Nematocidal Potential of Synthetic Phenyl Azide Derivatives Against False Root-Knot Nematode (Nacobbus aberrans) Under In Vitro Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. N-Sulfonyllhydrazone Series
2.2. N-Acylhydrazone Series
2.3. pT-Series
2.4. Oxadiazole Series
2.5. Azide Series
2.6. Triazole Series
2.7. Benzofuroxan-1-N-Oxide Series
2.8. Quinoxaline-1,4-di-N-oxide Series
2.9. Obtaining Eggs and Juveniles of Nacobbus aberrans
2.10. Nematocidal Activity of Compounds Against J2 of N. aberrans
2.11. In Vitro Nematocidal Effectiveness of AGAz Family
2.12. Statistical Analysis
3. Results
3.1. Screening of the Nematocidal Effectiveness
3.2. Nematocidal Effectiveness of AGAz Family Against Juveniles of Nacobbus aberrans
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Li, Q.X.; Song, B. Chemical Nematicides: Recent Research Progress and Outlook. J. Agric. Food Chem. 2020, 68, 12175–12188. [Google Scholar] [CrossRef] [PubMed]
- EPPO. EPPO A1 List of Pests Recommended for Regulation as Quarantine Pests. Available online: https://www.eppo.int/ACTIVITIES/plant_quarantine/A1_list (accessed on 17 April 2023).
- Gortari, M.C.; Hours, R.A. In Vitro Antagonistic Activity of Argentinean Isolates of Purpureocillium lilacinum on Nacobbus aberrans Eggs. Curr. Res. Environ. Appl. Mycol. 2019, 9, 164–174. [Google Scholar] [CrossRef]
- Tileubayeva, Z.; Avdeenko, A.; Avdeenko, S.; Stroiteleva, N.; Kondrashev, S. Plant-Parasitic Nematodes Affecting Vegetable Crops in Greenhouses. Saudi J. Biol. Sci. 2021, 28, 5428–5433. [Google Scholar] [CrossRef] [PubMed]
- Baazeem, A.; Alorabi, M.; Darwesh, H.; Alotaibi, S.S.; El-deen, A.N.; Iqbal, S.; Atif, S.; Naqvi, H. Biological Control of Root-Knot Nematode (Meloidogyne javanica) by Potential Antagonism of Endophytic Fungi Isolated from Taify Roses. J. King Saud Univ.-Sci. 2022, 34, 102329. [Google Scholar] [CrossRef]
- PAN International. PAN International Consolidated List of Banned Pesticides|PAN International. Pesticide Action Network International, 2022. Available online: https://pan-international.org/pan-international-consolidated-list-of-banned-pesticides/ (accessed on 17 April 2023).
- Desaeger, J.; Wram, C.; Zasada, I. New Reduced-Risk Agricultural Nematicides-Rationale and Review. J. Nematol. 2020, 52, e2020-91. [Google Scholar] [CrossRef]
- Antônio-Ebone, L.; Kovaleski, M.; Cardoso-Deuner, C. Nematicides: History, Mode, and Mechanism Action. Plant Sci. Today 2019, 6, 71–83. [Google Scholar] [CrossRef]
- Velasco-Azorsa, R.; Cruz-Santiago, H.; Cid del Prado-Vera, I.; Ramirez-Mares, M.V.; Gutiérrez-Ortiz, M.d.R.; Santos-Sánchez, N.F.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Lira-de León, K.I.; Hernández-Carlos, B. Chemical Characterization of Plant Extracts and Evaluation of Their Nematicidal and Phytotoxic Potential. Molecules 2021, 26, 2216. [Google Scholar] [CrossRef]
- Sasanelli, N.; Konrat, A.; Migunova, V.; Toderas, I.; Iurcu-Straistaru, E.; Rusu, S.; Bivol, A.; Andoni, C.; Veronico, P. Review on Control Methods against Plant Parasitic Nematodes Applied in Southern Member States (C Zone) of the European Union. Agriculture 2021, 11, 602. [Google Scholar] [CrossRef]
- EPA. Pesticide Product Registration; Applications: New Active Ingredients; EPA: Washington, DC, USA, 2020; Volume 85.
- Vázquez-Bravo, J.; Aguilar-Marcelino, L.; Castañeda-Ramírez, G.S.; De Los Santos-Pérez, I.; Arroyo-Carmona, R.E.; Bernès, S.; Hernández-Pareja, U.; Gómez-Rodríguez, O.; Rosas-Saito, G.H. In Vitro Nematicidal Activity of Two Ferrocenyl Chalcones against Larvae of Haemonchus contortus (L3) and Nacobbus aberrans (J2). J. Helminthol. 2020, 94, e190. [Google Scholar] [CrossRef]
- Velasco-Azorsa, R.; Zeferino-Díaz, R.; Alvarado-Rodríguez, J.G.; López-Ruiz, H.; Rojas-Lima, S.; Flores-Castro, K.; del Prado-Vera, I.C.; Alatorre-Rosas, R.; Tut-Pech, F.; Carrillo-Benítez, M.G.; et al. Nematicidal Activity of Furanoeremophilenes against Meloidogyne incognita and Nacobbus aberrans. Pest Manag. Sci. 2022, 78, 2571–2580. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, R.; Li, Z.; Maienfisch, P.; Xu, X. Design, Synthesis and Nematicidal Activitives of Trifluorobutene Amide Derivatives against Meloidogyne incognita. Bioorganic Med. Chem. Lett. 2021, 40, 127917. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.U.; Sajid, M.; Obaidullah, A.J.; Rehman, W.; Faris Alotaibi, H.; Bibi, S.; Alanazi, M.M. Nematicidal Characterization of Newly Synthesized Thiazine Derivatives Using Caenorhabditis elegans as the Model Organism. ACS Omega 2023, 8, 20767–20778. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Huang, J.; Luo, Y.; Wang, S.; Wu, S.; Xing, Z.; Chen, J. Novel Amide Derivatives Containing an Imidazo[1,2-a]Pyridine Moiety: Design, Synthesis as Potential Nematicidal and Antibacterial Agents. Pestic. Biochem. Physiol. 2021, 175, 104857. [Google Scholar] [CrossRef] [PubMed]
- Villalobos-Rocha, J.C.; Sánchez-Torres, L.; Nogueda-Torres, B.; Segura-Cabrera, A.; García-Pérez, C.A.; Bocanegra-García, V.; Palos, I.; Monge, A.; Rivera, G. Anti-Trypanosoma Cruzi and Anti-Leishmanial Activity by Quinoxaline-7-Carboxylate 1,4-Di-N-Oxide Derivatives. Parasitol. Res. 2014, 113, 2027–2035. [Google Scholar] [CrossRef]
- Duque-Montaño, B.E.; Gómez-Caro, L.C.; Sanchez-Sanchez, M.; Monge, A.; Hernández-Baltazar, E.; Rivera, G.; Torres-Angeles, O. Synthesis and in Vitro Evaluation of New Ethyl and Methyl Quinoxaline-7-Carboxylate 1,4-Di-N-Oxide against Entamoeba Histolytica. Bioorganic Med. Chem. 2013, 21, 4550–4558. [Google Scholar] [CrossRef]
- Babaali, D.; Roeb, J.; Hammache, M.; Hallmann, J. Nematicidal Potential of Aqueous and Ethanol Extracts Gained from Datura stramonium, D. innoxia and D. tatula on Meloidogyne incognita. J. Plant Dis. Prot. 2017, 124, 339–348. [Google Scholar] [CrossRef]
- Vázquez-Sánchez, M.; Medina-Medrano, J.R.; Cortez-Madrigal, H.; Angoa-Pérez, M.V.; Muñoz-Ruíz, C.V.; Villar-Luna, E. Nematicidal Activity of Wild Plant Extracts against Second-Stage Juveniles of Nacobbus aberrans. Nematropica 2018, 48, 136–144. [Google Scholar]
- Cruz-Arévalo, J.; Hernández-Velázquez, V.M.; Cardoso-Taketa, A.T.; González-Cortazar, M.; Sánchez-Vázquez, J.E.; Peña-Chora, G.; Villar-Luna, E.; Aguilar-Marcelino, L. Hydroalcoholic Extracts from Pleurotus ostreatus Spent Substrate with Nematocidal Activity against Nacobbus aberrans. Plants 2024, 13, 1777. [Google Scholar] [CrossRef]
- DArT. Introduction to the KDSmart Application. Available online: https://www.kddart.org/kdsmart.html (accessed on 18 November 2021).
- Gomes, A.C.S.; Demuner, A.J.; Alvarenga, E.S.; Gondim, J.P.E.; Fonseca, A.R.; Buonicontro, D.S.; Pilau, E.J.; Silva, E. Synthesis and Evaluation of Nematicidal Activity of Compounds Derived from Norbornadiene. J. Braz. Chem. Soc. 2020, 31, 1805–1814. [Google Scholar] [CrossRef]
- Eloh, K.; Demurtas, M.; Mura, M.G.; Deplano, A.; Onnis, V.; Sasanelli, N.; Maxia, A.; Caboni, P. Potent Nematicidal Activity of Maleimide Derivatives on Meloidogyne incognita. J. Agric. Food Chem. 2016, 64, 4876–4881. [Google Scholar] [CrossRef]
- Caboni, P.; Ntalli, N.G. Botanical Nematicides, Recent Findings. ACS Symp. Ser. 2014, 1172, 145–157. [Google Scholar] [CrossRef]
- Silvestre, A.; Cabaret, J. Nematode Parasites of Animals Are More Prone to Develop Xenobiotic Resistance than Nematode Parasites of Plants. Parasite 2004, 11, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Fráguas, R.M.; Costa, V.A.; Terra, W.C.; Aguiar, A.P.; Martins, S.J.; Campos, V.P.; Oliveira, D.F. Toxicities of 4,5-Dihydroisoxazoles against Root-Knot Nematodes and in Silico Studies of Their Modes of Action. J. Agric. Food Chem. 2020, 68, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Yen, Y.P.; Yeh, M.J.; Hsiao, W.F. Synthesis and Nematocidal Activity of Ascaridole Derivatives against Meloidogyne incognita and Aphelenchoides besseyi. J. Pestic. Sci. 2007, 32, 49–52. [Google Scholar] [CrossRef]
- Pan, L.; Li, X.Z.; Sun, D.A.; Jin, H.; Guo, H.R.; Qin, B. Design and Synthesis of Novel Coumarin Analogs and Their Nematicidal Activity against Five Phytonematodes. Chin. Chem. Lett. 2016, 27, 375–379. [Google Scholar] [CrossRef]
- Desaeger, J.A.; Rivera, M.; Leighty, R.; Portillo, H. Effect of Methomyl and Oxamyl Soil Applications on Early Control of Nematodes and Insects. Pest Manag. Sci. 2011, 67, 507–513. [Google Scholar] [CrossRef]
- Yue, X.; Li, F.; Wang, B. Activity of Four Nematicides against Meloidogyne incognita Race 2 on Tomato Plants. J. Phytopathol. 2020, 168, 399–404. [Google Scholar] [CrossRef]
- Talavera-Rubia, M.; Vela-Delgado, M.D.; Verdejo-Lucas, S. Nematicidal Efficacy of Milbemectin against Root-Knot Nematodes. Plants 2020, 9, 839. [Google Scholar] [CrossRef]
Treatment | Average Mortality (%) ± SD | Treatment | Average Mortality (%) ± SD | ||
---|---|---|---|---|---|
N-Sulfonyllhydrazone series | 1 | 9.42 ± 5.19 | N-acylhydrazone series | 11 | 2.16 ± 1.94 |
2 | 1.16 ± 1.44 | 12 | 7.08 ± 0.34 | ||
3 | 3.7 ± 1.34 | 13 | 5.85 ± 2.55 | ||
4 | 0.58 ± 1.16 | 14 | 2.49 ± 2.17 | ||
5 | 2.67 ± 1.37 | 15 | 8.16 ± 1.23 | ||
6 | 0.29 ± 0.5 | 16 | 0.67 ± 0.6 | ||
7 | 4.06 ± 1.34 | 17 | 2.94 ± 0.85 | ||
8 | 1.89 ± 0.81 | 18 | 6.15 ± 2.62 | ||
9 | 7.58 ± 3.1 | 19 | 0.21 ± 0.37 | ||
10 | 1.41 ± 0.54 | 20 | 9.32 ± 2.95 | ||
BZ-1 | 3.43 ± 3.33 | 21 | 6.2 ± 3.59 | ||
BZ-2 | 17.3 ± 5.93 * | 22 | 5.03 ± 4.48 | ||
BZ-4 | 2.05 ± 2.0 | 23 | 50.0 ± 8.45 * | ||
BZ-5 | 0.29 ± 0.51 | 24 | 3.69 ± 2.85 | ||
BZ-8 | 2.44 ± 2.12 | pT-series | pT1 | 3.15 ± 1.53 | |
BTA-1 | 52.18 ± 5.03 * | pT2 | 1.5 ± 0.63 | ||
BTA-2 | 4.03 ± 3.14 | pT3 | 3.92 ± 3.4 | ||
BTA-3 | 4.22 ± 2.8 | pT-4 | 4.15 ± 2.65 | ||
BTA-4 | 7.76 ± 1.79 | pT-5 | 0.51 ± 0.88 | ||
BTA-10 | 3.46 ± 4.04 | pT-6 | 1.03 ± 0.75 | ||
pT-7 | 3.98 ± 1.89 | ||||
AGAz | AGAz4 | 96.6 ± 4.6 * | pT-8 | 2.67 ± 3.07 | |
pT-9 | 2.0 ± 1.35 | ||||
TR | TR-005 | 4.94 ± 1.86 | QX series | QX14 | 2.86 ± 3.13 |
TR-007 | 2.0 ± 1.84 | QX2 | 3.94 ± 3.02 | ||
6BTA-2 | 5.57 ± 1.3 | QX20 | 0.54 ± 0.56 | ||
6BTA-7 | 14.6 ± 7.94 | QXCH5 | 31.26 ± 3.67 * | ||
6BTA-8 | 0.61 ± 0.54 | QXCH8 | 2.17 ± 1.31 | ||
6BTA-9 | 44.7 ± 17.07 * | Chitosan | CHI | 68.25 ± 19.0 * | |
6BTA-10 | 3.12 ± 1.58 | Dimetil sulfoxide | DMSO | 4.07 ± 3.27 | |
BFX-Ami3 | 3.54 ± 2.24 | ||||
BFX-BUT | 86.81 ± 14.66 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz-Arévalo, J.; González-González, A.; Ortiz-Pérez, E.; Vázquez-Jiménez, L.K.; Delgado-Maldonado, T.; Paz-González, A.D.; Pineda-Alegría, J.A.; Rivera, G.; Aguilar-Marcelino, L. Nematocidal Potential of Synthetic Phenyl Azide Derivatives Against False Root-Knot Nematode (Nacobbus aberrans) Under In Vitro Conditions. Agriculture 2025, 15, 688. https://doi.org/10.3390/agriculture15070688
Cruz-Arévalo J, González-González A, Ortiz-Pérez E, Vázquez-Jiménez LK, Delgado-Maldonado T, Paz-González AD, Pineda-Alegría JA, Rivera G, Aguilar-Marcelino L. Nematocidal Potential of Synthetic Phenyl Azide Derivatives Against False Root-Knot Nematode (Nacobbus aberrans) Under In Vitro Conditions. Agriculture. 2025; 15(7):688. https://doi.org/10.3390/agriculture15070688
Chicago/Turabian StyleCruz-Arévalo, Julio, Alonzo González-González, Eyra Ortiz-Pérez, Lenci K. Vázquez-Jiménez, Timoteo Delgado-Maldonado, Alma D. Paz-González, Jesús Antonio Pineda-Alegría, Gildardo Rivera, and Liliana Aguilar-Marcelino. 2025. "Nematocidal Potential of Synthetic Phenyl Azide Derivatives Against False Root-Knot Nematode (Nacobbus aberrans) Under In Vitro Conditions" Agriculture 15, no. 7: 688. https://doi.org/10.3390/agriculture15070688
APA StyleCruz-Arévalo, J., González-González, A., Ortiz-Pérez, E., Vázquez-Jiménez, L. K., Delgado-Maldonado, T., Paz-González, A. D., Pineda-Alegría, J. A., Rivera, G., & Aguilar-Marcelino, L. (2025). Nematocidal Potential of Synthetic Phenyl Azide Derivatives Against False Root-Knot Nematode (Nacobbus aberrans) Under In Vitro Conditions. Agriculture, 15(7), 688. https://doi.org/10.3390/agriculture15070688