The Use of Pruning Residue Mulch and Spontaneous Groundcovers to Control Erosion and Carbon Loss in Olive Orchards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Plots
- ▪
- The tillage plot was managed with a rototiller at a 20 cm depth before the beginning of the trials. Before each replication, the soil was raked to break the superficial crust left by the previous rainfall simulation.
- ▪
- Spontaneous (Spon) vegetation groundcover at full field was left to grow in the plot. The dominant species identified in the previous season were Bromus madritensis, Calendula arvensis, Avena sterilis, Sorghum halepense and Hordeum murinum.
- ▪
- Pruning residue mulch with an amount of 10 t/ha (PR-10) was used. The pruning residues were applied on a strip of 2 m width corresponding to the common width of shredding machines. Figure 1 shows a scheme of the pruning residue mulches within the plot. The shredded residues were applied homogeneously on the marked strip.
- ▪
- Pruning residue mulch with an amount of 30 t/ha (PR-30) applied on a 2 m wide strip was placed within the plot similarly to PR-10. This treatment represents the doses applied on the ground after more severe pruning or bigger trees in size.
- ▪
- Mixture of spontaneous vegetation groundcover at full field and pruning residue mulch at a dose of 10 t/ha (Spon + PR-10) applied on a 2 m wide strip.
2.2. Rainfall Simulator and Simulation Trials
- -
- High-intensity rainfall (HIR): ranged between 35.7 and 39.4 mm/h. This rainfall intensity was obtained with a pressure of 200 kPa and sprinklers with 4 mm nozzles. The return period in the zone for rainfall of 40 mm/h during 90 min is 18 years [35].
- -
- Medium-intensity rainfall (MIR): ranged between 15.8 and 17.4 mm/h. The rainfall intensity was obtained with the pressure established in 180 kPa and sprinklers with 3 mm nozzles. A precipitation of 15 mm/h during 3 h has a return period of 4.4 years in the area [35].
2.3. Soil Sampling and Meassurements
2.4. Data Analysis
3. Results
3.1. Rainfall, Soil Moisture and Soil Cover
3.2. Runoff, Soil and SOC Losses
3.3. Soil Cover, Soil and SOC Loss Relationships
3.4. SOC Enrichment Ratio
4. Discussion
4.1. Rainfall Simulation Performance
4.2. Runoff and Soil Loss
4.3. SOC Loss and Enrichment Ratio
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO Agricultural Statistics. Available online: https://www.fao.org/faostat/es/#data/QCL (accessed on 24 June 2024).
- Ministerio de Agricultura Pesca y Alimentación. Encuesta Sobre Superficies y Rendimientos de Cultivos. Resultados Nacionales y Autonómicos. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/boletin20231_tcm30-690544.pdf (accessed on 16 June 2024).
- Junta de Andalucía. Consejería de Agricultura y Pesca. El Olivar Andaluz; Servicio de Publicaciones y Divulgación. D. Legal: SE-48-2003. IDEAS, Exclusivas y Publicidad S.L.: Sevilla, Spain, 2003; p. 134. Available online: https://www.juntadeandalucia.es/export/drupaljda/1337165631El_Olivar.pdf (accessed on 16 June 2024).
- Taguas, E.V.; Gómez, J.A. Vulnerability of olive orchards under the current CAP (Common Agricultural Policy) regulations on soil erosion: A study case in Southern Spain. Land Use Policy 2015, 42, 683–694. [Google Scholar] [CrossRef]
- Díez, C.M.; Moral, J.; Cabello, D.; Morello, P.; Rallo, L.; Barranco, D. Cultivar and Tree Density as Key Factors in the Long-Term Performance of Super High-Density Olive Orchards. Front. Plant Sci. 2016, 7, 1226. [Google Scholar] [CrossRef] [PubMed]
- Taguas, V.; Marín-Moreno, V.; Barranco, D.; Rafael, P.; García-Ferrer, A. Opportunities of Super High-Density Olive Orchard to Improve Soil Quality: Management Guidelines for Application of Pruning Residues. J. Environ. Manag. 2021, 293, 112785. [Google Scholar] [CrossRef] [PubMed]
- Gil-Ribes, J.A.; López-Giménez, F.J.; Blanco-Roldán, G.L.; Castro-García, S. Mecanización. In El Cultivo del Olivo; Barranco, D., Fernández, R., Rallo, L., Eds.; Mundi-Prensa: Madrid, Spain, 2017; pp. 1–995. [Google Scholar]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The New Assessment of Soil Loss by Water Erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Fan, D.; Jia, G.; Wang, Y.; Yu, X. The Effectiveness of Mulching Practices on Water Erosion Control: A Global Meta-Analysis. Geoderma 2023, 438, 116643. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Tarolli, P.; Cerdà, A. Mulching Practices for Reducing Soil Water Erosion: A Review. Earth Sci. Rev. 2016, 161, 191–203. [Google Scholar] [CrossRef]
- Saavedra, M.; Pastor, M. Sistemas de Cultivo en Olivar. Manejo de Malas Hierbas y Herbicidas; Editorial Agrícola Española: Madrid, Spain, 2002. [Google Scholar]
- Espejo-Pérez, A.J.; Rodríguez-Lizana, A.; Ordóñez, R.; Giráldez, J.V. Soil Loss and Runoff Reduction in Olive-Tree Dry-Farming with Cover Crops. Soil Sci. Soc. Am. J. 2013, 77, 2140–2148. [Google Scholar] [CrossRef]
- Rodríguez-Lizana, A.; Ordóñez, R.; Espejo-Pérez, A.J.; González, P. Plant Cover and Control of Diffuse Pollution from P in Olive Groves. Water Air Soil Pollut. 2007, 181, 17–34. [Google Scholar] [CrossRef]
- Ordóñez-Fernández, R.; Rodríguez-Lizana, A.; Espejo-Pérez, A.J.; González-Fernández, P.; Saavedra, M.M. Soil and Available Phosphorus Losses in Ecological Olive Groves. Eur. J. Agron. 2007, 27, 144–153. [Google Scholar] [CrossRef]
- Durán-Zuazo, V.H.; Rodríguez-Pleguezuelo, C.R.; Martin-Peinado, F.J.; de Graaff, J.; Francia-Martínez, J.R.; Flanagan, D.C. Environmental Impact of Introducing Plant Covers in the Taluses of Terraces: Implications for Mitigating Agricultural Soil Erosion and Runoff. CATENA 2011, 84, 79–88. [Google Scholar] [CrossRef]
- Hermosin, M.C.; Calderon, M.J.; Real, M.; Cornejo, J. Impact of Herbicides Used in Olive Groves on Waters of the Guadalquivir River Basin (Southern Spain). Agric. Ecosyst. Environ. 2013, 164, 229–243. [Google Scholar] [CrossRef]
- Repullo-Ruibérriz de Torres, M.A.; Carbonell-Bojollo, R.; Alcántara-Braña, C.; Rodríguez-Lizana, A.; Ordóñez-Fernández, R. Carbon Sequestration Potential of Residues of Different Types of Cover Crops in Olive Groves under Mediterranean Climate. Span. J. Agric. Res. 2012, 10, 649–661. [Google Scholar] [CrossRef]
- Parras-Alcántara, L.; Díaz-Jaimes, L.; Lozano-García, B. Organic Farming Affects C and N in Soils Under Olive Groves in Mediterranean Areas. Land Degrad. Dev. 2015, 26, 800–806. [Google Scholar] [CrossRef]
- Repullo-Ruibérriz de Torres, M.A.; Carbonell-Bojollo, R.M.; Moreno-García, M.; Ordóñez-Fernández, R.; Rodríguez-Lizana, A. Soil Organic Matter and Nutrient Improvement through Cover Crops in a Mediterranean Olive Orchard. Soil Tillage Res. 2021, 210, 104977. [Google Scholar] [CrossRef]
- Govaerts, B.; Verhulst, N.; Castellanos-Navarrete, A.; Sayre, K.D.; Dixon, J.; Dendooven, L. Conservation Agriculture and Soil Carbon Sequestration: Between Myth and Farmer Reality. Crit. Rev. Plant Sci. 2009, 28, 97–122. [Google Scholar] [CrossRef]
- Calatrava, J.; Franco, J.A. Using pruning residues as mulch: Analysis of its adoption and process of diffusion in Southern Spain olive orchards. J. Environ. Manag. 2011, 92, 620–629. [Google Scholar] [CrossRef] [PubMed]
- BOE (Official State Bulletin of Spain), Law 7/2022, of April 8th, on Waste and Contaminated Soils for a Circular Economy. Available online: https://www.boe.es/eli/es/l/2022/04/08/7/con (accessed on 17 December 2024).
- Manzanares, P.; Ruiz, E.; Ballesteros, M.; Negro, M.J. Residual Biomass Potential in Olive Tree Cultivation and Olive Oil Industry in Spain: Valorization Proposal in a Biorefinery Context. Span. J. Agric. Res. 2017, 15, e0206. [Google Scholar] [CrossRef]
- BOE (Official State Bulletin of Spain), Law 03/2022, of December 24th, on Management System for the Common Agricultural Policy and Other Related Matters. Available online: https://www.boe.es/eli/es/l/2022/12/23/30 (accessed on 17 December 2024).
- Moreno-García, M.; Repullo-Ruibérriz de Torres, M.A.; Carbonell-Bojollo, R.M.; Ordóñez-Fernández, R. Management of Pruning Residues for Soil Protection in Olive Orchards. Land Degrad. Dev. 2018, 29, 2975–2984. [Google Scholar] [CrossRef]
- Ordóñez-Fernández, R.; Repullo-Ruibérriz de Torres, M.A.; Román-Vázquez, J.; González-Fernández, P.; Carbonell-Bojollo, R. Macronutrients Released during the Decomposition of Pruning Residues Used as Plant Cover and Their Effect on Soil Fertility. J. Agric. Sci. 2015, 153, 615–630. [Google Scholar] [CrossRef]
- Repullo, M.A.; Carbonell, R.; Hidalgo, J.; Rodríguez-Lizana, A.; Ordóñez, R. Using Olive Pruning Residues to Cover Soil and Improve Fertility. Soil Tillage Res. 2012, 124, 36–46. [Google Scholar] [CrossRef]
- Rodríguez-Lizana, A.; Espejo-Pérez, A.J.; González-Fernández, P.; Ordóñez-Fernández, R. Pruning Residues as an Alternative to Traditional Tillage to Reduce Erosion and Pollutant Dispersion in Olive Groves. Water Air Soil Pollut. 2008, 193, 165–173. [Google Scholar] [CrossRef]
- Henry, G.M.; Hoyle, J.A.; Beck, L.L.; Cooper, T.; Montague, T.; Mckenney, C. Evaluation of Mulch and Preemergence Herbicide Combinations for Weed Control in High-Density Olive (Olea europaea L.) Production. HortScience 2015, 50, 1338–1341. [Google Scholar] [CrossRef]
- González-Ruiz, R.; Gómez-Guzmán, A.; Martínez-Rojas, M.; García-Fuentes, A.; Cordovilla, M.; Sainz-Pérez, M.; Sánchez-Solana, A.; Rodríguez-Lizana, A. The Influence of Mixed Green Covers, a New Trend in Organic Olive Growing on the Efficiency of Predatory Insects. Agriculture 2023, 13, 785. [Google Scholar] [CrossRef]
- Ordóñez-Fernández, R.; Gonzalez-Fernández, P.; Pastor, M. Cubiertas Inertes: Los Restos de Poda como Protección y Mejora de las Propiedades del Suelo; Rodríguez-Lizana, A., Ordoñez-Fernández, R., Gil-Ribes, J., Eds.; Junta de Andalucía: Sevilla, Spain, 2007; p. 168. [Google Scholar]
- Rodríguez-Lizana, A.; Ramos, A.; Pereira, M.J.; Soares, A.; Ribeiro, M.C. Assessment of the Spatial Variability and Uncertainty of Shreddable Pruning Biomass in an Olive Grove Based on Canopy Volume and Tree Projected Area. Agronomy 2023, 13, 1697. [Google Scholar] [CrossRef]
- Petratou, D.; Nunes, J.P.; Guimarães, M.H.; Prats, S. Decision-Making Criteria to Shape Mulching Techniques for Fire-Prone Landscapes. Landsc. Ecol. 2023, 38, 3405–3425. [Google Scholar] [CrossRef]
- Iserloh, T.; Ries, J.B.; Arnáez, J.; Boix-Fayos, C.; Butzen, V.; Cerdà, A.; Echeverría, M.T.; Fernández-Gálvez, J.; Fister, W.; Geißler, C.; et al. European small portable rainfall simulators: A comparison of rainfall characteristics. CATENA 2013, 110, 100–112. [Google Scholar] [CrossRef]
- Repullo-Ruibérriz de Torres, M.A.; Ordónez-Fernández, R.; Giráldez, J.V.; Márquez-García, J.; Laguna, A.; Carbonell-Bojollo, R. Efficiency of four different seeded plants and native vegetation as cover crops in the control of soil and carbon losses by watererosion in olive orchards. Land Degrad. Dev. 2018, 29, 2278–2290. [Google Scholar] [CrossRef]
- Franklin, D.H.; Truman, C.C.; Potter, T.L.; Bosch, D.D.; Strickland, T.C.; Jenkins, M.B.; Nuti, R.C. Nutrient losses in runoff from conventional and no-till pearl millet on pre-wetted Ultisols fertilized with broiler litter. Agric. Water Manag. 2012, 113, 38–44. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Barfield, B.J.; Hirschi, M.C. Tipping bucket flow measurements on erosion plots. Trans. ASAE 1986, 29, 1600–1604. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Christiansen, J.E. Irrigation by Sprinkling; University of California Agricultural Experimental Station: Berkley, CA, USA, 1942; Volume 670, Available online: https://www.researchgate.net/profile/Abdelkader-Bouaziz/post/Can_anyone_help_me_finding_this_article/attachment/61e45b5cf5675b211b1e8c36/AS%3A1112933983621120%401642355547947/download/Irrigation+by+Sprinkling.pdf (accessed on 3 January 2025).
- Laguna, A.; Giráldez, J.V. The description of soil erosion through a kinematic wave model. J. Hydrol. 1993, 145, 65–82. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Giménez-Morera, A.; Panagos, P.; Pourghasemi, H.R.; Pulido, M.; Cerdà, A. The potential of straw mulch as a nature-based solution for soil erosion in olive plantation treated with glyphosate: A biophysical and socioeconomic assessment. Land Degrad. Dev. 2020, 31, 1877–1889. [Google Scholar] [CrossRef]
- Alves Sobrinho, T.A.; Gómez-Macpherson, H.; Gómez, J.A. A portable integrated rainfall and overland flow simulator. Soil Use Manag. 2008, 24, 163–170. [Google Scholar] [CrossRef]
- Gómez, J.A.; Giráldez, J.V.; Pastor, M.; Fereres, E. Effects of tillage method on soil physical properties, infiltration and yield in an olive orchard. Soil Tillage Res. 1999, 52, 167–175. [Google Scholar] [CrossRef]
- Kinnell, P.I.A. A review of the design and operation of runoff and soil loss plots. CATENA 2016, 145, 257–265. [Google Scholar] [CrossRef]
- Gholami, L.; Sadeghi, S.H.; Homaee, M. Straw mulching effect on splash erosion, runoff, and sediment yield from eroded plots. Soil Sci. Soc. Am. J. 2013, 77, 268–278. [Google Scholar] [CrossRef]
- Abrantes, J.R.C.B.; Prats, S.A.; Keizer, J.J.; de Lima, J.L.M.P. Effectiveness of the application of rice straw mulching strips in reducing runoff and soil loss: Laboratory soil flume experiments under simulated rainfall. Soil Tillage Res. 2018, 180, 238–249. [Google Scholar] [CrossRef]
- Gholami, L.; Banasik, K.; Sadeghi, S.H.; Darvishan, A.K.; Hejduk, L. Effectiveness of straw mulch on infiltration, splash erosion, runoff and sediment in laboratory conditions. J. Water Land Dev. 2014, 22, 51–60. [Google Scholar] [CrossRef]
- Klocke, N.L.; Currie, R.S.; Aiken, R.M. Soil Water Evaporation and Crop Residues. Trans. ASABE 2009, 52, 103–110. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Iserloh, T.; Lassu, T.; Cerdà, A.; Keestra, S.D.; Prosdocimi, M.; Brings, C.; Marzen, M.; Ramos, M.C.; Senciales, J.M.; et al. Quantitative comparison of initial soil erosion processes and runoff generation in Spanish and German vineyards. Sci. Total Environ. 2016, 565, 1165–1174. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Taguas, E.; Seeger, M.; Ries, J.B. Quantification of soil and water losses in an extensive olive orchard catchment in Southern Spain. J. Hydrol. 2018, 556, 749–758. [Google Scholar] [CrossRef]
- Ries, J.B.; Hirt, U. Permanence of Soil Surface Crusts on Abandoned Farmland in the Central Ebro Basin/Spain. CATENA 2007, 72, 282–296. [Google Scholar] [CrossRef]
- Rahma, A.E.; Wang, W.; Tang, Z.; Lei, T.; Warrington, D.N.; Zhao, J. Straw Mulch Can Induce Greater Soil Losses from Loess Slopes than No Mulch under Extreme Rainfall Conditions. Agric. For. Meteorol. 2017, 232, 141–151. [Google Scholar] [CrossRef]
- Sadeghi, S.H.; Kiani Harchegani, M.; Asadi, H. Variability of Particle Size Distributions of Upward/Downward Splashed Materials in Different Rainfall Intensities and Slopes. Geoderma 2017, 290, 100–106. [Google Scholar] [CrossRef]
- Prats, S.A.; Martins, M.A.d.S.; Malvar, M.C.; Ben-Hur, M.; Keizer, J.J. Polyacrylamide Application versus Forest Residue Mulching for Reducing Post-Fire Runoff and Soil Erosion. Sci. Total Environ. 2014, 468–469, 464–474. [Google Scholar] [CrossRef]
- Cai, T.; Zhang, C.; Huang, Y.; Huang, H.; Yang, B.; Zhao, Z.; Zhang, J.; Jia, Z. Effects of Different Straw Mulch Modes on Soil Water Storage and Water Use Efficiency of Spring Maize (Zea mays L.) in the Loess Plateau of China. Plant Soil Environ. 2015, 61, 253–259. [Google Scholar] [CrossRef]
- Dunkerley, D. Organic Litter: Dominance over Stones as a Source of Interrill Flow Roughness on Low-Gradient Desert Slopes at Fowlers Gap, Arid Western NSW, Australia. Earth Surf. Process. Landf. 2003, 28, 15–29. [Google Scholar] [CrossRef]
- Pan, D.; Zhao, X.; Gao, X.; Song, Y.; Dyck, M.; Wu, P.; Li, Y.; Ma, L. Application Rate Influences the Soil and Water Conservation Effectiveness of Mulching with Chipped Branches. Soil Sci. Soc. Am. J. 2018, 82, 447–454. [Google Scholar] [CrossRef]
- Wang, C.; Ma, J.; Wang, Y.; Li, Z.; Ma, B. The Influence of Wheat Straw Mulching and Straw Length on Infiltration, Runoff and Soil Loss. Hydrol. Process. 2022, 36, e14561. [Google Scholar] [CrossRef]
- Francia, J.R.; Durán-Zuazo, V.H.; Martínez-Raya, A. Environmental impact from mountainous olive orchards under different soil management systems (SE Spain). Sci. Total Environ. 2006, 358, 46–60. [Google Scholar] [CrossRef]
- Gómez, J.A.; Llewellyn, C.; Basch, G.; Sutton, P.B.; Dyson, J.S.; Jones, C.A. The effects of cover crops and conventional tillage on soil and runoff loss in vineyards and olive groves in several Mediterranean countries. Soil Use Manag. 2011, 27, 502–514. [Google Scholar] [CrossRef]
- Kairis, O.; Karavitis, C.; Kounalaki, A.; Salvati, L.; Kosmas, C. The effect of land management practices on soil erosion and land desertification in an olive grove. Soil Use Manag. 2013, 29, 597–606. [Google Scholar] [CrossRef]
- Sastre, B.; Barbero-Sierra, C.; Bienes, R.; Marques, M.J.; García-Díaz, A. Soil loss in an olive grove in Central Spain under cover crops and tillage treatments, and farmer perceptions. J. Soils Sediments 2017, 17, 873–888. [Google Scholar] [CrossRef]
- Biddoccu, M.; Ferraris, S.; Opsi, F.; Cavallo, E. Long-term monitoring of soil management effects on runoff and soil erosion in sloping vineyards in Alto Monferrato (North-West Italy). Soil Tillage Res. 2016, 155, 176–189. [Google Scholar] [CrossRef]
- Martínez-Mena, M.; Carrillo-López, E.; Boix-Fayos, C.; Almagro, M.; García-Franco, N.; Díaz-Periera, E.; Montoya, I.; de Vente, J. Long-term effectiveness of sustainable land management practices to control runoff, soil erosion, and nutrient loss and the role of rainfall intensity in Mediterranean rainfed agroecosystems. CATENA 2020, 187, 104352. [Google Scholar] [CrossRef]
- Liu, R.; Thomas, B.W.; Shi, X.; Zhang, X.; Wang, Z.; Zhang, Y. Effects of ground cover management on improving water and soil conservation in tree crop systems: A meta-analysis. CATENA 2021, 199, 105085. [Google Scholar] [CrossRef]
- Podwojewski, P.; Janeau, J.L.; Valentin, C.; Lorentz, S.; Chaplot, V. Influence of grass soil cover on water runoff and soil detachment under rainfall simulation in a sub-humid South African degraded rangeland. Earth Surf. Process. Landf. 2011, 36, 911–922. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Rodrigo-Comino, J.; Novara, A.; Giménez-Morera, A.; Pulido, M.; Di Prima, S.; Cerdà, A. Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate-treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. CATENA 2019, 174, 95–103. [Google Scholar] [CrossRef]
- Shi, Z.H.; Yue, B.J.; Wang, L.; Fang, N.F.; Wang, D.; Wu, F.Z. Effects of mulch cover rate on interrill erosion processes and the size selectivity of eroded sediment on steep slopes. Soil Sci. Soc. Am. J. 2013, 77, 257–267. [Google Scholar] [CrossRef]
- Snelder, D.J.; Bryan, R.B. The use of rainfall simulation tests to assess the influence of vegetation density on soil loss on degraded rangelands in the Baringo District, Kenya. CATENA 1995, 25, 105–116. [Google Scholar] [CrossRef]
- González-Sánchez, E.J.; Veroz-González, O.; Blanco-Roldan, G.L.; Márquez-García, F.; Carbonell-Bojollo, R. A renewed view of conservation agriculture and its evolution over the last decade in Spain. Soil Tillage Res. 2015, 146, 204–212. [Google Scholar] [CrossRef]
- Gómez, J.A.; Guzmán, M.G.; Giráldez, J.V.; Fereres, E. The influence of cover crops and tillage on water and sediment yield, and on nutrient, and organic matter losses in an olive orchard on a sandy loam soil. Soil Tillage Res. 2009, 106, 137–144. [Google Scholar] [CrossRef]
- Repullo-Ruibérriz de Torres, M.A.; Veroz-González, Ó.; Sánchez-Ruiz, F.; Moreno-García, M.; Ordónez-Fernández, R.; González-Sánchez, E.J.; Carbonell-Bojollo, R.M. Carbon Sequestration Through Groundcovers and Pruning Residues in Sustainable Olive Orchards Under Different Edaphoclimatic Conditions. Agriculture 2024, 14, 2118. [Google Scholar] [CrossRef]
- Martínez-Mena, M.; López, J.; Almagro, M.; Albaladejo, J.; Castillo, V.; Ortiz, R.; Boix-Fayos, C. Organic carbon enrichment in sediments: Effects of rainfall characteristics under different land uses in a Mediterranean area. CATENA 2012, 94, 36–42. [Google Scholar] [CrossRef]
- Sastre, B.; Antón-Iruela, O.; Moreno-Delafuente, A.; Navas, M.J.; Marques, M.J.; González-Canales, J.; Martín-Sanz, J.P.; Ramos, R.; GarcíaDíaz, A.; Bienes, R. Groundcovers Improve Soil Properties in Woody Crops Under Semiarid Climate. Agriculture 2024, 14, 2288. [Google Scholar] [CrossRef]
- Pareja-Sánchez, E.; Domouso, P.; Gómez-Muñoz, B.; Heras-Linares, M.T.; García-Ruíz, R. Conservation Practices Boost Soil-Protected Organic Carbon Stocks in Olive Orchards. Agriculture 2024, 14, 1354. [Google Scholar] [CrossRef]
- Almagro, M.; de Vente, J.; Boix-Fayos, C.; García-Franco, N.; Melgares de Aguilar, J.; González, D.; Solé-Benet, A.; Martínez-Mena, M. Sustainable land management practices as providers of several ecosystem services under rainfed Mediterranean agroecosystem. Mitig. Adapt. Strateg. Glob. Change 2016, 21, 1029–1043. [Google Scholar] [CrossRef]
- Koiter, A.J.; Owens, P.N.; Petticrew, E.L.; Lobb, D.A. The role of soil surface properties on the particle size and carbon selectivity of interrill erosion in agricultural landscapes. CATENA 2017, 153, 194–206. [Google Scholar] [CrossRef]
- López-Vicente, M.; Gómez, J.A.; Guzmán, G.; Calero, J.; García-Ruiz, R. The role of cover crops in the loss of protected and non-protected soil organic carbon fractions due to water erosion in a Mediterranean olive grove. Soil Tillage Res. 2021, 213, 105119. [Google Scholar] [CrossRef]
Depth | pH | pH | EC | CO32− | CEC | P | K | Sand | Silt | Clay | Textural Class |
---|---|---|---|---|---|---|---|---|---|---|---|
cm | (H2O) | (CaCl2) | dS/m | % | cmol/kg | mg/kg | mg/kg | % | % | % | |
0–20 | 8.6 | 7.8 | 0.12 | 20.7 | 15.2 | 15.0 | 447.0 | 47.8 | 34.2 | 18.0 | Loamy |
20–40 | 8.6 | 7.9 | 0.22 | 23.2 | 14.2 | 10.6 | 317.2 | 48.8 | 31.1 | 20.1 | Loamy |
40–60 | 8.6 | 7.9 | 0.22 | 20.5 | 15.0 | 11.5 | 266.0 | 49.5 | 32.0 | 18.4 | Loamy |
Intensity | Treatment | Rainfall Rate (mm/h) | CUC (%) | Initial Soil Moisture (%) | Soil Cover (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HIR | Tillage | 35.78 | (±2.73) | a | 86.60 | (±4.66) | a | 22.39 | (±0.57) | a | 4.15 | (±0.55) | d |
Spon | 39.44 | (±0.45) | a | 92.99 | (±3.00) | a | 21.97 | (±2.41) | a | 66.35 | (±1.43) | b | |
PR-10 | 35.72 | (±3.49) | a | 87.76 | (±1.17) | a | 21.24 | (±1.72) | a | 60.75 | (±2.33) | c | |
PR-30 | 36.92 | (±3.21) | a | 88.50 | (±2.65) | a | 23.64 | (±4.04) | a | 70.78 | (±0.88) | b | |
Spon+PR-10 | 36.07 | (±3.44) | a | 89.69 | (±6.51) | a | 25.31 | (±1.55) | a | 93.34 | (±3.86) | a | |
MIR | Tillage | 17.35 | (±0.60) | a | 88.70 | (±1.88) | a | 19.39 | (±2.95) | b | 3.05 | (±0.00) | d |
Spon | 16.44 | (±0.52) | a | 88.86 | (±2.67) | a | 19.44 | (±1.70) | b | 68.87 | (±4.65) | b | |
PR-10 | 16.26 | (±1.48) | a | 71.84 | (±9.40) | ab | 23.53 | (±1.00) | a | 60.75 | (±2.33) | c | |
PR-30 | 15.91 | (±0.04) | a | 69.80 | (±0.80) | b | 23.73 | (±1.08) | a | 70.78 | (±0.88) | b | |
Spon+PR-10 | 15.80 | (±0.99) | a | 69.69 | (±3.10) | b | 25.40 | (±1.27) | a | 94.98 | (±3.71) | a |
Intensity | Treatment | Runoff (m3/ha) | Soil Loss (kg/ha) | SOC Loss (kg/ha) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
HIR | Tillage | 49.38 | (±14.42) | a | 519.40 | (±303.16) | a | 9.15 | (±4.49) | a |
Spon | 5.42 | (±1.75) | c | 3.76 | (±1.01) | b | 0.13 | (±0.04) | b | |
PR-10 | 28.27 | (±6.25) | b | 12.99 | (±4.03) | b | 0.78 | (±0.27) | b | |
PR-30 | 18.99 | (±9.23) | bc | 7.39 | (±2.48) | b | 0.41 | (±0.21) | b | |
Spon+PR-10 | 2.19 | (±2.75) | c | 1.96 | (±2.12) | b | 0.07 | (±0.07) | b | |
MIR | Tillage | 8.54 | (±6.85) | a | 48.84 | (±34.48) | a | 0.506 | (±0.38) | a |
Spon | 0.65 | (±0.16) | b | 0.94 | (±0.18) | b | 0.031 | (±0.00) | b | |
PR-10 | 1.04 | (±1.31) | b | 1.44 | (±1.00) | b | 0.062 | (±0.04) | b | |
PR-30 | 1.90 | (±2.49) | b | 0.67 | (±0.38) | b | 0.028 | (±0.01) | b | |
Spon+PR-10 | 0.13 | (±0.06) | b | 0.33 | (±0.14) | b | 0.010 | (±0.01) | b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Repullo-Ruibérriz de Torres, M.A.; Pérez-Serrano, F.; Moreno-García, M.; Carbonell-Bojollo, R.M.; Ordóñez-Fernández, R.; Rodríguez-Lizana, A. The Use of Pruning Residue Mulch and Spontaneous Groundcovers to Control Erosion and Carbon Loss in Olive Orchards. Agriculture 2025, 15, 677. https://doi.org/10.3390/agriculture15070677
Repullo-Ruibérriz de Torres MA, Pérez-Serrano F, Moreno-García M, Carbonell-Bojollo RM, Ordóñez-Fernández R, Rodríguez-Lizana A. The Use of Pruning Residue Mulch and Spontaneous Groundcovers to Control Erosion and Carbon Loss in Olive Orchards. Agriculture. 2025; 15(7):677. https://doi.org/10.3390/agriculture15070677
Chicago/Turabian StyleRepullo-Ruibérriz de Torres, Miguel A., Francisco Pérez-Serrano, Manuel Moreno-García, Rosa M. Carbonell-Bojollo, Rafaela Ordóñez-Fernández, and Antonio Rodríguez-Lizana. 2025. "The Use of Pruning Residue Mulch and Spontaneous Groundcovers to Control Erosion and Carbon Loss in Olive Orchards" Agriculture 15, no. 7: 677. https://doi.org/10.3390/agriculture15070677
APA StyleRepullo-Ruibérriz de Torres, M. A., Pérez-Serrano, F., Moreno-García, M., Carbonell-Bojollo, R. M., Ordóñez-Fernández, R., & Rodríguez-Lizana, A. (2025). The Use of Pruning Residue Mulch and Spontaneous Groundcovers to Control Erosion and Carbon Loss in Olive Orchards. Agriculture, 15(7), 677. https://doi.org/10.3390/agriculture15070677