Biochar as a Feedstock for Sustainable Fertilizers: Recent Advances and Perspectives
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Agri-Environmental Functions of Biochar: A Base for Fertilizer Production
3.2. Biochar as a Feedstock for Sustainable Fertilizers
3.2.1. Technological Routes and Techniques Involved in Biochar-Based Fertilizer Production
3.2.2. Materials Used for Biochar-Based Fertilizer Production
3.3. Effects of Biochar-Based Fertilizers on Soil and Plants, and Environmental Implications
Feedstock | Temperature (°C) | Enrichment Material | Crop | Type of Study | Benefits | References |
---|---|---|---|---|---|---|
Sewage sludge | 300 | K (potassium chloride) | Radish | Pot | Greater tuber production; ~150% increase in tuber dry mass compared with conventional fertilizer, increased K concentration in plant sap | [38] |
Rice straw | 450 | NPK (N: P2O5:K2O = 15:15:15); microorganisms (Bacillus subtilis, Bacillus megaterium, and Bacillus mucilaginosus) | Pak choi | Pot | Increase in plant growth, biomass, and height; ~5% increase in fresh mass compared with conventional fertilizer | [4] |
Banana peel | 600 | NPK (urea, sodium phosphate monobasic dihydrate, and potassium sulfate) | Cucumber | Pot | Increased germination rate, root and shoot growth | [117] |
Broccoli | ||||||
Red okra | ||||||
Mushroom substrate waste | 500 | NPK (urea, diammonium phosphate, and potassium sulfate) | Tea (Camellia sinensis L.) | Field | Increase in yield and weight of shoots, increase in shoot density; increased yield and quality of tea; ~20% increase in tea leaf yield compared with conventional fertilizer | [14] |
Lantana Stem | 350 | Vermicompost | Mung bean (Vigna radiata L.) | Pot | Greater absorption of NPK by the crop, maximum germination rate, increase in growth and production parameters | [65] |
Cow manure | ||||||
Rice straw | 600 | Ammonium molybdate | Chinese cabbage (Brassica parachinensis) | Pot | Reduction in nitrate accumulation and increase in nitrogen assimilation, increase in growth, yield, and plant quality; ~126% increase compared with conventional fertilizer | [61] |
Coffee husk, chicken litter, phosphoric acid, magnesium oxide | 500 | - | Mombaça grass, corn, beans | Pot | Similar or higher yields, both in the short and long term, for different crops | [68] |
Eucalyptus wood | 400 | N (urea) | Corn | Field | Increased productivity and environmental performance | [77] |
Reed straw | 500 | Liquid seaweed fertilizer | Tomato | Pot | Increased seedling growth in unfavorable soils | [118] |
Corn cob | 450 | NPK (urea, triple superphosphate, potassium muriate) and microorganisms (Pseudomonas spp and Bacillus spp) | Corn | Field | Increased grain yield | [123] |
Urban green waste | 450–500 | N (urea), bentonite, and sepiolite | Corn | Pot | Improved corn growth, increased biomass and root development; ~14% increase in fresh shoot mass compared with conventional fertilizer | [116] |
Rice husk | 400–500 | Mineral fertilizer (NPK) and microorganisms | Rice | Pot | Improved nutrient and agronomic efficiencies compared with traditional fertilizers; ~29% increase in grain yield per pot compared with fertilized control | [43] |
Palm agro-waste biomass | 350 | Mineral fertilizer (MAP and K2SO4) + HCl | Pepper | Growth chamber | Increased pepper growth indicators | [91] |
Co-pyrolysis of fresh waste fruits and vegetables | 450 | Chemical fertilizers in different ratios | Maize | Field | Enhanced maize yield, growth, and community function are comparable to those achieved with organic fertilizer; ~36% increase over conventional fertilizer | [32] |
Acacia decurrens | 450 | Co-composting of Acacia decurrens biochar and chicken litter and cow dung manure | Tef | Field | BBF increased several soil properties and plant parameters of Eragrotis teff (Zucc.); ~11% increase in crop height compared with conventional fertilizer | [39] |
Tobacco stalk | 500 | Effective microorganisms, tobacco stalk biochar, and basal fertilizer | Tobacco | Field | Increased the soil water holding capacity and several other soil water parameters. Improved tobacco growth/yield components. Increased tobacco yield by ~24% compared with fertilized control | [92] |
Corn straw, peanut shell, and sawdust | 600 | Fe(NO3)3⋅9H2O | Carrots and cabbages | Lab | Increased the growth of seedlings | [93] |
Biosolids, cow manure, and chicken manure | 300 | Urea fertilizer and KH2PO4 | Canola | Pot | Improved canola growth; ~73% increase in dry shoot biomass | [94] |
Lignocellulosic agro-residues (quinoa straw, corn straw, rice husk, and sugarcane bagasse) | 500 | Biogas slurry | Cucumber | Nutrients released in a controlled manner; enhanced plant nutrition | [95] | |
Banana leaf sheath | 500 | Urea solution | - | Lab | Reduced leaching loss commonly observed in conventional chemical fertilizers | [96] |
Sawdust | na | Bentonite, biosolid, rice starch, bio-asphalt, and polylactic acid solution | Corn | Pot | Extended N release duration, boosted yield, and reduced N loss in leachate; ~29% increase in seed weight | [97] |
Apple tree branches | 500 | Urea | Maize | Pot | Slowed down the release of nitrogen; increased growth and yield of maize; ~8% increase in dry weight compared with conventional fertilizer | [98] |
Rice straw | 500 | NPK + hydrotalcite and starch | Tomato | Pot | N–P–K utilization efficiencies of hydrotalcite and starch biochar were all higher than pure biochar | [55] |
Rice husk, peanut shell, and straw | na | NPK | Wheat | Field | Reduced salt concentration in the root zone and increased the water use efficiency of wheat | [99] |
Pine | 500 | Urea | Maize | Pot | Reduced urea–N release from the fertilizer pellets and increased the plant’s overall N uptake and soil N storage relative to traditional fertilizers | [100] |
Sugarcane filter cake | 600 | MgO and H3PO4 | - | Lab | P is potentially highly available to crops while having a reduced risk for P loss to surface waters | [35] |
Rice husk | 450, 500, 550, and 600 | KH2PO4 | - | Lab | BBF (500 °C) reduced the bioavailability of Pb and increased the bioavailability of P | [101] |
Eggshells and corn stalk | 800 | Co-pyrolysis of eggshells and corn stalk | - | Lab | Exhibited excellent P-adsorbed capacity | [102] |
Sawdust | na | Ammonium sulfate | - | Lab | Released N slowly | [103] |
Landscaping wood | 900 | Lactic fermentation with fresh foliar tree and grass biomass | Cocoa | Pot | Improved the performance of T. cocoa plant growth and vigor beyond the levels achieved with either pure mineral fertilization or pure biochar; ~5% increase in aboveground biomass compared with conventional fertilizer | [104] |
Rice husk | 450 | Nutrient solution (NPK) | Rice | Field | Slower nutrient release patterns | [105] |
Corn stover | 550 | Ammonium sulfate + polylactic acid | - | Lab | Enhanced N release time and rate in both water and soil environments through the integration of biochar absorption and a PLA coating | [53] |
Rice straw | 400 and 500 | Humic acids and bentonite, cassava, or cornstarch | Rice | Field | Decreased the N leaching losses | [41] |
Oilseed rape straws | 400 | Urea and bentonite | Oilseed rape | Pot | Enhanced the yield (~ 16.6%) and nitrogen use efficiency (~ 58.79%) of rape by slowly releasing N | [106] |
Wheat straw | 400 | Urea, bentonite clay, rock phosphate, Fe2O3, and FeSO4.7H2O | Rice | Growth bags | Increased plant biomass (by 67%), herbage N (by 40%), and P (by 46%) uptake by rice plants | [107] |
Medicinal plant material, crop willow, and wood chips | na | Urea superphosphate (USP) | Wheat | Pot | The highest grain yield per plant was stated when wood chip biochar-coated USP fertilizer was applied | [108] |
Coffee husk and poultry litter | 500 | H3PO4 and MgO | - | Lab | The addition of H3PO4–MgO increased the pH of the BBF, favoring its use in acid soils; however, it decreased the fixed carbon content during pyrolysis when compared with the addition of only H3PO4. | [34] |
Maize straw, rice straw, and forest litter | 500 | Urea, polyvinyl alcohol, and polyvinylpyrrolidone | - | Lab | Exhibited an excellent release behavior of nutrient leaching | [109] |
Sawdust | 500 | NPK | - | Lab | BBF had lower nutrient release and higher moisture retention and pH | [110] |
4. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO; IFAD; UNICEF; WFP. The State of Food Security and Nutrition in the World 2023; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- United Nations: Department of Economic and Social Affairs. World Population Prospects 2022 Summary of Results; United Nations: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Nsengimana, V.; de Dieu Nsenganeza, J.; Hagenimana, T.; Dekoninck, W. Impact of Chemical Fertilizers on Diversity and Abundance of Soil-Litter Arthropod Communities in Coffee and Banana Plantations in Southern Rwanda. Curr. Res. Environ. Sustain. 2023, 5, 100215. [Google Scholar] [CrossRef]
- Wang, K.; Hou, J.; Zhang, S.; Hu, W.; Yi, G.; Chen, W.; Cheng, L.; Zhang, Q. Preparation of a New Biochar-Based Microbial Fertilizer: Nutrient Release Patterns and Synergistic Mechanisms to Improve Soil Fertility. Sci. Total Environ. 2023, 860, 160478. [Google Scholar] [CrossRef]
- Ren, C.; Jin, S.; Wu, Y.; Zhang, B.; Kanter, D.; Wu, B.; Xi, X.; Zhang, X.; Chen, D.; Xu, J.; et al. Fertilizer Overuse in Chinese Smallholders Due to Lack of Fixed Inputs. J. Environ. Manag. 2021, 293, 112913. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Cai, J.; Yang, S.; Li, S.; Shao, X.; Fu, C.; Li, C.; Deng, Y.; Huang, J.; Ruan, Y.; et al. Partial Substitution of Chemical Fertilizer with Organic Fertilizer and Slow-Release Fertilizer Benefits Soil Microbial Diversity and Pineapple Fruit Yield in the Tropics. Appl. Soil Ecol. 2023, 189, 104974. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and Soil Physical Properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Maltas, A.; Kebli, H.; Oberholzer, H.R.; Weisskopf, P.; Sinaj, S. The Effects of Organic and Mineral Fertilizers on Carbon Sequestration, Soil Properties, and Crop Yields from a Long-Term Field Experiment under a Swiss Conventional Farming System. Land. Degrad. Dev. 2018, 29, 926–938. [Google Scholar] [CrossRef]
- Lustosa Filho, J.F.; Barbosa, C.F.; da Silva Carneiro, J.S.; Melo, L.C.A. Diffusion and Phosphorus Solubility of Biochar-Based Fertilizer: Visualization, Chemical Assessment and Availability to Plants. Soil Tillage Res. 2019, 194, 104298. [Google Scholar] [CrossRef]
- Ren, T.; Fan, P.; Zuo, W.; Liao, Z.; Wang, F.; Wei, Y.; Cai, X.; Liu, G. Biochar-Based Fertilizer under Drip Irrigation: More Conducive to Improving Soil Carbon Pool and Promoting Nitrogen Utilization. Ecol. Indic. 2023, 154, 110583. [Google Scholar] [CrossRef]
- Jindo, K.; Sánchez-Monedero, M.A.; Mastrolonardo, G.; Audette, Y.; Higashikawa, F.S.; Silva, C.A.; Akashi, K.; Mondini, C. Role of Biochar in Promoting Circular Economy in the Agriculture Sector. Part 2: A Review of the Biochar Roles in Growing Media, Composting and as Soil Amendment. Chem. Biol. Technol. Agric. 2020, 7, 16. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Q.; Rao, P.; Yan, L.; Shakib, A.; Shen, G. Formulating and Optimizing a Novel Biochar-Based Fertilizer for Simultaneous Slow-Release of Nitrogen and Immobilization of Cadmium. Sustainability 2018, 10, 2740. [Google Scholar] [CrossRef]
- Wang, C.; Luo, D.; Zhang, X.; Huang, R.; Cao, Y.; Liu, G.; Zhang, Y.; Wang, H. Biochar-Based Slow-Release of Fertilizers for Sustainable Agriculture: A Mini Review. Environ. Sci. Ecotechnol. 2022, 10, 100167. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Li, C.; Wang, S.; Zhou, B.; Mao, Y.; Rensing, C.; Xing, S. Influence of Biochar and Biochar-Based Fertilizer on Yield, Quality of Tea and Microbial Community in an Acid Tea Orchard Soil. Appl. Soil Ecol. 2021, 166, 104005. [Google Scholar] [CrossRef]
- Enaime, G.; Baçaoui, A.; Yaacoubi, A.; Lübken, M. Biochar for Wastewater Treatment-Conversion Technologies and Applications. Appl. Sci. 2020, 10, 3492. [Google Scholar] [CrossRef]
- Méndez, A.; Terradillos, M.; Gascó, G. Physicochemical and Agronomic Properties of Biochar from Sewage Sludge Pyrolysed at Different Temperatures. J. Anal. Appl. Pyrolysis 2013, 102, 124–130. [Google Scholar] [CrossRef]
- Abhishek, K.; Shrivastava, A.; Vimal, V.; Gupta, A.K.; Bhujbal, S.K.; Biswas, J.K.; Singh, L.; Ghosh, P.; Pandey, A.; Sharma, P.; et al. Biochar Application for Greenhouse Gas Mitigation, Contaminants Immobilization and Soil Fertility Enhancement: A State-of-the-Art Review. Sci. Total Environ. 2022, 853, 158562. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Murtaza, B.; Bibi, I.; Natasha; Asif Naeem, M.; Niazi, N.K. A Critical Review of Different Factors Governing the Fate of Pesticides in Soil under Biochar Application. Sci. Total Environ. 2020, 711, 134645. [Google Scholar] [CrossRef]
- Al Masud, A.; Shin, W.S.; Sarker, A.; Septian, A.; Das, K.; Deepo, D.M.; Iqbal, M.A.; Islam, A.R.M.T.; Malafaia, G. A Critical Review of Sustainable Application of Biochar for Green Remediation: Research Uncertainty and Future Directions. Sci. Total Environ. 2023, 904, 166813. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Sherpa, K.; Bui, X.T.; Nguyen, V.T.; Vo, T.D.H.; Ho, H.T.T.; Chen, C.W.; Dong, C.D. Biochar for Soil Remediation: A Comprehensive Review of Current Research on Pollutant Removal. Environ. Pollut. 2023, 337, 122571. [Google Scholar] [CrossRef] [PubMed]
- Rombel, A.; Krasucka, P.; Oleszczuk, P. Sustainable Biochar-Based Soil Fertilizers and Amendments as a New Trend in Biochar Research. Sci. Total Environ. 2022, 816, 151588. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Awad, Y.M.; Yang, X.; Ryu, C.; Rizwan, M.; Rinklebe, J.; Tsang, D.C.W.; Ok, Y.S. Influence of Soil Properties and Feedstocks on Biochar Potential for Carbon Mineralization and Improvement of Infertile Soils. Geoderma 2018, 332, 100–108. [Google Scholar] [CrossRef]
- Sim, D.H.H.; Tan, I.A.W.; Lim, L.L.P.; Hameed, B.H. Encapsulated Biochar-Based Sustained Release Fertilizer for Precision Agriculture: A Review. J. Clean Prod. 2021, 303, 127018. [Google Scholar] [CrossRef]
- Jia, Y.; Hu, Z.; Ba, Y.; Qi, W. Application of Biochar-Coated Urea Controlled Loss of Fertilizer Nitrogen and Increased Nitrogen Use Efficiency. Chem. Biol. Technol. Agric. 2021, 8, 3. [Google Scholar] [CrossRef]
- Chagas, J.K.M.; de Figueiredo, C.C.; da Silva, J.; Paz-Ferreiro, J. The Residual Effect of Sewage Sludge Biochar on Soil Availability and Bioaccumulation of Heavy Metals: Evidence from a Three-Year Field Experiment. J. Environ. Manag. 2021, 279, 111824. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable Biochar to Mitigate Global Climate Change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [PubMed]
- de Figueiredo, C.C.; Chagas, J.K.M.; da Silva, J.; Paz-Ferreiro, J. Short-Term Effects of a Sewage Sludge Biochar Amendment on Total and Available Heavy Metal Content of a Tropical Soil. Geoderma 2019, 344, 31–39. [Google Scholar] [CrossRef]
- Chagas, J.K.M.; de Figueiredo, C.C.; Ramos, M.L.G. Biochar Increases Soil Carbon Pools: Evidence from a Global Meta-Analysis. J. Environ. Manag. 2022, 305, 114403. [Google Scholar] [CrossRef]
- Ndoung, O.C.N.; de Figueiredo, C.C.; Ramos, M.L.G. A Scoping Review on Biochar-Based Fertilizers: Enrichment Techniques and Agro-Environmental Application. Heliyon 2021, 7, e08473. [Google Scholar] [CrossRef]
- Deng, L.; Tu, P.; Ahmed, N.; Zhang, G.; Cen, Y.; Huang, B.; Deng, L.; Yuan, H. Biochar-Based Phosphate Fertilizer Improve Phosphorus Bioavailability, Microbial Functioning, and Citrus Seedling Growth. Sci. Hortic. 2024, 338, 113699. [Google Scholar] [CrossRef]
- Esmaeili, N.; Khalili Rad, M.; Fazeli Sangani, M.; Ghorbanzadeh, N. Biochar-Based Fertilizers from Co-Pyrolysis of Algae and Hazelnut Shell with Triple Superphosphate: Physicochemical Properties and Slow Release Performance. Waste Manag. Res. J. A Sustain. Circ. Econ. 2024. [Google Scholar] [CrossRef]
- Xing, J.; Tang, C.; Xu, R.; Chen, J.; Peng, L.; Qin, H. Soil Microbiome Regulates Community Functions When Using Biochar-Based Fertilizers Made from Biodegradable Wastes. Eur. J. Agron. 2024, 161, 127363. [Google Scholar] [CrossRef]
- Lustosa Filho, J.F.; Penido, E.S.; Castro, P.P.; Silva, C.A.; Melo, L.C.A. Co-Pyrolysis of Poultry Litter and Phosphate and Magnesium Generates Alternative Slow-Release Fertilizer Suitable for Tropical Soils. ACS Sustain. Chem. Eng. 2017, 5, 9043–9052. [Google Scholar] [CrossRef]
- Carneiro, J.S.D.S.; Lustosa Filho, J.F.; Nardis, B.O.; Ribeiro-Soares, J.; Zinn, Y.L.; Melo, L.C.A. Carbon Stability of Engineered Biochar-Based Phosphate Fertilizers. ACS Sustain. Chem. Eng. 2018, 6, 14203–14212. [Google Scholar] [CrossRef]
- Knijnenburg, J.T.N.; Kasemsiri, P.; Kaewpradit, W.; Tarinta, T.; Jantapa, W.; Jeejaila, T.; Saengthip, C.; Jetsrisuparb, K. Co-Pyrolysis of Biomass with Magnesium and Phosphorus: Effect of Magnesium Content on Phosphate Release from Biochar-Based Fertilizers. Biomass Convers. Biorefin. 2024, 14, 15351–15361. [Google Scholar] [CrossRef]
- Viana, R.d.S.R.; de Figueiredo, C.C.; Chagas, J.K.M.; Paz-Ferreiro, J. Combined Use of Biochar and Phosphate Rocks on Phosphorus and Heavy Metal Availability: A Meta-Analysis. J. Environ. Manag. 2024, 353, 120204. [Google Scholar] [CrossRef] [PubMed]
- Dias, Y.N.; Pereira, W.V.d.S.; Caldeira, C.F.; Ramos, S.J.; de Souza, E.S.; Ribeiro, P.G.; Fernandes, A.R. Açaí Seed Biochar-Based Phosphate Fertilizers for Improving Soil Fertility and Mitigating Arsenic-Related Impacts from Gold Mining Tailings: Synthesis, Characterization, and Lettuce Growth Assessment. Minerals 2024, 14, 732. [Google Scholar] [CrossRef]
- Fachini, J.; de Figueiredo, C.C.; do Vale, A.T.; da Silva, J.; Zandonadi, D.B. Potassium-Enriched Biochar-Based Fertilizers for Improved Uptake in Radish Plants. Nutr. Cycl. Agroecosyst. 2024, 128, 415–427. [Google Scholar] [CrossRef]
- Tazebew, E.; Addisu, S.; Bekele, E.; Alemu, A.; Belay, B.; Sato, S. Sustainable Soil Health and Agricultural Productivity with Biochar-Based Indigenous Organic Fertilizers in Acidic Soils: Insights from Northwestern Highlands of Ethiopia. Discov. Sustain. 2024, 5, 205. [Google Scholar] [CrossRef]
- Feng, W.; Sánchez-Rodríguez, A.R.; Bilyera, N.; Wang, J.; Wang, X.; Han, Y.; Ma, B.; Zhang, H.; Li, F.Y.; Zhou, J.; et al. Mechanisms of Biochar-Based Organic Fertilizers Enhancing Maize Yield on a Chinese Chernozem: Root Traits, Soil Quality and Soil Microorganisms. Environ. Technol. Innov. 2024, 36, 103756. [Google Scholar] [CrossRef]
- Dong, D.; Li, J.; Ying, S.; Wu, J.; Han, X.; Teng, Y.; Zhou, M.; Ren, Y.; Jiang, P. Mitigation of Methane Emission in a Rice Paddy Field Amended with Biochar-Based Slow-Release Fertilizer. Sci. Total Environ. 2021, 792, 148460. [Google Scholar] [CrossRef]
- Qi, C.; Zhang, C.; Yang, Z.; Liu, N.; Gao, Y.; Wang, R.; Huang, D.; Tian, F.; Li, W.; Wei, C.; et al. Acid-Modified Biochar-Based Bacterial Fertilizer and Increase Soil Available Phosphorus. J. Soils Sediments 2024, 25, 59–66. [Google Scholar] [CrossRef]
- Tan, T.; Xu, Y.; Liao, X.; Yi, Z.; Xue, S. Formulating New Types of Rice Husk Biochar-Based Fertilizers for the Simultaneous Slow-Release of Nutrients and Immobilization of Cadmium. GCB Bioenergy 2024, 16, e13142. [Google Scholar] [CrossRef]
- Tang, L.; Dong, J.; Qu, M.; Lv, Q.; Zhang, L.; Peng, C.; Hu, Y.; Li, Y.; Ji, Z.; Mao, B.; et al. Knockout of OsNRAMP5 Enhances Rice Tolerance to Cadmium Toxicity in Response to Varying External Cadmium Concentrations via Distinct Mechanisms. Sci. Total Environ. 2022, 832, 155006. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Jiao, X.; Chen, Y.; Liang, H.; Liang, W.; Liu, C. Knockout of OsHMA3 in an Indica Rice Increases Cadmium Sensitivity and Inhibits Plant Growth. Plant Growth Regul. 2024, 103, 635–646. [Google Scholar] [CrossRef]
- Uraguchi, S.; Kamiya, T.; Clemens, S.; Fujiwara, T. Characterization of OsLCT1, a Cadmium Transporter from Indica Rice (Oryza sativa). Physiol. Plant 2014, 151, 339–347. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, M.G.B.; Costa, C.R.; Mendes, G.d.O.; Blasi Paiva, A.; Peixoto, L.S.; Costa, J.d.L.; Marchi, G.; Martins, É.d.S.; de Figueiredo, C.C. Oxalic Acid Boosts Phosphorus Release from Sewage Sludge Biochar: A Key Mechanism for Biochar-Based Fertilizers. Agriculture 2024, 14, 1607. [Google Scholar] [CrossRef]
- Chu, J.; Wang, S.; Yu, J.; Gao, Y.; Tang, Z.; Yang, Q. Effects of Pyrolysis Temperature and Acid-Base Pre-Treatment on the Synthesis of Biochar-Based Slow-Release Selenium Fertilizer and Its Release in Soil. Materials 2024, 17, 879. [Google Scholar] [CrossRef]
- An, X.; Wu, Z.; Qin, H.; Liu, X.; He, Y.; Xu, X.; Li, T.; Yu, B. Integrated Co-Pyrolysis and Coating for the Synthesis of a New Coated Biochar-Based Fertilizer with Enhanced Slow-Release Performance. J. Clean. Prod. 2021, 283, 124642. [Google Scholar] [CrossRef]
- de Morais, E.G.; Jindo, K.; Silva, C.A. Biochar-Based Phosphate Fertilizers: Synthesis, Properties, Kinetics of P Release and Recommendation for Crops Grown in Oxisols. Agronomy 2023, 13, 326. [Google Scholar] [CrossRef]
- Wen, P.; Wu, Z.; Han, Y.; Cravotto, G.; Wang, J.; Ye, B.C. Microwave-Assisted Synthesis of a Novel Biochar-Based Slow-Release Nitrogen Fertilizer with Enhanced Water-Retention Capacity. ACS Sustain. Chem. Eng. 2017, 5, 7374–7382. [Google Scholar] [CrossRef]
- Dong, D.; Wang, C.; Van Zwieten, L.; Wang, H.; Jiang, P.; Zhou, M.; Wu, W. An Effective Biochar-Based Slow-Release Fertilizer for Reducing Nitrogen Loss in Paddy Fields. Biochar Agric. Sustain. 2018, 20, 3027–3040. [Google Scholar] [CrossRef]
- Cen, Z.; Wei, L.; Muthukumarappan, K.; Sobhan, A.; Mcdaniel, R. Assessment of a Biochar-Based Controlled Release Nitrogen Fertilizer Coated with Polylactic Acid. J. Soil Sci. Plant Nutr. 2021, 21, 2007–2019. [Google Scholar] [CrossRef]
- Abbas, M.S.; Akmal, M.; Khan, K.S.; Aziz, I.; Rafa, H.U. Zn Ferti-Fortification of Wheat (Triticum aestivum L.) Using Zinc Enriched Compost and Biochar in Rainfed Area. Commun. Soil Sci. Plant Anal. 2021, 52, 2191–2206. [Google Scholar] [CrossRef]
- Lu, J.; Li, Y.; Cai, Y.; Jiang, P.; Yu, B. Co-Incorporation of Hydrotalcite and Starch into Biochar-Based Fertilizers for the Synthesis of Slow-Release Fertilizers with Improved Water Retention. Biochar 2023, 5, 1–13. [Google Scholar] [CrossRef]
- De Amaral Leite, A.; De Souza Cardoso, A.A.; De Almeida Leite, R.; De Oliveira-Longatti, S.M.; Filho, J.F.L.; De Souza Moreira, F.M.; Melo, L.C.A. Selected Bacterial Strains Enhance Phosphorus Availability from Biochar-Based Rock Phosphate Fertilizer. Ann. Microbiol. 2020, 70, 6. [Google Scholar] [CrossRef]
- Grafmüller, J.; Schmidt, H.P.; Kray, D.; Hagemann, N. Root-Zone Amendments of Biochar-Based Fertilizers: Yield Increases of White Cabbage in Temperate Climate. Horticulturae 2022, 8, 307. [Google Scholar] [CrossRef]
- Amaro, A.; Bastos, A.C.; Santos, M.J.G.; Verheijen, F.G.A.; Soares, A.M.V.M.; Loureiro, S. Ecotoxicological Assessment of a Biochar-Based Organic N-Fertilizer in Small-Scale Terrestrial Ecosystem Models (STEMs). Appl. Soil Ecol. 2016, 108, 361–370. [Google Scholar] [CrossRef]
- Holatko, J.; Hammerschmiedt, T.; Kucerik, J.; Baltazar, T.; Radziemska, M.; Havlicek, Z.; Kintl, A.; Jaskulska, I.; Malicek, O.; Brtnicky, M. Soil Properties and Maize Yield Improvement with Biochar-Enriched Poultry Litter-Based Fertilizer. Materials 2022, 15, 3. [Google Scholar] [CrossRef]
- An, X.; Wu, Z.; Yu, J.; Cravotto, G.; Liu, X.; Li, Q.; Yu, B. Copyrolysis of Biomass, Bentonite, and Nutrients as a New Strategy for the Synthesis of Improved Biochar-Based Slow-Release Fertilizers. ACS Sustain. Chem. Eng. 2020, 8, 3181–3190. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Y.; Wen, D.; Zhao, P.; Li, F.; Li, L.; Du, R.; Shi, H.; Deng, T.; Du, Y. Biochar-Based Molybdenum Slow-Release Fertilizer Enhances Nitrogen Assimilation in Chinese Flowering Cabbage (Brassica parachinensis). Chemosphere 2022, 303, 134663. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Guo, L.; Wu, F.; Liu, D.; Zhang, H.; Zou, S.; Xing, S.; Mao, Y. Field-Applied Biochar-Based MgO and Sepiolite Composites Possess CO2 Capture Potential and Alter Organic C Mineralization and C-Cycling Bacterial Structure in Fertilized Soils. Sci. Total Environ. 2022, 813, 152495. [Google Scholar] [CrossRef]
- Arwenyo, B.; Varco, J.J.; Dygert, A.; Mlsna, T. Phosphorus Availability from Magnesium-Modified P-Enriched Douglas Fir Biochar as a Controlled Release Fertilizer. Soil Use Manag. 2022, 38, 691–702. [Google Scholar] [CrossRef]
- Jetsrisuparb, K.; Jeejaila, T.; Saengthip, C.; Kasemsiri, P.; Ngernyen, Y.; Chindaprasirt, P.; Knijnenburg, J.T.N. Tailoring the Phosphorus Release from Biochar-Based Fertilizers: Role of Magnesium or Calcium Addition during Co-Pyrolysis. RSC Adv. 2022, 12, 30539–30548. [Google Scholar] [CrossRef]
- Bhatt, N.; Buddhi, D.; Suthar, S. Synthesizing Biochar-Based Slow-Releasing Fertilizers Using Vermicompost Leachate, Cow Dung, and Plant Weed Biomass. J. Environ. Manag. 2023, 326, 116782. [Google Scholar] [CrossRef] [PubMed]
- Khajavi-Shojaei, S.; Moezzi, A.; Norouzi Masir, M.; Taghavi, M. Synthesis Modified Biochar-Based Slow-Release Nitrogen Fertilizer Increases Nitrogen Use Efficiency and Corn (Zea mays L.) Growth. Biomass Convers. Biorefin. 2023, 13, 593–601. [Google Scholar] [CrossRef]
- Bouhia, Y.; Hafidi, M.; Ouhdouch, Y.; El Boukhari, M.E.M.; Zeroual, Y.; Lyamlouli, K. Effect of the Co-Application of Olive Waste-Based Compost and Biochar on Soil Fertility and Zea mays Agrophysiological Traits. Int. J. Recycl. Org. Waste Agric. 2021, 10, 111–127. [Google Scholar] [CrossRef]
- Carneiro, J.S.d.S.; Ribeiro, I.C.A.; Nardis, B.O.; Barbosa, C.F.; Lustosa Filho, J.F.; Melo, L.C.A. Long-Term Effect of Biochar-Based Fertilizers Application in Tropical Soil: Agronomic Efficiency and Phosphorus Availability. Sci. Total Environ. 2021, 760, 143955. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, F.; An, X.; Wu, Z.; Li, T.; Yang, Q. Microwave Co-Pyrolysis of Biomass, Phosphorus, and Magnesium for the Preparation of Biochar-Based Fertilizer: Fast Synthesis, Regulable Structure, and Graded-Release. J. Environ. Chem. Eng. 2021, 9, 106456. [Google Scholar] [CrossRef]
- Luo, W.; Qian, L.; Liu, W.; Zhang, X.; Wang, Q.; Jiang, H.; Cheng, B.; Ma, H.; Wu, Z. A Potential Mg-Enriched Biochar Fertilizer: Excellent Slow-Release Performance and Release Mechanism of Nutrients. Sci. Total Environ. 2021, 768, 144454. [Google Scholar] [CrossRef]
- Chew, J.K.; Joseph, S.; Chen, G.; Zhang, Y.; Zhu, L.; Liu, M.; Taherymoosavi, S.; Munroe, P.; Mitchell, D.R.G.; Pan, G.; et al. Biochar-Based Fertiliser Enhances Nutrient Uptake and Transport in Rice Seedlings. Sci. Total Environ. 2022, 826, 154174. [Google Scholar] [CrossRef]
- Lustosa Filho, J.F.; Carneiro, J.S.d.S.; Barbosa, C.F.; de Lima, K.P.; do Amaral Leite, A.; Melo, L.C.A. Aging of Biochar-Based Fertilizers in Soil: Effects on Phosphorus Pools and Availability to Urochloa Brizantha Grass. Sci. Total Environ. 2020, 709, 136028. [Google Scholar] [CrossRef]
- Das, S.K.; Ghosh, G.K. Development and Evaluation of Biochar-Based Secondary and Micronutrient Enriched Slow Release Nano-Fertilizer for Reduced Nutrient Losses. Biomass Convers. Biorefin. 2023, 13, 12193–12204. [Google Scholar] [CrossRef]
- Pereira, V.V.; Morales, M.M.; Pereira, D.H.; de Rezende, F.A.; de Souza Magalhães, C.A.; de Lima, L.B.; Marimon-Junior, B.H.; Petter, F.A. Activated Biochar-Based Organomineral Fertilizer Delays Nitrogen Release and Reduces N2O Emission. Sustainability 2022, 14, 2388. [Google Scholar] [CrossRef]
- Das, B.K.; Rubel, R.I.; Gupta, S.; Wu, Y.; Wei, L.; Brözel, V.S. Impacts of Biochar-Based Controlled-Release Nitrogen Fertilizers on Soil Prokaryotic and Fungal Communities. Agriculture 2022, 12, 1706. [Google Scholar] [CrossRef]
- Piash, M.I.; Iwabuchi, K.; Itoh, T. Synthesizing Biochar-Based Fertilizer with Sustained Phosphorus and Potassium Release: Co-Pyrolysis of Nutrient-Rich Chicken Manure and Ca-Bentonite. Sci. Total Environ. 2022, 822, 153509. [Google Scholar] [CrossRef]
- Puga, A.P.; Grutzmacher, P.; Cerri, C.E.P.; Ribeirinho, V.S.; de Andrade, C.A. Biochar-Based Nitrogen Fertilizers: Greenhouse Gas Emissions, Use Efficiency, and Maize Yield in Tropical Soils. Sci. Total Environ. 2020, 704, 135375. [Google Scholar] [CrossRef]
- Qin, J.; Zhang, C.; Chen, Z.; Wang, X.; Zhang, Y.; Guo, L. Converting Wastes to Resource: Utilization of Dewatered Municipal Sludge for Calcium-Based Biochar Adsorbent Preparation and Land Application as a Fertilizer. Chemosphere 2022, 298, 134302. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda-Cadavid, C.; Romero, J.H.; Torres, M.; Becerra-Agudelo, E.; López, J.E. Evaluation of a Biochar-Based Slow-Release P Fertilizer to Improve Spinacia Oleracea P Use, Yield, and Nutritional Quality. J. Soil Sci. Plant Nutr. 2021, 21, 2980–2992. [Google Scholar] [CrossRef]
- Farrar, M.B.; Wallace, H.M.; Xu, C.Y.; Nguyen, T.T.N.; Tavakkoli, E.; Joseph, S.; Bai, S.H. Short-Term Effects of Organo-Mineral Enriched Biochar Fertiliser on Ginger Yield and Nutrient Cycling. J. Soils Sediments 2019, 19, 668–682. [Google Scholar] [CrossRef]
- Sutradhar, I.; Jackson-deGraffenried, M.; Akter, S.; McMahon, S.A.; Waid, J.L.; Schmidt, H.P.; Wendt, A.S.; Gabrysch, S. Introducing Urine-Enriched Biochar-Based Fertilizer for Vegetable Production: Acceptability and Results from Rural Bangladesh. Environ. Dev. Sustain. 2021, 23, 12954–12975. [Google Scholar] [CrossRef]
- Gao, T.; Zhu, Q.; Zhou, Z.; Wu, Y.; Xue, J. Effects of Biochar-Based Fertilizers on Energy Characteristics and Growth of Black Locust Seedlings. Sustainability 2022, 14, 5045. [Google Scholar] [CrossRef]
- Tumbure, A.; Bishop, P.; Bretherton, M.; Hedley, M. Co-Pyrolysis of Maize Stover and Igneous Phosphate Rock to Produce Potential Biochar-Based Phosphate Fertilizer with Improved Carbon Retention and Liming Value. ACS Sustain. Chem. Eng. 2020, 8, 4178–4184. [Google Scholar] [CrossRef]
- González-Cencerrado, A.; Ranz, J.P.; López-Franco Jiménez, M.T.; Gajardo, B.R. Assessing the Environmental Benefit of a New Fertilizer Based on Activated Biochar Applied to Cereal Crops. Sci. Total Environ. 2020, 711, 134668. [Google Scholar] [CrossRef] [PubMed]
- Wali, F.; Naveed, M.; Bashir, M.A.; Asif, M.; Ahmad, Z.; Alkahtani, J.; Alwahibi, M.S.; Elshikh, M.S. Formulation of Biochar-Based Phosphorus Fertilizer and Its Impact on Both Soil Properties and Chickpea Growth Performance. Sustainability 2020, 12, 9528. [Google Scholar] [CrossRef]
- Zhang, M.; Gou, J.; Wei, Q.; Liu, Y.; Qin, S. Effects of Different Biochar-Based Fertilizers on the Biological Properties and Economic Benefits of Pod Pepper (Capsicum annuum Var. Frutescens L.). Appl. Ecol. Environ. Res. 2021, 19, 2829–2841. [Google Scholar] [CrossRef]
- Zhang, H.; Voroney, R.P.; Price, G.W.; White, A.J. Sulfur-Enriched Biochar as a Potential Soil Amendment and Fertiliser. Soil Res. 2017, 55, 93–99. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Wei, Q.; Liu, L.; Gou, J. Biochar-Based Fertiliser Improved the Yield, Quality and Fertiliser Utilisation of Open Field Tomato in Karst Mountainous Area. Plant Soil Environ. 2022, 68, 163–172. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, F.; Zhang, H.; Liu, L.; Liu, X.; Chen, J.; Wang, X.; Wang, Y.; Li, C. Beneficial Effects of Biochar-Based Organic Fertilizer on Nitrogen Assimilation, Antioxidant Capacities, and Photosynthesis of Sugar Beet (Beta vulgaris L.) under Saline-Alkaline Stress. Agronomy 2020, 10, 1562. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Q.; Qian, X.; Chen, H.; Wang, F.; Yi, Z. Effects of the Combined Application of Biochar-Based Fertilizer and Urea on N2O Emissions, Nitrifier, and Denitrifier Communities in the Acidic Soil of Pomelo Orchards. J. Soils Sediments 2022, 22, 3119–3136. [Google Scholar] [CrossRef]
- Mihoub, A.; Mesnoua, M.; Touzout, N.; Zeguerrou, R.; Siabdallah, N.; Benchikh, C.; Benaoune, S.; Jamal, A.; Ronga, D.; Černý, J. Mitigation of Detrimental Effects of Salinity on Sweet Pepper through Biochar-Based Fertilizers Derived from Date Palm Wastes. Phyton-Int. J. Exp. Bot. 2024, 93, 2993–3011. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, K.; Qi, Z.; Shaghaleh, H.; Gao, C.; Chang, T.; Zhang, J.; Hamoud, Y.A. Field Examinations on the Application of Novel Biochar-Based Microbial Fertilizer on Degraded Soils and Growth Response of Flue-Cured Tobacco (Nicotiana tabacum L.). Plants 2024, 13, 1328. [Google Scholar] [CrossRef]
- Hui, K.; He, R.; Tian, Q.; Zhou, X.; Hou, L.; Zhang, X.; Jiang, Y.; Yao, H. Iron-Based Biochar Materials for Phosphorus Recovery from Agricultural Runoff: Mechanism and Potential Application as a Slow-Release Fertilizer. Sep. Purif. Technol. 2024, 347, 127597. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Bolan, N.; Donne, S. Fertilizer Value of Nutrient-Enriched Biochar and Response of Canola Crop. J. Soil Sci. Plant Nutr. 2024, 24, 2123–2137. [Google Scholar] [CrossRef]
- Villada, E.; Velasquez, M.; Gómez, A.M.; Correa, J.D.; Saldarriaga, J.F.; López, J.E.; Tamayo, A. Combining Anaerobic Digestion Slurry and Different Biochars to Develop a Biochar-Based Slow-Release NPK Fertilizer. Sci. Total Environ. 2024, 927, 171982. [Google Scholar] [CrossRef]
- Ramesh, K.; Raghavan, V. Agricultural Waste-Derived Biochar-Based Nitrogenous Fertilizer for Slow-Release Applications. ACS Omega 2024, 9, 4377–4385. [Google Scholar] [CrossRef]
- Rubel, R.I.; Wei, L.; Wu, Y.; Gupta, S.; Alanazi, S.; Sobhan, A.; Osabutey, A.; Yang, X. Greenhouse Evaluation of Biochar-Based Controlled-Release Nitrogen Fertilizer in Corn Production. Agric. Res. 2024, 13, 113–123. [Google Scholar] [CrossRef]
- Zhang, H.-W.; Xing, L.-B.; Liang, H.-X.; Liu, S.-Z.; Ding, W.; Zhang, J.-G.; Xu, C. Preparation and Characterization of Biochar-Based Slow-Release Nitrogen Fertilizer and Its Effect on Maize Growth. Ind. Crops Prod. 2023, 203, 117227. [Google Scholar] [CrossRef]
- Ni, P.; Wang, S.; Liu, B.; Sun, H. Effects of Organic Manure and Biochar-Based Fertilizer Application on Soil Water and Salt Transport in Brackish Water Irrigated Soil Profile. J. Soil Sci. Plant Nutr. 2023, 23, 3120–3136. [Google Scholar] [CrossRef]
- Banik, C.; Bakshi, S.; Laird, D.A.; Smith, R.G.; Brown, R.C. Impact of Biochar-Based Slow-Release N-Fertilizers on Maize Growth and Nitrogen Recovery Efficiency. J. Environ. Qual. 2023, 52, 630–640. [Google Scholar] [CrossRef]
- Acosta-Luque, M.P.; López, J.E.; Henao, N.; Zapata, D.; Giraldo, J.C.; Saldarriaga, J.F. Remediation of Pb-Contaminated Soil Using Biochar-Based Slow-Release P Fertilizer and Biomonitoring Employing Bioindicators. Sci. Rep. 2023, 13, 1657. [Google Scholar] [CrossRef]
- Sun, C.; Cao, H.; Huang, C.; Wang, P.; Yin, J.; Liu, H.; Tian, H.; Xu, H.; Zhu, J.; Liu, Z. Eggshell Based Biochar for Highly Efficient Adsorption and Recovery of Phosphorus from Aqueous Solution: Kinetics, Mechanism and Potential as Phosphorus Fertilizer. Bioresour. Technol. 2022, 362, 127851. [Google Scholar] [CrossRef]
- Rubel, R.I.; Wei, L. Biochar-Based Controlled Release Nitrogen Fertilizer Coated with Polylactic Acid. J. Polym. Environ. 2022, 30, 4406–4417. [Google Scholar] [CrossRef]
- Meyer Zu Drewer, J.; Köster, M.; Abdulai, I.; Rötter, R.P.; Hagemann, N.; Schmidt, H.P. Impact of Different Methods of Root-Zone Application of Biochar-Based Fertilizers on Young Cocoa Plants: Insights from a Pot-Trial. Horticulturae 2022, 8. [Google Scholar] [CrossRef]
- Roy, A.; Chaturvedi, S.; Singh, S.V.; Kasivelu, G.; Dhyani, V.C.; Pyne, S. Preparation and Evaluation of Two Enriched Biochar-Based Fertilizers for Nutrient Release Kinetics and Agronomic Effectiveness in Direct-Seeded Rice. Biomass Convers. Biorefin. 2024, 14, 2007–2018. [Google Scholar] [CrossRef]
- Liao, J.; Liu, X.; Hu, A.; Song, H.; Chen, X.; Zhang, Z. Effects of Biochar-Based Controlled Release Nitrogen Fertilizer on Nitrogen-Use Efficiency of Oilseed Rape (Brassica napus L.). Sci. Rep. 2020, 10, 11063. [Google Scholar] [CrossRef] [PubMed]
- Chew, J.; Zhu, L.; Nielsen, S.; Graber, E.; Mitchell, D.R.G.; Horvat, J.; Mohammed, M.; Liu, M.; van Zwieten, L.; Donne, S.; et al. Biochar-Based Fertilizer: Supercharging Root Membrane Potential and Biomass Yield of Rice. Sci. Total Environ. 2020, 713, 136431. [Google Scholar] [CrossRef] [PubMed]
- Mikos-Szymańska, M.; Schab, S.; Rusek, P.; Borowik, K.; Bogusz, P.; Wyzińska, M. Preliminary Study of a Method for Obtaining Brown Coal and Biochar Based Granular Compound Fertilizer. Waste Biomass Valorization 2019, 10, 3673–3685. [Google Scholar] [CrossRef]
- Chen, S.; Yang, M.; Ba, C.; Yu, S.; Jiang, Y.; Zou, H.; Zhang, Y. Preparation and Characterization of Slow-Release Fertilizer Encapsulated by Biochar-Based Waterborne Copolymers. Sci. Total Environ. 2018, 615, 431–437. [Google Scholar] [CrossRef]
- Gwenzi, W.; Nyambishi, T.J.; Chaukura, N.; Mapope, N. Synthesis and Nutrient Release Patterns of a Biochar-Based N–P–K Slow-Release Fertilizer. Int. J. Environ. Sci. Technol. 2018, 15, 405–414. [Google Scholar] [CrossRef]
- Zhou, M.; Ying, S.; Chen, J.; Jiang, P.; Teng, Y. Effects of Biochar-Based Fertilizer on Nitrogen Use Efficiency and Nitrogen Losses via Leaching and Ammonia Volatilization from an Open Vegetable Field. Environ. Sci. Pollut. Res. 2021, 28, 65188–65199. [Google Scholar] [CrossRef]
- Fachini, J.; de Figueiredo, C.C.; do Vale, A.T. Assessing Potassium Release in Natural Silica Sand from Novel K-Enriched Sewage Sludge Biochar Fertilizers. J. Environ. Manag. 2022, 314, 115080. [Google Scholar] [CrossRef]
- Ndoung, O.C.N.; de Souza, L.R.; Fachini, J.; Leão, T.P.; Sandri, D.; de Figueiredo, C.C. Dynamics of Potassium Released from Sewage Sludge Biochar Fertilizers in Soil. J. Environ. Manag. 2023, 346, 119057. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Ghosh, G.K. Developing Biochar-Based Slow-Release N-P-K Fertilizer for Controlled Nutrient Release and Its Impact on Soil Health and Yield. Biomass Convers. Biorefin. 2023, 13, 13051–13063. [Google Scholar] [CrossRef]
- Wang, J.; Wang, B.; Bian, R.; He, W.; Liu, Y.; Shen, G.; Xie, H.; Feng, Y. Bibliometric Analysis of Biochar-Based Organic Fertilizers in the Past 15 Years: Focus on Ammonia Volatilization and Greenhouse Gas Emissions during Composting. Environ. Res. 2024, 243, 117853. [Google Scholar] [CrossRef]
- Shi, W.; Ju, Y.; Bian, R.; Li, L.; Joseph, S.; Mitchell, D.R.G.; Munroe, P.; Taherymoosavi, S.; Pan, G. Biochar Bound Urea Boosts Plant Growth and Reduces Nitrogen Leaching. Sci. Total Environ. 2020, 701, 134424. [Google Scholar] [CrossRef] [PubMed]
- Tarar, O.F.; Asghar, A.; Qayyum, S.A.; Kanwal, H.; Lateef, A.; Nazir, R.; Imam Abidi, S.H.; Naeem, M.K.; Shahid, B. Synthesis and Surface Morphology of Banana Biochar-Based Nano-Fertilizer and Its Effect on First Stages of Growth Parameters of Cucumber, Broccoli, and Red Okra. J. Saudi Soc. Agric. Sci. 2023, 22, 535–545. [Google Scholar] [CrossRef]
- Shang, X.C.; Zhang, M.; Zhang, Y.; Li, Y.; Hou, X.; Yang, L. Combinations of Waste Seaweed Liquid Fertilizer and Biochar on Tomato (Solanum lycopersicum L.) Seedling Growth in an Acid-Affected Soil of Jiaodong Peninsula, China. Ecotoxicol. Environ. Saf. 2023, 260, 115075. [Google Scholar] [CrossRef]
- Gu, S.; Lian, F.; Yang, H.; Han, Y.; Zhang, W.; Yang, F.; Gao, J. Synergic Effect of Microorganism and Colloidal Biochar-Based Organic Fertilizer on the Growth and Fruit Quality of Tomato. Coatings 2021, 11, 1453. [Google Scholar] [CrossRef]
- de Araujo, A.S.; Blum, L.E.B.; Andrade, D.V.N.; da Silva Júnior, P.B.; de Figueiredo, C.C. Sewage Sludge Biochar Effects on Phytopathogenic Fungi and Beneficial Microorganisms. Braz. Arch. Biol. Technol. 2021, 64, e21210266. [Google Scholar] [CrossRef]
- Cruz, A.F.; Borges, L.d.A.B.; Gomes, M.O.; de Figueiredo, C.C. Changes in the Soil Microbial Community 5 Years after the Application of Sewage Sludge Biochar to Soils Cultivated with Corn. J. Plant Nutr. Soil Sci. 2024, 187, 804–815. [Google Scholar] [CrossRef]
- Araujo, J.; Díaz-Alcántara, C.-A.; Urbano, B.; González-Andrés, F. Inoculation with Native Bradyrhizobium Strains Formulated with Biochar as Carrier Improves the Performance of Pigeonpea (Cajanus cajan L.). Eur. J. Agron. 2020, 113, 125985. [Google Scholar] [CrossRef]
- Phares, C.A.; Amoakwah, E.; Danquah, A.; Afrifa, A.; Beyaw, L.R.; Frimpong, K.A. Biochar and NPK Fertilizer Co-Applied with Plant Growth Promoting Bacteria (PGPB) Enhanced Maize Grain Yield and Nutrient Use Efficiency of Inorganic Fertilizer. J. Agric. Food Res. 2022, 10, 100434. [Google Scholar] [CrossRef]
Ingredient Blended | Crop/Crops Tested with BBF | Reference |
---|---|---|
Cow manure biochar + zinc (Zn) | Wheat (Triticum aestivum L.) | [54] |
Wood chip biochar + N-containing solution | White cabbage (Brassica oleracea convar. Capitata var. Alba) | [57] |
Wood chip biochar + NPK | B. rapa | [58] |
Biochar from crop residues + matured chicken litter | Maize | [59] |
Cotton straw biochar + K3PO4 | Pepper seedlings | [60] |
Rice straw biochar + ammonium molybdate solution | Brassica parachinensis | [61] |
Cotton straw biochar + bentonite + Mg3(PO4)2 | Pepper | [49] |
Bamboo chip biochar + MgO solution + sepiolite | Maize | [62] |
Wood-derived biochar + MgCl2 + KOH | Maize (Zea mays L.) | [63] |
Sugarcane cake biochar + triple superphosphate or H3PO4, MgO, or CaO solution | [64] | |
Biochar from cow manure, vermicompost, and Lantana spp. + vermicompost tea | Moong bean (Vigna radiata) | [65] |
Corn straw biochar + MgCl2 and ammonium nitrate solutions | Maize (Zea mays L.) | [66] |
Betula pendula biochar + olive waste compost | Zea mays | [67] |
Chicken litter biochar + rock phosphate + solubilizing bacteria | Maize | [56] |
Biochar from chicken litter and coffee husks + H3PO4 + MgO | Megathyrsus maximus cv. Mombasa in sequence Zea mays in sequence Phaseolus vulgaris L. cv. BRSMG UAI | [68] |
Cotton stalk biochar + K3PO4 and MgO | [69] | |
Rice husk biochar + urea hydrogen peroxide | [12] | |
Corn straw biochar + MgCl2 | Corn | [70] |
Wheat straw biochar + urea + bentonite + rock phosphate + Fe2O3 e FeSO4.7H2O | Rice seedlings | [71] |
Chicken litter biochar + MgO + triple superphosphate or H3PO4 | Urochloa brizantha grass | [72] |
Crop residue biochar + micronutrient solution | [73] | |
Wood sawdust biochar + urea | [74] | |
Sawdust biochar + solution with N, P, K, Mg, S, and micronutrients | Corn | [75] |
Chicken manure biochar + calcium bentonite | [76] | |
Coffee husk biochar + Araxá rock phosphate + Mg | Maize in sequence Brachiaria grass | [50] |
Eucalyptus wood biochar + bentonite + pregelatinized corn flour + urea | Maize | [77] |
Rice straw biochar + NPK + bentonite + humic acids | Rice | [52] |
Sewage sludge biochar + calcium | Corn | [78] |
Rice straw biochar + urea, NH4H2PO4 e K2SO4 | Rice | [41] |
Biochar + humus and minerals | Tobacco | [10] |
Sewage sludge biochar + KCl | Radish | [38] |
Corn straw biochar + K₂PO₄ solution | Spinacia oleracea | [79] |
Bamboo biochar + gypsum + rock phosphate + boron (B) + K₂SO₄ | Ginger | [80] |
Biochar from rice straw and/or dry leaves + cow urine | Cabbage and kohlrabi | [81] |
Rice husk and wood biochar + NPK + pig manure | Black locust seedlings | [82] |
Corn waste biochar + rock phosphate | [83] | |
Barley straw biochar + N, P, K + Ca, Mg, Zn, K e NH4+ | corn and wheat | [84] |
Corn straw biochar + diammonium phosphate (DAP) | Chickpea (Cicer arietinum L.) | [85] |
Biochar + NH4+ + polymer | Cotton seedling | [51] |
Corn straw biochar + NPK | Pod pepper (Capsicum annuum var. frutescens L.) | [86] |
Dairy cow manure biochar + sulfur (S) from biogas | Corn (Zea mays L.) in sequence soybeans [Glycine max (L.) Merr.] | [87] |
Distillers grain biochar + urea, monoammonium phosphate and potassium sulfate | Tomato | [88] |
Corn stalk biochar + tanned animal manure | Sugar beet (Beta vulgaris L.) | [89] |
Rice straw biochar + urea | [90] | |
Apple wood and cotton straw biochar + sulfuric acid, hydrochloric acid, and nitric acid | [42] | |
Date palm biochar + HCl + chemical fertilizers (MAP and K2SO4) | Sweet pepper (capsicum) | [91] |
Co-pyrolysis of algae and hazelnut shell biomasses with triple superphosphate | [31] | |
Co-pyrolysis of rice straw with magnesium oxide | Citrus seedlings (Shatang mandarin) | [30] |
Co-pyrolysis of fresh waste fruits and vegetables | Maize (Zea mays L.) | [32] |
Co-composting of Acacia decurrens biochar and chicken litter and cow dung manure | Dega Tef | [39] |
Biochar from maize straw was fermented with cattle manure, humic, and amino acids | Maize | [40] |
Açaí palm seeds pyrolyzed with single and triple superphosphate | Lettuce | [37] |
Rice husk biochar + mineral fertilizer + microorganisms | Rice | [43] |
Effective microorganisms, tobacco stalk biochar, and basal fertilizer | Tobacco (Nicotiana tabacum L.) | [92] |
Corn straw, peanut shell, and sawdust + Fe(NO3)3⋅9H2O | Carrot and cabbage | [93] |
Biosolids, cow manure, and chicken manure + Urea fertilizer and KH2PO4 | Canola (Brassica napus L.) | [94] |
Biogas slurry and biochar derived from lignocellulosic agro-residues | Cucumber (Cucumis sativus) | [95] |
Eucalyptus wood chip biochar + HNO3 or 3M KOH +polyethyleneimine | [48] | |
Banana leaf sheath biochar + urea solution | [96] | |
Biochar + bentonite, biosolid, rice starch, and bioasphalt | Corn | [97] |
Apple tree branch biochar + urea | Maize | [98] |
Rice straw biochar + NPK + Hydrotalcite and starch | Tomato | [55] |
Rice husk, peanut shell, and straw biochar + NPK | Wheat in sequence maize | [99] |
Pine biochar + urea | Maize | [100] |
Sugarcane filter cake biochar + MgO and H3PO4 | [35] | |
Rice husk biochar + KH2PO4 | Radish (Raphanus sativus) | [101] |
Co-pyrolysis of eggshells and corn stalk | [102] | |
Sawdust biochar + ammonium sulfate | [103] | |
Lactic fermentation with fresh foliar tree and grass biomass | Beans (Theobroma cacao L. ssp.) | [104] |
Rice husk biochar + nutrient solution (NPK) | Rice | [105] |
Corn stover biochar + ammonium sulfate + polylactic acid | [53] | |
Rice straw biochar + humic acids and bentonite, cassava, or cornstarch | Rice | [41] |
Oilseed rape straws biochar + urea and bentonite | Rape (Brassica napus L.) | [106] |
Wheat straw biochar + urea, bentonite clay, rock phosphate, Fe2O3, and FeSO4.7H2O | Rice (Oryza sativa L., cv. Japonica) | [107] |
Biochar from medicinal plant material, crop willow, and wood chips enriched with urea superphosphate (USP) | Wheat cv. Varius | [108] |
Biochar from coffee husk and poultry litter enriched with H3PO4 and MgO | [34] | |
Biochar of maize straw, rice straw, and forest litter enriched with urea and coated by polyvinyl alcohol and polyvinylpyrrolidone | [109] | |
Sawdust biochar + NPK | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, M.G.B.d.; Paiva, A.B.; Viana, R.d.S.R.; Jindo, K.; Figueiredo, C.C.d. Biochar as a Feedstock for Sustainable Fertilizers: Recent Advances and Perspectives. Agriculture 2025, 15, 894. https://doi.org/10.3390/agriculture15080894
Santos MGBd, Paiva AB, Viana RdSR, Jindo K, Figueiredo CCd. Biochar as a Feedstock for Sustainable Fertilizers: Recent Advances and Perspectives. Agriculture. 2025; 15(8):894. https://doi.org/10.3390/agriculture15080894
Chicago/Turabian StyleSantos, Marcela Granato Barbosa dos, Andressa Blasi Paiva, Rhaila da Silva Rodrigues Viana, Keiji Jindo, and Cícero Célio de Figueiredo. 2025. "Biochar as a Feedstock for Sustainable Fertilizers: Recent Advances and Perspectives" Agriculture 15, no. 8: 894. https://doi.org/10.3390/agriculture15080894
APA StyleSantos, M. G. B. d., Paiva, A. B., Viana, R. d. S. R., Jindo, K., & Figueiredo, C. C. d. (2025). Biochar as a Feedstock for Sustainable Fertilizers: Recent Advances and Perspectives. Agriculture, 15(8), 894. https://doi.org/10.3390/agriculture15080894