Agronomic Effects of Different Rock Powder Rates Associated with Irrigation Water Depths: Potential for Lettuce (Lactuca sativa L.) Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Characterization
- ECA = Evaporation in the Class A tank (mm day−1);
- EMT = Evaporation in the mini tank (mm day−1).
- ETo = Reference evapotranspiration (mm day−1);
- Kt = Coefficient of the tank (dimensionless);
- ECA = Evaporation in the Class A tank (mm day−1).
- ETc = Crop evapotranspiration (mm day−1);
- ETo = Reference evapotranspiration (mm day−1);
- Kc = Crop coefficient (dimensionless).
- TWD = Total irrigation water depth needed (mm);
- ETc = Crop evapotranspiration (mm day−1);
- WS = Watering shift (1 day);
- Ea = Irrigation efficiency (dimensionless).
- Ti = Irrigation time (min);
- TWD = Total irrigation water depth needed (mm);
- E1 = Spacing between lateral rows (m);
- Eg = Spacing between the drippers (m);
- q = dripper flow (L h−1).
2.2. Temperatures Inside the Protected Environment
2.3. Agronomic and Production Characteristics of the Lettuce Crops
2.4. Statistical Analyses
3. Results and Discussion
3.1. Temperatures and Crop Evapotranspiration Inside the Protected Environment
3.2. Analysis of Variance and Regression
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Filgueira, F.A.R. Novo Manual de Olericultura: Agrotecnologia Moderna Na Produção e Comercialização de Hortaliças; Ed. UFV: Viçosa, Brazil, 2008; ISBN 8572693130. [Google Scholar]
- Souza, Ê.G.F.; Ribeiro, R.M.P.; Pereira, L.A.F.; de Sênna Silva Neto, J.S.; Barros Júnior, A.P.; da Silveira, L.M. Produtividade de Cultivares de Alface Em Função Da Idade de Colheita No Semiárido Potiguar, Brasil. Rev. Verde Agroecol. Desenvolv. Sustentável 2018, 13, 282. [Google Scholar] [CrossRef]
- Brzezinski, C.R.; Abati, J.; Geller, A.; Werner, F.; Zucareli, C. Produção de Cultivares de Alface Americana Sob Dois Sistemas de Cultivo. Rev. Ceres 2017, 64, 83–89. [Google Scholar] [CrossRef]
- Yavuz, D.; Seymen, M.; Kal, Ü.; Atakul, Z.; Tanrıverdi, Ö.B.; Türkmen, Ö.; Yavuz, N. Agronomic and Physio-Biochemical Responses of Lettuce to Exogenous Sodium Nitroprusside (SNP) Applied under Different Irrigation Regimes. Agric. Water Manag. 2023, 277, 108127. [Google Scholar] [CrossRef]
- Lajús, C.R.; da Luz, G.L.; da Silva, C.G.; Dalcanton, F.; Barichello, R.; Sauer, A.V.; Piaia, T.A.; Piva, A.J.D. Aspectos Qualitativos e Quantitativos de Variedades de Alface Submetidas a Concentrações de Pó de Rocha Em Cultivo Orgânico/Qualitative and Quantitative Aspects of Lettuce Varieties Submitted to Rock Powder Concentrations in Organic Cultivation. Braz. J. Dev. 2021, 7, 49489–49512. Available online: https://ojs.brazilianjournals.com.br/ojs/index.php/BRJD/article/view/29933 (accessed on 17 December 2024).
- Crusciol, C.A.C.; Soratto, R.P.; Gilabel, A.P.; da Costa, C.H.M.; de Campos, M.; Castro, G.S.A.; Ferrari Neto, J. Broadcast Application of Ground Silicate Rocks as Potassium Sources for Grain Crops. Pesqui. Agropecu. Bras. 2022, 57, e02443. [Google Scholar] [CrossRef]
- Conceição, L.T.; Silva, G.N.; Holsback, H.M.S.; de Figueiredo Oliveira, C.; Marcante, N.C.; de Souza Martins, É.; de Souza Santos, F.L.; Santos, E.F. Potential of Basalt Dust to Improve Soil Fertility and Crop Nutrition. J. Agric. Food Res. 2022, 10, 100443. [Google Scholar] [CrossRef]
- dos Santos, L.F.; Sodré, F.F.; de Souza Martins, É.; de Figueiredo, C.C.; Busato, J.G. Effects of Biotite Syenite on the Nutrient Levels and Electrical Charges in a Brazilian Savanna Ferralsol. Pesqui. Agropecu. Trop. 2021, 51, e66691. [Google Scholar] [CrossRef]
- Telles, T.S.; Filho, J.E.R.V.; Righetto, A.J.; Ribeiro, M.R. TD 2638—Desenvolvimento da Agricultura de Baixo Carbono no Brasil; Texto Para Discussão; Instituto de Pesquisa Econômica Aplicada (IPEA): Brasília, Brazil, 2021; pp. 1–41. [CrossRef]
- da Silva, D.W.; Canepelle, E.; Lanzanova, M.E.; Guerra, D.; Redin, M. Pó de Basalto Como Fertilizante Alternativo Na Cultura Do Feijão Preto Em Latossolo Vermelho. Rev. Verde Agroecol. Desenvolv. Sustentável 2020, 15, 373–378. [Google Scholar] [CrossRef]
- Ferrari Putti, F.; Cremasco, C.P.; Neto, A.B.; Barbosa, A.C.K.; da Silva Júnior, J.F.; dos Reis, A.R.; Góes, B.C.; Arruda, B.; Filho, L.R.A.G. Fuzzy Modeling Development for Lettuce Plants Irrigated with Magnetically Treated Water. Plants 2023, 12, 3811. [Google Scholar] [CrossRef]
- Martins, E.d.S.; Hardoim, P.R.; Martins, E.d.S. Efeito Da Aplicação Dos Remineralizadores No Solo. Inf. Agropec. 2023, 44, 49–56. [Google Scholar]
- Barros, J.A.S.; Cavalcante, M. O Uso Do Mulching No Cultivo de Alface: Uma Revisão de Literatura. Divers. J. 2021, 6, 3796–3810. [Google Scholar] [CrossRef]
- Jin, Q.; You, J.; Xie, M.; Qiu, Y.; Lei, S.; Ding, Q.; Chen, J. Drip Irrigation Reduced Fertilizer Nitrogen Loss from Lettuce Field—A Case Study Based on 15N Tracing Technique. Water 2022, 14, 675. [Google Scholar] [CrossRef]
- Maia, C.E.; da Silva Neto, J.M.; Braga, A.Q.C. Método Simplificado Para Estimativa Das Dimensões Do Bulbo Molhado Na Irrigação Por Gotejamento Superficial. Rev. Ibero-Am. Ciências Ambient. 2020, 11, 53–61. [Google Scholar] [CrossRef]
- Nawandar, N.K.; Satpute, V.R. IoT Based Low Cost and Intelligent Module for Smart Irrigation System. Comput. Electron. Agric. 2019, 162, 979–990. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- SiBCS. Sistema Brasileiro de Classificação de Solos; Embrapa, S., Ed.; Embrapa Solos: Brasília, Brazil, 2018; ISBN 978-85-7035-198-2. [Google Scholar]
- Rezende, T.P.; Pelá, A.; Pelá, G.M. Uso de Pó de Basalto Como Alternativa Na Adubação Da Cultura Da Alface. Rev. Process. Quim. 2013, 7, 67–72. [Google Scholar] [CrossRef]
- Mantovani, E.C.; Mantovani, E.C.; Bernardo, S.; Palaretti, L.F. Irrigação: Princípios e Métodos; UFV: Viçosa, Brazil, 2007; ISBN 8572693068. [Google Scholar]
- Merriam, J.L.; Keller, J. Farm Irrigation System Evaluation: A Guide for Management; Utah State University: Logan, UT, USA, 1978. [Google Scholar]
- Santos, A.; Costa, A.; Silva, P.; Melo, N.; Araújo, H. Influência De Lâminas De Irrigação E Fontes De Nitrogênio No Crescimento Vegetativo Do Tomate Cereja Cultivado Em Ambiente Protegido. Encicl. Biosf. 2017, 14, 821–831. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O.; Aboukhaled, A.; Damagnez, J.; Dastane, N.G.; Van Den Berg, C.; Rijtema, P.E.; Ashford, O.M.; Frere, M. Crop Water Requirements; FAO: Rome, Italy, 1977. [Google Scholar]
- Sentelhas, P.C.; Gillespie, T.J.; Santos, E.A. Evaluation of FAO Penman–Monteith and Alternative Methods for Estimating Reference Evapotranspiration with Missing Data in Southern Ontario, Canada. Agric. Water Manag. 2010, 97, 635–644. [Google Scholar] [CrossRef]
- Pereira, O.C.N.; Bertonha, A.; de Freitas, P.S.L.; Gonçalves, A.C.A.; Rezende, R.; da Silva, F.F. Produção de Alface Em Função de Água e de Nitrogênio. Acta Sci. Agron. 2003, 25, 381–386. [Google Scholar]
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 6 February 2023).
- Kaiser, H.F. The Varimax Criterion for Analytic Rotation in Factor Analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Michelon, N.; Pennisi, G.; Ohn Myint, N.; Orsini, F.; Gianquinto, G. Strategies for Improved Water Use Efficiency (WUE) of Field-Grown Lettuce (Lactuca sativa L.) under a Semi-Arid Climate. Agronomy 2020, 10, 668. [Google Scholar] [CrossRef]
- Walter, S.H.; Minuzzi, R.B.; Conceição, A.G. Temperatura Basal Inferior e Soma Térmica de Microverdes de Beterraba, Couve, Rúcula, Alface e Salsa. Braz. J. Anim. Environ. Res. 2024, 7, e72856. [Google Scholar] [CrossRef]
- Fernandes, G.S.T.; de Araujo Lima, E.; Alves, A.U.; Brito, V.A.; Soares, L.C. Condicionamento Agrometeorológico Em Cultivares de Alface. Rev. Bras. Meteorol. 2019, 34, 505–514. [Google Scholar] [CrossRef]
- Dalcin, G.; Piccoli, L.; Strassburger, A.S.; dos Santos Strassburger, K. Efeitos Da Aplicação Do Pó de Rocha Em Argissolo Sobre o Crescimento de Alface. In Proceedings of the XVIII Mostra de Iniciação Científica, Pós-graduação, Pesquisa e Extensão, Caxias do Sul, Brazil, 10 November 2018; pp. 1–9. [Google Scholar]
- Santana, J.; Nascimento, C.; Silva, C.; Silva, W.; Damascena, J. Resposta De Cultivares De Alface Sob Diferentes Lâminas De Irrigação E Doses De Nitrogênio. Encicl. Biosf. 2019, 16, 1332–1346. [Google Scholar] [CrossRef]
- Warrick, A.W.; Nielsen, D.R. Spatial Variability of Soil Physical Properties in the Field. In Applications of Soil Physics; Hillel, D., Ed.; Academic: New York, NY, USA, 1980; pp. 319–344. [Google Scholar]
- Magalhães, F.F.; Cunha, F.F.; Godoy, A.R.; Souza, E.J.; Silva, T.R. Produção de Cultivares de Alface Tipo Crespa Sob Diferentes Lâminas de Irrigação. Water Resour. Irrig. M. 2015, 4, 41–50. [Google Scholar] [CrossRef]
- Bozkurt, S.; Mansuroglu, G.S.; Kara, M.; Onder, S. Responses of Lettuce to Irrigation Levels and Nitrogen Forms. Afr. J. Agric. Res. 2009, 4, 1171–1177. [Google Scholar]
- da Silva, W.R.; Salomão, L.C.; Pereira, D.R.M.; de Oliveira, H.F.E.; de A Pereira, A.I.; Cantuario, F.S. Irrigation Levels and Use of Hydro Retainer Polymer in Greenhouse Lettuce Production. Rev. Bras. Eng. Agric. Ambient. 2019, 23, 406–412. [Google Scholar] [CrossRef]
- Schumacher, P.V.; Mota, J.H.; Yuri, J.E.; Resende, G.M. Competição de Cultivares de Alface Em Jataí-GO. Hortic. Bras. 2012, 30, S2727–S2731. [Google Scholar]
- Hou, M.; Zhang, H.; Shaghaleh, H.; Chen, J.; Zhong, F.; Alhaj Hamoud, Y.; Zhu, L. Optimization of a Lower Irrigation Limit for Lettuce Based on Comprehensive Evaluation: A Field Experiment. Plants 2024, 13, 853. [Google Scholar] [CrossRef]
- Talpur, M.M.A.; Shaghaleh, H.; Ali Adam Hamad, A.; Chang, T.; Zia-ur-Rehman, M.; Usman, M.; Alhaj Hamoud, Y. Effect of Planting Geometry on Growth, Water Productivity, and Fruit Quality of Tomatoes under Different Soil Moisture Regimes. Sustainability 2023, 15, 9526. [Google Scholar] [CrossRef]
- de Toledo Alvim, K.R.; de Brito, C.H.; Brandão, A.M.; Gomes, L.S.; Lopes, M.T.G. Quantificação Da Área Foliar e Efeito Da Desfolha Em Componentes de Produção de Milho. Cienc. Rural 2010, 40, 1017–1022. [Google Scholar] [CrossRef]
- Cahn, M.D.; Johnson, L.F.; Benzen, S.D. Evapotranspiration Based Irrigation Trials Examine Water Requirement, Nitrogen Use, and Yield of Romaine Lettuce in the Salinas Valley. Horticulturae 2022, 8, 857. [Google Scholar] [CrossRef]
- Abd–Elrahman, S.H.; Saudy, H.S.; El–Fattah, D.A.A.; Hashem, F.A. Effect of Irrigation Water and Organic Fertilizer on Reducing Nitrate Accumulation and Boosting Lettuce Productivity. J. Soil. Sci. Plant Nutr. 2022, 22, 2144–2155. [Google Scholar] [CrossRef]
- Shin, Y.K.; Bhandari, S.R.; Jo, J.S.; Song, J.W.; Lee, J.G. Effect of Drought Stress on Chlorophyll Fluorescence Parameters, Phytochemical Contents, and Antioxidant Activities in Lettuce Seedlings. Horticulturae 2021, 7, 238. [Google Scholar] [CrossRef]
- Silva, P.C.; Ferreira, A.F.A.; Araújo, E.S.; Bessa Neto, J.V.; da Costa, A.R.; dos Santos Fernandes, L.; Martins, A.A.S.; da Silva Cândido, R.; da Rosa Ferraz Jardim, A.M.; Pandorfi, H.; et al. Cherry Tomato Crop Management Under Irrigation Levels: Morphometric Characteristics and Their Relationship with Fruit Production and Quality. Gesunde Pflanz. 2023, 75, 1277–1288. [Google Scholar] [CrossRef]
- Machado, D.B.; Quaresma, I.V.R.; Soares, J.C.; Oliveira, I.A.; Freitas, L.; de Araújo, H.F.; de Macedo, A.R.; Campos, M.C.C.; dos Santos, R.V.; de Almeida, R.G. Desempenho Agronômico De Cultivares De Alface Em Casa De Vegetação No Município De Breves—PA. Rev. Valore 2023, 8, 103–112. [Google Scholar] [CrossRef]
- Wang, S.Y.; Galletta, G.J. Foliar Application of Potassium Silicate Induces Metabolic Changes in Strawberry Plants. J. Plant Nutr. 1998, 21, 157–167. [Google Scholar] [CrossRef]
- Maldaner, B.L.; Christh, W.R.A.; Klein, C. Efeito Do Uso De Pó De Basalto Na Cultura Da Alface. In Proceedings of the Seminário de Iniciação Científica e Seminário Integrado de Ensino, Pesquisa e Extensão (SIEPE), Joaçaba, Brazil, 19–23 October 2020; p. e24601. [Google Scholar]
- Augusto, J.; De Sena, J.O.A.; Hata, F.T.; Da Cunha, F.A.D.; Campos, T.A. Produção de Alface Americana Orgânica Sob Doses de Pó de Rocha Basáltica, Composto Orgânico e Microrganismos Eficientes. Agrarian 2022, 15, e15153. [Google Scholar] [CrossRef]
- Groth, M.Z.; Bellé, C.; Bernardi, D.; da Cunha Borges Filho, R. Pó-de-Basalto No Desenvolvimento de Plantas de Alface e Na Dinâmica Populacional de Insetos. Rev. Ciênc. Agrovet. 2018, 16, 433–440. [Google Scholar] [CrossRef]
- Arnott, A.; Galagedara, L.; Thomas, R.; Cheema, M.; Sobze, J.-M. The Potential of Rock Dust Nanoparticles to Improve Seed Germination and Seedling Vigor of Native Species: A Review. Sci. Total. Environ. 2021, 775, 145139. [Google Scholar] [CrossRef]
- Luise, L.K.; da Paz, S.P.A.; Rômulo, S.A.; Leonardo, F.V.; José, C.S.-S.; Giuliano, M.; de Souza Martins, É. Successive off Take of Elements by Maize Grown in Pure Basalt Powder. Afr. J. Agric. Res. 2020, 15, 229–239. [Google Scholar] [CrossRef]
- Li, J.; Mavrodi, D.V.; Dong, Y. Effect of Rock Dust-Amended Compost on the Soil Properties, Soil Microbial Activity, and Fruit Production in an Apple Orchard from the Jiangsu Province of China. Arch. Agron. Soil. Sci. 2021, 67, 1313–1326. [Google Scholar] [CrossRef]
- Capra, A.; Consoli, S.; Russo, A.; Scicolone, B. Integrated Agro-Economic Approach to Deficit Irrigation on Lettuce Crops in Sicily (Italy). J. Irrig. Drain. Eng. 2008, 134, 437–445. [Google Scholar] [CrossRef]
- Gallardo, M.; Jackson, L.E.; Schulbach, K.; Snyder, R.L.; Thompson, R.B.; Wyland, L.J. Production and Water Use in Lettuces under Variable Water Supply. Irrig. Sci. 1996, 16, 125–137. [Google Scholar] [CrossRef]
- Lima Junior, J.A.; Pereira, G.M.; Geisenhoff, L.O.; Vilas Boas, R.C.; da Silva, W.G.; Silva, A.L.P. Produtividade Da Alface Americana Submetida a Diferentes Lâminas de Irrigação. Semin. Cienc. Agrar. 2012, 33, 2681–2688. [Google Scholar] [CrossRef]
- De Lima Júnior, J.A.; Pereira, G.M.; Geisenhoff, L.O.; Costa, G.G.; Vilas Boas, R.C.; Yuri, J.E. Efeito Da Irrigação Sobre o Rendimento Produtivo Da Alface Americana, Em Cultivo Protegido. Rev. Bras. Eng. Agri. Ambient. 2010, 14, 797–803. [Google Scholar] [CrossRef]
pH | P (Meh) | K | S | Ca | Mg | Al | Ca + Mg | H + Al | T | CEC | OM | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CaCl2 | mg dm−3 | cmolc dm−3 | g kg−1 | |||||||||
4.9 | 1.5 | 14.0 | 4.2 | 2.0 | 0.3 | 0.1 | 4.2 | 2.6 | 0.04 | 4.95 | 20.0 | |
BS | AS | Clay | Silt | Sand | Na | Zn | B | Cu | Fe | Mn | ||
% | g kg−1 | mg dm−3 | ||||||||||
47.39 | 4.10 | 570 | 120 | 310 | 1.3 | 0.3 | 0.08 | 1.8 | 17.0 | 30.8 |
Mineral | % |
---|---|
Microcline | 0.56 |
Muscovite | 22.33 |
Chlorite—Clinochlore | 8.31 |
Biotite | 13.61 |
Quartz | 27.28 |
Oligoclase | 27.09 |
Minimum Detectable Limit (ppm) | Elements Analyzed | ppm |
---|---|---|
5 | Sc | 24 |
15 | V | 167 |
20 | Cr | 156 |
10 | Co | 19 |
10 | Ni | 64 |
15 | Cu | 59 |
20 | Zn | 117 |
5 | Ga | 25 |
10 | Rb | 86 |
20 | Sr | 153 |
15 | Y | 26 |
20 | Zr | 203 |
5 | Nb | 11 |
50 | Ba | 764 |
15 | La | 21 |
20 | Ce | 35 |
15 | Pb | 17 |
Oxides Analyzed | % |
---|---|
SiO2 | 59.38 |
TiO2 | 0.92 |
Al2O3 | 17.20 |
Fe2O3 | 8.19 |
MgO | 4.15 |
CaO | 1.61 |
Na2O | 2.37 |
K2O | 3.13 |
P2O5 | 0.24 |
LOI (%) | 2.89 |
Sum (%) | 100.07 |
System | CUC (%) | CUD (%) | AE (%) | Classification |
---|---|---|---|---|
Drip | 100.0 | 97.98 | 88.19 | Excellent |
Source of Variation | PH | SD | NL | HD | TFW | CFW |
---|---|---|---|---|---|---|
IWD | 20.85 * | 13.06 * | 22.76 * | 8.97 * | 13.84 * | 11.81 * |
RPR | 2.15 ns | 0.17 ns | 2.749 ns | 0.81 ns | 2.25 ns | 2.47 ns |
IWD × RPR | 1.06 ns | 0.82 ns | 0.89 ns | 1.25 ns | 0.81 ns | 0.50 ns |
Block | 1.39 | 0.44 | 1.46 | 1.59 | 1.16 | 0.28 |
Error | - | - | - | - | - | - |
Total | - | - | - | - | - | - |
CV | 8.97 | 12.41 | 8.25 | 8.53 | 18.33 | 20.22 |
Source of variation | LAI | ULA | EY | CLa | CLb | WUE |
IWD | 16.34 * | 16.34 * | 13.84 * | 252.91 * | 156.66 * | 21.90 * |
RPR | 1.31 ns | 1.31 ns | 2.25 ns | 12.90 * | 13.14 * | 1.80 ns |
IWD × RPR | 0.64 ns | 0.63 ns | 0.81 ns | 3.33 ns | 3.32 ns | 0.54 ns |
Block | 0.01 | 0.01 | 1.16 | 3.31 | 3.67 | 1.47 |
Error | - | - | - | - | - | |
Total | - | - | - | - | - | |
CV | 12.67 | 12.67 | 18.33 | 3.68 | 7.57 | 20.71 |
Variables | Regression Equations | R2 | Mean ± SD |
---|---|---|---|
PH (cm) | Y = 0.0588 * X + 14.442 | 0.8948 | 19.59 ± 2.50 |
SD (mm) | Y = 0.351 * X + 7.781 | 0.8977 | 10.85 ± 1.64 |
NL | Y = 0.0541 * X + 13.462 | 0.9522 | 18.20 ± 2.19 |
HD (cm) | Y = 0.0515 *X + 24.268 | 0.8185 | 28.78 ± 2.94 |
TFW (g) | Y = −0.00138 * X2 + 0.294X + 64.70 | 0.9901 | 102.12 ± 24.06 |
CFW (g) | Y = −0.00147 * X2 + 0.4721X + 66.28 | 0.9931 | 92.85 ± 12.84 |
LAI | Y = 0.7597 * X + 137.29 | 0.8827 | 203.77 ± 33.13 |
ULA | Y = = 1.0176 * X + 182.66 | 0.8908 | 271.69 ± 44.18 |
EY (kg ha−1) | Y = −0.15286 * X2 + 32.743X + 7180.08 | 0.9901 | 11,334.88 ± 267.19 |
CLa | Y = 0.1072 * X + 14.77 | 0.9608 | 24.15 ± 3.32 |
CLb | Y = 0.0465 * X + 2.398 | 0.9616 | 6.47 ± 1.51 |
WUE (kg ha−1 mm−1) | Y = −0.283 * X + 64.67 | 0.8930 | 39.90 ± 3.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, P.C.; Sabino, M.B.; Ferreira, M.B.; Sabino, N.C.O.; Sousa, L.S.; Elias, M.B.; Silva, A.d.B.; Ferreira, A.F.A.; Costa, A.R.d.; Delmond, J.G.; et al. Agronomic Effects of Different Rock Powder Rates Associated with Irrigation Water Depths: Potential for Lettuce (Lactuca sativa L.) Production. Agriculture 2025, 15, 663. https://doi.org/10.3390/agriculture15060663
Silva PC, Sabino MB, Ferreira MB, Sabino NCO, Sousa LS, Elias MB, Silva AdB, Ferreira AFA, Costa ARd, Delmond JG, et al. Agronomic Effects of Different Rock Powder Rates Associated with Irrigation Water Depths: Potential for Lettuce (Lactuca sativa L.) Production. Agriculture. 2025; 15(6):663. https://doi.org/10.3390/agriculture15060663
Chicago/Turabian StyleSilva, Patrícia Costa, Matheus Batista Sabino, Maria Beatriz Ferreira, Narla Costa Oliveira Sabino, Larissa Silva Sousa, Mariana Batista Elias, Amanda de Brito Silva, Ana Flávia Alves Ferreira, Adriana Rodolfo da Costa, Josué Gomes Delmond, and et al. 2025. "Agronomic Effects of Different Rock Powder Rates Associated with Irrigation Water Depths: Potential for Lettuce (Lactuca sativa L.) Production" Agriculture 15, no. 6: 663. https://doi.org/10.3390/agriculture15060663
APA StyleSilva, P. C., Sabino, M. B., Ferreira, M. B., Sabino, N. C. O., Sousa, L. S., Elias, M. B., Silva, A. d. B., Ferreira, A. F. A., Costa, A. R. d., Delmond, J. G., Silva, J. L. B. d., Oliveira, H. F. E. d., Silva, T. G. F. d., & Silva, M. V. d. (2025). Agronomic Effects of Different Rock Powder Rates Associated with Irrigation Water Depths: Potential for Lettuce (Lactuca sativa L.) Production. Agriculture, 15(6), 663. https://doi.org/10.3390/agriculture15060663