Efficacy of Social Networks in Promoting the Green Production Behaviors of Chinese Farmers: An Empirical Study
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. Direct Impact of Social Networks on Farmers’ GPB
2.2. Indirect Impact of Social Networks on Farmers’ GPB
3. Methodology
3.1. Data Collection
3.2. Variables
3.2.1. Dependent Variable
3.2.2. Independent Variable
3.2.3. Control Variables
3.2.4. Mediation Variables
3.3. Model
3.3.1. The Direct Impact Regression Model
3.3.2. The Indirect Impact Regression Model
4. Empirical Estimation Results
4.1. The Direct Impact of Social Networks on Farmers’ GPB
4.2. Robustness Testing
4.3. Endogenous Discussion
4.4. Mechanism Testing
4.5. Heterogeneity Analysis
5. Conclusions and Policy Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lioutas, E.D.; Charatsari, C.; De Rosa, M. Digitalization of agriculture: A way to solve the food problem or a trolley dilemma? Technol. Soc. 2021, 67, 101744. [Google Scholar] [CrossRef]
- Béné, C. Resilience of local food systems and links to food security—A review of some important concepts in the context of COVID-19 and other shocks. Food Secur. 2020, 12, 805–822. [Google Scholar] [CrossRef] [PubMed]
- Namany, S. Sustainable Decision-Making for Efficient Resource Management: A Food Security Case Study. Master’s Thesis, Hamad Bin Khalifa University, Doha, Katar, 2019. [Google Scholar]
- Geng, N.; Zheng, X.Q.; Han, X.B.; Li, X.N. Towards Sustainable Development: The Impact of Agricultural Productive Services on China’s Low-Carbon Agricultural Transformation. Agriculture 2024, 14, 1033. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Shi, R.L.; Peng, Y.T.; Wang, W.; Fu, X.H. Impacts of Technology Training Provided by Agricultural Cooperatives on Farmers’ Adoption of Biopesticides in China. Agriculture 2022, 12, 316. [Google Scholar] [CrossRef]
- Geng, N.; Pan, J.Y. How does agricultural production trusteeship influence farmers′ adoption of green technologies? China Popul. Resour. Environ. 2024, 34, 210–220. (In Chinese) [Google Scholar]
- Deng, X.; Xu, D.D.; Zeng, M.; Qi, Y.B. Does outsourcing affect agricultural productivity of farmer households? Evidence from China. China Agric. Econ. Rev. 2020, 12, 673–688. [Google Scholar] [CrossRef]
- Schultz, T.W. Transforming Traditional Agriculture; Yale University Press: New Haven, CT, USA, 1964. [Google Scholar]
- Arriagada, R.A.; Sills, E.O.; Pattanayak, S.K.; Cubbage, F.W.; González, E. Modeling fertilizer externalities around Palo Verde National Park, Costa Rica. Agric. Econ. 2010, 41, 567–575. [Google Scholar] [CrossRef]
- He, K.; Li, F.L.; Wang, H.; Ming, R.Y.; Zhang, J.B. A low-carbon future for China’s tech industry. Science 2022, 377, 1498–1499. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Che, Y.X.; Ning, K.; Liu, Z.J. Policy setting, heterogeneous scale, and willingness to adopt green production behavior: Field evidence from cooperatives in China. Environ. Dev. Sustain. 2024, 26, 1529–1555. [Google Scholar] [CrossRef]
- Aldana, U.; Foltz, J.D.; Barham, B.L.; Useche, P. Sequential Adoption of Package Technologies: The Dynamics of Stacked Trait Corn Adoption. Am. J. Agric. Econ. 2011, 93, 130–143. [Google Scholar] [CrossRef]
- Chatzimichael, K.; Genius, M.; Tzouvelekas, V. Informational cascades and technology adoption: Evidence from Greek and German organic growers. Food Policy 2014, 49, 186–195. [Google Scholar] [CrossRef]
- Thomas, F.; Midler, E.; Lefebvre, M.; Engel, S. Greening the common agricultural policy: A behavioural perspective and lab-in-the-field experiment in Germany. Eur. Rev. Agric. Econ. 2019, 46, 367–392. [Google Scholar] [CrossRef]
- Clapp, J.; Newell, P.; Brent, Z.W. The global political economy of climate change, agriculture and food systems. J. Peasant Stud. 2018, 45, 80–88. [Google Scholar] [CrossRef]
- Scuderi, A.; Cammarata, M.; Branca, F.; Timpanaro, G. Agricultural production trends towards carbon neutrality in response to the EU 2030 Green Deal: Economic and environmental analysis in horticulture. Agric. Econ. 2021, 67, 435–444. [Google Scholar] [CrossRef]
- He, P.P.; Zhang, J.B.; Li, W.J. The role of agricultural green production technologies in improving low-carbon efficiency in China: Necessary but not effective. J. Environ. Manag. 2021, 293, 112837. [Google Scholar] [CrossRef]
- Wang, Y.J.; Wang, N.H.; Huang, G.Q. How do rural households accept straw returning in Northeast China? Resour. Conserv. Recycl. 2022, 182, 106287. [Google Scholar] [CrossRef]
- Manski, C.F. Economic analysis of social interactions. J. Econ. Perspect. 2000, 14, 115–136. [Google Scholar] [CrossRef]
- Jacobos, J. The Death and Life of Great American Cities; Vintage Books a Division of Random House, Inc.: New York, NY, USA, 1961. [Google Scholar]
- Mitchell, J. The Concept and Use of Social Networks in Urban Situations; Manchester University Press: Manchester, UK, 1969. [Google Scholar]
- Albizua, A.; Bennett, E.; Pascual, U.; Larocque, G. The role of the social network structure on the spread of intensive agriculture: An example from Navarre, Spain. Reg. Environ. Change 2020, 20, 1–16. [Google Scholar] [CrossRef]
- Luo, F.; Wang, Q.; Sun, F.M.; Xu, D.; Sun, C.H. Farmers’ Willingness to Participate in the Management of Small-Scale Irrigation in China from a Social Capital Perspective. Irrig. Drain. 2018, 67, 594–604. [Google Scholar] [CrossRef]
- Chen, Q.R.; Wu, M.Y.; Xie, H.L.; Lu, H. Do farmers’ social networks aggravate cultivated land abandonment? A case study in Ganzhou, China. Land Degrad. Dev. 2023, 34, 4699–4711. [Google Scholar] [CrossRef]
- Ataei, P.; Sadighi, H.; Chizari, M.; Abbasi, E. Analysis of Farmers’ Social Interactions to Apply Principles of Conservation Agriculture in Iran: Application of Social Network Analysis. J. Agric. Sci. Technol. 2019, 21, 1657–1671. [Google Scholar]
- Burlig, F.; Stevens, A.W. Social networks and technology adoption: Evidence from church mergers in the US Midwest. Am. J. Agric. Econ. 2024, 106, 1141–1166. [Google Scholar] [CrossRef]
- Abdulai, A. Information acquisition and the adoption of improved crop varieties. Am. J. Agric. Econ. 2023, 105, 1049–1062. [Google Scholar] [CrossRef]
- Chowdhury, S.; Satish, V.; Sulaiman, M.; Sun, Y. Sooner rather than later: Social networks and technology adoption. J. Econ. Behav. Organ. 2022, 203, 466–482. [Google Scholar] [CrossRef]
- Lin, N. Building a network theory of social capital. Soc. Cap. 2017, 12, 3–28. [Google Scholar]
- Qian, L.; Lu, H.; Gao, Q.; Lu, H.L. Household-owned farm machinery vs. outsourced machinery services: The impact of agricultural mechanization on the land leasing behavior of relatively large-scale farmers in China. Land Use Policy 2022, 115, 106008. [Google Scholar] [CrossRef]
- Qing, C.; Zhou, W.F.; Song, J.H.; Deng, X.; Xu, D.D. Impact of outsourced machinery services on farmers’ green production behavior: Evidence from Chinese rice farmers. J. Environ. Manag. 2023, 327, 116843. [Google Scholar] [CrossRef]
- Mannheim, K. Essays on the Sociology of Knowledge; Routlege and Keegan Paul: London, UK, 1952. [Google Scholar]
- Granovetter, M. Economic action and social structure: The problem of embeddedness. Am. J. Sociol. 1985, 91, 481–510. [Google Scholar] [CrossRef]
- Granovetter, M. The impact of social structure on economic outcomes. J. Econ. Perspect. 2005, 19, 33–50. [Google Scholar] [CrossRef]
- Grennan, J. Dividend payments as a response to peer influence. J. Financ. Econ. 2019, 131, 549–570. [Google Scholar] [CrossRef]
- Fei, X.T.; Zhang, Z.Y. Earthbound China; University of Chicago Press: Chicago, IL, USA, 1945. [Google Scholar]
- Zhou, L.; Zhang, F.; Zhou, S.D.; Turvey, C.G. The peer effect of training on farmers’ pesticides application: A spatial econometric approach. China Agric. Econ. Rev. 2020, 12, 481–505. [Google Scholar] [CrossRef]
- Grootaert, C. Social Capital, Household Welfare and Poverty in Indonesia; World Bank Publications: Chicago, IL, USA, 1999. [Google Scholar]
- Lin, N. Social Capital: A Theory of Social Structure and Action; Cambridge University Press: London, UK, 2002. [Google Scholar]
- Xie, H.L.; Huang, Y.Q. Influencing factors of farmers’ adoption of pro-environmental agricultural technologies in China: Meta-analysis. Land Use Policy 2021, 109, 105622. [Google Scholar] [CrossRef]
- Zhao, M.H.; Jin, Y.A. Migrant Workers in Beijing: How Hometown Ties Affect Economic Outcomes. Work Employ. Soc. 2020, 34, 789–808. [Google Scholar] [CrossRef]
- Damm, A.P. Neighborhood quality and labor market outcomes: Evidence from quasi-random neighborhood assignment of immigrants. J. Urban Econ. 2014, 79, 139–166. [Google Scholar] [CrossRef]
- Kondo, A.; Shoji, M. Peer effects in employment status: Evidence from housing lotteries. J. Urban Econ. 2019, 113, 103195. [Google Scholar] [CrossRef]
- Conley, T.G.; Udry, C.R. Learning about a New Technology: Pineapple in Ghana. Am. Econ. Rev. 2010, 100, 35–69. [Google Scholar] [CrossRef]
- Shi, R.; Shen, Y.J.; Du, R.R.; Yao, L.Y.; Zhao, M.J. The impact of agricultural productive service on agricultural carbon efficiency-From urbanization development heterogeneity. Sci. Total Environ. 2024, 906, 167604. [Google Scholar] [CrossRef]
- Elahi, E.; Abid, M.; Zhang, L.Q.; Haq, S.U.; Sahito, J.G.M. Agricultural advisory and financial services; farm level access, outreach and impact in a mixed cropping district of Punjab, Pakistan. Land Use Policy 2018, 71, 249–260. [Google Scholar] [CrossRef]
- Evenson, R.E.; Gollin, D. Assessing the impact of the Green Revolution, 1960 to 2000. Science 2003, 300, 758–762. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Z.H.; Zhang, X.B.; Reardon, T. The Rapid Rise of Cross-Regional Agricultural Mechanization Services in China. Am. J. Agric. Econ. 2013, 95, 1245–1251. [Google Scholar] [CrossRef]
- Mottaleb, K.A.; Krupnik, T.J.; Erenstein, O. Factors associated with small-scale agricultural machinery adoption in Bangladesh: Census findings. J. Rural Stud. 2016, 46, 155–168. [Google Scholar] [CrossRef]
- Belton, B.; Win, M.T.; Zhang, X.B.; Filipski, M. The rapid rise of agricultural mechanization in Myanmar. Food Policy 2021, 101, 102095. [Google Scholar] [CrossRef]
- Yin, J.H.; Shi, S.Q. Analysis of the mediating role of social network embeddedness on low-carbon household behaviour: Evidence from China. J. Clean. Prod. 2019, 234, 858–866. [Google Scholar] [CrossRef]
- Liu, H.; Han, X.Y.; Xue, Y.; Pu, H.L.; Lv, J. Risk aversion, social networks, and excessive fertilizer application by farmers: Survey data from corn farmers in the three northeastern provinces of China. J. Agrotech. 2021, 7, 4–17. (In Chinese) [Google Scholar]
- Yang, Z.H. Aging, social network and farmers’ adoption behavior of green production technology. China Rural Surv. 2018, 4, 44–58. (In Chinese) [Google Scholar]
- Taylor, A.B.; MacKinnon, D.P.; Tein, J.Y. Tests of the three-path mediated effect. Organ. Res. Methods 2008, 11, 241–269. [Google Scholar] [CrossRef]
- Li, M.N.; Zhou, Y.B.; Wang, Z.Y. Whether the digital economy can alleviate the relative poverty of migrant workers: Based on the perspective of city size. Chin. Rural Econ. 2023, 09, 48–73. (In Chinese) [Google Scholar]
- Sun, J.G.; Han, K.Y.; Hu, J.Y. Does Digital Finance Mitigate Relative Poverty? An Empirical Study Based on CHFS Data. Forum Financ. Econ. 2020, 12, 50–60. (In Chinese) [Google Scholar]
- Cui, Y.; Khan, S.U.; Deng, Y.; Zhao, M. Spatiotemporal heterogeneity, convergence and its impact factors: Perspective of carbon emission intensity and carbon emission per capita considering carbon sink effect. Environ. Impact Assess. Rev. 2022, 92, 106699. [Google Scholar] [CrossRef]
Type of Variable | Variable Definition | Variable Assignment | Property |
---|---|---|---|
network strength | trust in relatives (S1) | very distrustful = 1; rather distrustful = 2; generally trusting = 3; rather trusting = 4; very trusting = 5 | + |
trust in neighbors (S2) | + | ||
trust in village cadres (S3) | + | ||
network size | the number of cell phone contacts (S4) | numbers | + |
the number of people who can borrow 50,000 RMB when they are in trouble (S5) | numbers | + | |
the number of usual participation in cultural activities (S6) | number of activities | + |
Type of Variable | Variable | Variable Definition and Assignment | Mean | Std | Min | Max | |
---|---|---|---|---|---|---|---|
Dependent variable | green production behaviors (GPB) | Number of green production technologies adopted/0~8 | 0.983 | 1.274 | 0 | 8 | |
Independent variable | social networks (SN) | Composite score obtained by entropy method | 0.049 | 0.053 | 0.000 6338 | 0.561 9605 | |
Mediation variables | Technical training (TEC) | Whether any member of the household is educated or trained in agricultural technology/YES = 1; NO = 0 | 0.392 | 0.488 | 0 | 1 | |
Co-operative farming (COP) | whether to join cooperatives or agribusinesses /YES = 1; NO = 0 | 0.038 | 0.192 | 0 | 1 | ||
Outsourcing service (SER) | Whether the production process is outsourced/YES = 1; NO = 0 | 0.420 | 0.494 | 0 | 1 | ||
Control variables | household head characteristics | AGE | one full year of life | 62.232 | 11.462 | 17 | 96 |
Health (HEL) | incapacitated = 1; poor = 2; fair = 3; good = 4; Excellent = 5 | 3.952 | 1.073 | 0 | 5 | ||
farm household characteristics | Non-agricultural vocational training (NVT) | YES = 1; NO = 0 | 0.191 | 0.393 | 0 | 1 | |
Agricultural labor (AGL) | numbers | 1.486 | 1.018 | 0 | 6 | ||
Non-farm income (NIC) | Household non-farm income/total income in 2021 | 0.570 | 0.422 | 0 | 1 | ||
Entrepreneur (EPN) | YES = 1; NO = 0 | 0.084 | 0.277 | 0 | 1 | ||
Agricultural insurance (ISR) | YES = 1; NO = 0 | 0.249 | 0.433 | 0 | 1 | ||
land characteristics | Scale (SCL) | Mu(unit of area equal to one-fifteenth of a hectare) | 5.422 | 19.966 | 0 | 400 | |
Farmland fertility (FER) | Poor = 1; fair = 2; good = 3 | 2.363 | 0.624 | 1 | 3 | ||
Farmland property right (FPR) | YES = 1; NO = 0 | 0.879 | 0.327 | 0 | 1 | ||
Distance from the hardened road (DIS) | mile | 0.455 | 1.061 | 0 | 20 | ||
Farmland restoration (RST) | YES = 1; NO = 0 | 0.112 | 0.316 | 0 | 1 | ||
Irrigation convenience (IRG) | YES = 1; NO = 0 | 0.848 | 0.359 | 0 | 1 | ||
Village characteristics | Rural industry (RID) | YES = 1; NO = 0 | 0.176 | 0.381 | 0 | 1 |
Variable | GPB | ||||
---|---|---|---|---|---|
Ordered Probit | Average Marginal Effect | ||||
(1) | (2) | SN_Predict | dy/dx | Delta-Method Std. Err | |
SN | 1.8381 *** (0.6599) | 1.9287 *** (0.6618) | 0 | −0.7261 *** | 0.2472 |
AGE | — | −0.0010 (0.0032) | 1 | 0.1262 *** | 0.0451 |
HEL | — | 0.0184 (0.0315) | 2 | 0.3139 *** | 0.0975 |
NVT | — | 0.0125 (0.0869) | 3 | 0.1194 *** | 0.0439 |
AGL | — | 0.2553 *** (0.0333) | 4 | 0.0617 *** | 0.0246 |
NIC | — | 0.0415 (0.0818) | 5 | 0.0365 ** | 0.0162 |
EPN | — | 0.0416 (0.1267) | 6 | 0.0424 ** | 0.0193 |
ISR | — | −0.1469 * (0.0783) | 7 | 0.0126 * | 0.0076 |
SCL | — | 0.0067 *** (0.0019) | 8 | 0.0133 * | 0.0078 |
FER | — | 0.0322 (0.0522) | — | — | — |
FPR | — | 0.2052 ** (0.1033) | — | — | — |
DIS | — | 0.0534 ** (0.0256) | — | — | — |
RST | — | 0.0327 (0.0978) | — | — | — |
IRG | — | 0.0018 (0.0934) | — | — | — |
RID | — | −0.2556 *** (0.0885) | — | — | — |
Pseudo R² | 0.0030 | 0.0375 | — | — | — |
Variable | GPB | ||||
---|---|---|---|---|---|
Chang Method | Reassign Core Explanatory Variables | Add Control Variables | |||
(3) | (4) | (5) | (6) | (7) | |
SN | 2.378 *** (0.8913) | — | — | — | 1.8667 *** (0.6643) |
CADRE | — | 0.2793 *** (0.0876) | — | — | |
ln_CON | — | — | 0.1129 *** (0.0257) | — | — |
ACT | — | — | — | 0.1638 *** (0.0585) | — |
RISK | — | — | — | — | −0.1285 ** (0.0612) |
TIME | — | — | — | — | 0.0865 * (0.0488) |
Control variables | YES | ||||
R2 | 0.0976 | — | — | — | — |
Pseudo R² | — | 0.0379 | 0.0412 | 0.0372 | 0.0399 |
Method | Treated | Controls | ATT | S.E. | T-Stat |
---|---|---|---|---|---|
KN (n = 1) | 1.24 | 0.9890 | 0.2509 | 0.1281 | 1.96 ** |
KN (n = 4) | 1.24 | 0.9964 | 0.2436 | 0.1055 | 2.31 *** |
KNC | 1.24 | 0.9727 | 0.2673 | 0.1057 | 2.53 *** |
KE | 1.24 | 0.9495 | 0.2905 | 0.0965 | 3.01 *** |
RA | 1.24 | 0.9701 | 0.2699 | 0.0979 | 2.76 *** |
Variable | Information Acquisition | Demonstration Learning | Service Support | |||
---|---|---|---|---|---|---|
TEC (8) | GPB (9) | COP (10) | GPB (11) | SER (12) | GPB (13) | |
SN | 4.0306 *** (0.7952) | 1.3630 ** (0.6685) | 2.2638 ** (1.0055) | 1.7955 *** (0.6405) | 1.8882 *** (0.7321) | 1.3823 * (0.7605) |
TEC | — | 0.4285 *** (0.0664) | — | — | — | — |
COP | — | — | — | 0.3903 ** (0.1689) | — | — |
SER | — | — | — | — | — | 1.4669 *** (0.0794) |
Control variables | YES | |||||
Sobel | p = 0.000 | p = 0.039 | p = 0.014 | |||
Pseudo R2 | 0.0509 | 0.0496 | 0.1218 | 0.0392 | 0.0451 | 0.1668 |
Variable | GPB | ||||
---|---|---|---|---|---|
Intergenerational Differences | Crop Differences | ||||
NEW | MID | OLD | GRAIN | CASH | |
(14) | (15) | (16) | (17) | (18) | |
SN | 1.3636 (1.6774) | 1.8243 ** (0.9211) | 2.4681 *** (1.0444) | 2.1650 *** (0.7645) | 2.2192 * (1.1427) |
Control variables | YES | ||||
n | 96 | 343 | 764 | 881 | 421 |
Pseudo R² | 0.1366 | 0.0712 | 0.0597 | 0.0508 | 0.0735 |
GRAIN CROPS | CASH CROPS | ||
---|---|---|---|
Crop Name | Number | Crop Name | Number |
Wheat | 354 | Soya bean | 99 |
Corn | 131 | Potato | 9 |
Rice | 469 | Cotton | 5 |
Oilseed rape | 81 | ||
Peanut | 43 | ||
Sesame | 4 | ||
Vegetable | 120 | ||
Pear | 2 | ||
Peach | 10 | ||
Grape | 6 | ||
Others | 61 | ||
Total | 954 | Total | 373 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, N.; Wang, S.; Han, X. Efficacy of Social Networks in Promoting the Green Production Behaviors of Chinese Farmers: An Empirical Study. Agriculture 2025, 15, 599. https://doi.org/10.3390/agriculture15060599
Geng N, Wang S, Han X. Efficacy of Social Networks in Promoting the Green Production Behaviors of Chinese Farmers: An Empirical Study. Agriculture. 2025; 15(6):599. https://doi.org/10.3390/agriculture15060599
Chicago/Turabian StyleGeng, Ning, Shanyao Wang, and Xibing Han. 2025. "Efficacy of Social Networks in Promoting the Green Production Behaviors of Chinese Farmers: An Empirical Study" Agriculture 15, no. 6: 599. https://doi.org/10.3390/agriculture15060599
APA StyleGeng, N., Wang, S., & Han, X. (2025). Efficacy of Social Networks in Promoting the Green Production Behaviors of Chinese Farmers: An Empirical Study. Agriculture, 15(6), 599. https://doi.org/10.3390/agriculture15060599