerometer Sensors. Anim. Prod. Sci. 2022, 62, 1527–1538. [Google Scholar] [CrossRef]
- Fogarty, E.S.; Swain, D.L.; Cronin, G.M.; Moraes, L.E.; Trotter, M. Can Accelerometer Ear Tags Identify Behavioural Changes in Sheep Associated with Parturition? Anim. Reprod. Sci. 2020, 216, 106345. [Google Scholar] [CrossRef] [PubMed]
- Barwick, J.; Lamb, D.W.; Dobos, R.; Welch, M.; Schneider, D.; Trotter, M. Identifying Sheep Activity from Tri-Axial Acceleration Signals Using a Moving Window Classification Model. Remote Sens. 2020, 12, 646. [Google Scholar] [CrossRef]
- Berthel, R.; Deichelboher, A.; Dohme-Meier, F.; Egli, W.; Keil, N. Validation of Automatic Monitoring of Feeding Behaviours in Sheep and Goats. PLoS ONE 2023, 18, e0285933. [Google Scholar] [CrossRef]
- Turner, K.E.; Sohel, F.; Harris, I.; Ferguson, M.; Thompson, A. Lambing Event Detection Using Deep Learning from Accelerometer Data. Comput. Electron. Agric. 2023, 208, 107787. [Google Scholar] [CrossRef]
- Mozo, R.; Alabart, J.L.; Rivas, E.; Folch, J. New Method to Automatically Evaluate the Sexual Activity of the Ram Based on Accelerometer Records. Small Rumin. Res. 2019, 172, 16–22. [Google Scholar] [CrossRef]
- Lewis, K.; Price, E.; Croft, D.; Green, L.; Ozella, L.; Cattuto, C.; Langford, J. Potential Role of Biologgers to Automate Detection of Lame Ewes and Lambs. Appl. Anim. Behav. Sci. 2023, 259, 105847. [Google Scholar] [CrossRef]
- Smith, D.; McNally, J.; Little, B.; Ingham, A.; Schmoelzl, S. Automatic Detection of Parturition in Pregnant Ewes Using a Three-Axis Accelerometer. Comput. Electron. Agric. 2020, 173, 105392. [Google Scholar] [CrossRef]
- Alvarenga, F.A.P.; Borges, I.; Oddy, V.H.; Dobos, R.C. Discrimination of Biting and Chewing Behaviour in Sheep Using a Tri-Axial Accelerometer. Comput. Electron. Agric. 2020, 168, 105051. [Google Scholar] [CrossRef]
- Marini, D.; Llewellyn, R.; Belson, S.; Lee, C. Controlling Within-Field Sheep Movement Using Virtual Fencing. Animals 2018, 8, 31. [Google Scholar] [CrossRef]
- Marini, D.; Meuleman, M.; Belson, S.; Rodenburg, T.; Llewellyn, R.; Lee, C. Developing an Ethically Acceptable Virtual Fencing System for Sheep. Animals 2018, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, D.; Hütt, C.; Komainda, M.; Grinnell, N.A.; Horn, J.; Riesch, F.; Hamidi, M.; Traulsen, I.; Isselstein, J. Grid Grazing: A Case Study on the Potential of Combining Virtual Fencing and Remote Sensing for Innovative Grazing Management on a Grid Base. Livest. Sci. 2023, 278, 105373. [Google Scholar] [CrossRef]
- Fogarty, E.S.; Swain, D.L.; Cronin, G.M.; Moraes, L.E.; Trotter, M. Behaviour Classification of Extensively Grazed Sheep Using Machine Learning. Comput. Electron. Agric. 2020, 169, 105175. [Google Scholar] [CrossRef]
- Kleanthous, N.; Hussain, A.J.; Khan, W.; Sneddon, J.; Al-Shamma’a, A.; Liatsis, P. A Survey of Machine Learning Approaches in Animal Behaviour. Neurocomputing 2022, 491, 442–463. [Google Scholar] [CrossRef]
- Decandia, M.; Rassu, S.P.G.; Psiroukis, V.; Hadjigeorgiou, I.; Fountas, S.; Molle, G.; Acciaro, M.; Cabiddu, A.; Mameli, M.; Dimauro, C.; et al. Evaluation of Proper Sensor Position for Classification of Sheep Behaviour through Accelerometers. Small Rumin. Res. 2021, 201, 106445. [Google Scholar] [CrossRef]
- Plaza, J.; Sánchez, N.; Palacios, C.; Sánchez-García, M.; Abecia, J.A.; Criado, M.; Nieto, J. GPS, LiDAR and VNIR Data to Monitor the Spatial Behavior of Grazing Sheep. J. Anim. Behav. Biometeorol. 2022, 10, 1–6. [Google Scholar] [CrossRef]
- Ji, W.; Luo, Y.; Liao, Y.; Wu, W.; Wei, X.; Yang, Y.; He, X.Z.; Shen, Y.; Ma, Q.; Yi, S.; et al. UAV Assisted Livestock Distribution Monitoring and Quantification: A Low-Cost and High-Precision Solution. Animals 2023, 13, 3069. [Google Scholar] [CrossRef]
- Ocholla, I.A.; Pellikka, P.; Karanja, F.N.; Vuorinne, I.; Odipo, V.; Heiskanen, J. Livestock Detection in African Rangelands: Potential of High-Resolution Remote Sensing Data. Remote Sens. Appl. Soc. Environ. 2024, 33, 101139. [Google Scholar] [CrossRef]
- Ren, K.; Karlsson, J.; Liuska, M.; Hartikainen, M.; Hansen, I.; Jørgensen, G.H. A Sensor-Fusion-System for Tracking Sheep Location and Behaviour. Int. J. Distrib. Sens. Netw. 2020, 16, 155014772092177. [Google Scholar] [CrossRef]
- Jawad, H.; Nordin, R.; Gharghan, S.; Jawad, A.; Ismail, M. Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review. Sensors 2017, 17, 1781. [Google Scholar] [CrossRef]
- European Union Official Journal of the European Union, 9.1. 2004. Available online: https://eur-lex.europa.eu/search.html?scope=EURLEX&text=European+Union+Official+Journal+of+the+European+Union%2C+9.1.+2004&lang=en&type=quick&qid=1745393450173 (accessed on 5 May 2024).
- Decandia, M.; Giovanetti, V.; Molle, G.; Acciaro, M.; Mameli, M.; Cabiddu, A.; Cossu, R.; Serra, M.G.; Manca, C.; Rassu, S.P.G.; et al. The Effect of Different Time Epoch Settings on the Classification of Sheep Behaviour Using Tri-Axial Accelerometry. Comput. Electron. Agric. 2018, 154, 112–119. [Google Scholar] [CrossRef]
- Evans, C.A.; Trotter, M.G.; Manning, J.K. Sensor-Based Detection of Predator Influence on Livestock: A Case Study Exploring the Impacts of Wild Dogs (Canis Familiaris) on Rangeland Sheep. Animals 2022, 12, 219. [Google Scholar] [CrossRef] [PubMed]
- Horie, R.; Miyasaka, T.; Yoshihara, Y. Grazing Behavior of Mongolian Sheep under Different Climatic Conditions. J. Arid. Environ. 2023, 209, 104890. [Google Scholar] [CrossRef]
- Dos Reis, B.R.; White, R.R. Brief Research Report: Evaluation of Photoplethysmographic Heart Rate Monitoring for Sheep under Heat-Stressed Conditions. Front. Anim. Sci. 2022, 3, 1046557. [Google Scholar] [CrossRef]
- Marsden, K.A.; Lush, L.; Holmberg, J.A.; Harris, I.M.; Whelan, M.J.; Webb, S.; King, A.J.; Wilson, R.P.; Jones, D.L.; Charteris, A.F.; et al. Quantifying the Frequency and Volume of Urine Deposition by Grazing Sheep Using Tri-Axial Accelerometers. Animal 2021, 15, 100234. [Google Scholar] [CrossRef]
- Ikurior, S.J.; Marquetoux, N.; Leu, S.T.; Corner-Thomas, R.A.; Scott, I.; Pomroy, W.E. What Are Sheep Doing? Tri-Axial Accelerometer Sensor Data Identify the Diel Activity Pattern of Ewe Lambs on Pasture. Sensors 2021, 21, 6816. [Google Scholar] [CrossRef]
- Bailey, D.W.; Trotter, M.G.; Knight, C.W.; Thomas, M.G. 740 Use of GPS Tracking Collars and Accelerometers for Rangeland Livestock Production Research. J. Anim. Sci. 2017, 95, 360. [Google Scholar] [CrossRef]
- Marino, R.; Petrera, F.; Abeni, F. Scientific Productions on Precision Livestock Farming: An Overview of the Evolution and Current State of Research Based on a Bibliometric Analysis. Animals 2023, 13, 2280. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paolino, R.; Di Trana, A.; Coppola, A.; Sabia, E.; Riviezzi, A.M.; Vignozzi, L.; Claps, S.; Caparra, P.; Pacelli, C.; Braghieri, A. May the Extensive Farming System of Small Ruminants Be Smart? Agriculture 2025, 15, 929. https://doi.org/10.3390/agriculture15090929
Paolino R, Di Trana A, Coppola A, Sabia E, Riviezzi AM, Vignozzi L, Claps S, Caparra P, Pacelli C, Braghieri A. May the Extensive Farming System of Small Ruminants Be Smart? Agriculture. 2025; 15(9):929. https://doi.org/10.3390/agriculture15090929
Chicago/Turabian StylePaolino, Rosanna, Adriana Di Trana, Adele Coppola, Emilio Sabia, Amelia Maria Riviezzi, Luca Vignozzi, Salvatore Claps, Pasquale Caparra, Corrado Pacelli, and Ada Braghieri. 2025. "May the Extensive Farming System of Small Ruminants Be Smart?" Agriculture 15, no. 9: 929. https://doi.org/10.3390/agriculture15090929
APA StylePaolino, R., Di Trana, A., Coppola, A., Sabia, E., Riviezzi, A. M., Vignozzi, L., Claps, S., Caparra, P., Pacelli, C., & Braghieri, A. (2025). May the Extensive Farming System of Small Ruminants Be Smart? Agriculture, 15(9), 929. https://doi.org/10.3390/agriculture15090929