Effect of Humic Biostimulant Agriful on Agronomic and Nutritional Parameters of Radish (Raphanus sativus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Locality
2.2. Used Varieties
2.3. Experimental Organization
2.4. Quantitative Parameters
2.5. Qualitative Parameters
2.6. Data Analyses
3. Results
3.1. Impact of Humus Biostimulant (Agriful) on Quantitative and Qualitative Parameters of R. sativus
3.2. Interactions Between Experimental Factors
3.2.1. Interaction of Treatment and Year (T × Y)
3.2.2. Interaction of Treatment and Variety (T × V)
3.2.3. Interactions Between Treatment, Variety, and Year (T × V × Y)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Colla, G.; Rouphael, Y. Biostimulants in Horticulture. Sci. Hortic. 2015, 196, 1–2. [Google Scholar] [CrossRef]
- Khan, N. Unlocking Innovation in Crop Resilience and Productivity: Breakthroughs in Biotechnology and Sustainable Farming. Innov. Discov. 2024, 1, 28. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L. Physiological Responses to Humic Substances as Plant Growth Promoter. Chem. Biol. Technol. Agric. 2014, 1, 3. [Google Scholar] [CrossRef]
- Atero-Calvo, S.; Navarro-León, E.; Rios, J.J.; Blasco, B.; Ruiz, J.M. Chapter 6—Humic Substances-Based Products for Plants Growth and Abiotic Stress Tolerance. In Biostimulants in Plant Protection and Performance; Husen, A., Ed.; Plant Biology, Sustainability and Climate Change; Elsevier: Amsterdam, Netherlands, 2024; pp. 89–106. ISBN 978-0-443-15884-1. [Google Scholar]
- Gamba, M.; Asllanaj, E.; Raguindin, P.F.; Glisic, M.; Franco, O.H.; Minder, B.; Bussler, W.; Metzger, B.; Kern, H.; Muka, T. Nutritional and Phytochemical Characterization of Radish (Raphanus Sativus): A Systematic Review. Trends Food Sci. Technol. 2021, 113, 205–218. [Google Scholar] [CrossRef]
- Khan, R.S.; Khan, S.S.; Siddique, R. Radish (Raphanus sativus): Potential Antioxidant Role of Bioactive Compounds Extracted from Radish Leaves—A Review. Pak. J. Med. Health Sci. 2022, 16, 2–4. [Google Scholar] [CrossRef]
- Hernández-Sánchez, L.Y.; González-Trujano, M.E.; Moreno, D.A.; Martínez-Vargas, D.; Vibrans, H.; Hernandez-Leon, A.; Dorazco-González, A.; Pellicer, F.; Soto-Hernández, M. Antinociceptive Effects of Raphanus Sativus Sprouts Involve the Opioid and 5-HT1A Serotonin Receptors, cAMP/cGMP Pathways, and the Central Activity of Sulforaphane. Food Funct. 2024, 15, 4773–4784. [Google Scholar] [CrossRef] [PubMed]
- Babincová, Z. Súpis Plôch Osiatych Poľnohospodárskymi Plodinami k 20. 5. 2024; Statistical Office of the Slovak Republic: Bratislava, Slovakia, 2024. Available online: http://www.statistics.sk/ (accessed on 8 January 2025)ISBN 978-80-8121-973-3.
- Nardi, S.; Pizzeghello, D.; Muscolo, A.; Vianello, A. Physiological Effects of Humic Substances on Higher Plants. Soil Biol. Biochem. 2002, 34, 1527–1536. [Google Scholar] [CrossRef]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in Plant Science: A Global Perspective. Front. Plant Sci. 2016, 7, 2049. [Google Scholar] [CrossRef]
- Barzegar, T.; Mahmoodi, S.; Nekounam, F.; Ghahremani, Z.; Khademi, O. Effects of Humic Acid and Cytokinin on Yield, Biochemical Attributes and Nutrient Elements of Radish (Raphanus Sativus L.) Cv. Watermelon. J. Plant Nutr. 2022, 45, 1582–1598. [Google Scholar] [CrossRef]
- Polláková, N.; Šimanský, V. Physical Properties of Urban Soil in the Campus of Slovak University of Agriculture Nitra. Acta Fytotech. Zootech. 2015, 18, 30–35. [Google Scholar] [CrossRef]
- Kováčik, P.; Uher, A.; Lošák, T.; Takáč, P. Vliv Rychle Fermentovaného Prasečího Hnoje Na Výnosové Parametry Brokolice a Vybrané Půdní Parametry. Acta Univ. Agric. Et Silvic. Mendel. Brun. 2014, 56, 119–124. [Google Scholar] [CrossRef]
- Kononova, M.M. Humus of Virgin and Cultivated Soils. In Soil Components: Vol. 1: Organic Components; Gieseking, J.E., Ed.; Springer: Berlin/Heidelberg, Germany, 1975; pp. 475–526. ISBN 978-3-642-65915-7. [Google Scholar]
- Swify, S.; Mažeika, R.; Volungevičius, J. Mineral Nitrogen Release Patterns in Various Soil and Texture Types and the Impact of Urea and Coated Urea Potassium Humate on Barley Biomass. Soil Syst. 2023, 7, 102. [Google Scholar] [CrossRef]
- International Union for the Protection of New Varieties of Plants (UPOV). Guidelines for the Conduct of Tests for Distinctness, Uniformity, and Stability—Wheat (Triticum aestivum L.) and Barley (Hordeum vulgare L.); UPOV: Geneva, Switzerland, 2012; Available online: https://www.upov.int/edocs/mdocs/upov/en/tc_48/tg_63_7_proj_7_tg_64_7_proj_6.pdf (accessed on 8 January 2025).
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT - Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Paulová, H.; Bochořáková, H.; Táborská, E. Metody Stanovení Antioxidační Aktivity Přírodních Látek In Vitro. Chem. Listy 2004, 98, 174–179. Available online: http://chemicke-listy.cz/docs/full/2004_04_03.pdf (accessed on 15 December 2024).
- Fernández, E.C.; Havrland, B.; Lachman, J.; Hejtmánková, A.; Dudjak, J.; Faitová, K. Content of Polyphenolic Antioxidants and Phenolcarboxylic Acids in Selected Organs of Yacon [Smallanthus sonchifolius (Poepp. et Endl.) H. Robinson]. Sci. Agric. Bohem. 2005, 36, 49–54. [Google Scholar] [CrossRef]
- Gerke, J. Review Article: The Effect of Humic Substances on Phosphate and Iron Acquisition by Higher Plants: Qualitative and Quantitative Aspects. J. Plant Nutr. Soil Sci. 2021, 184, 329–338. [Google Scholar] [CrossRef]
- Yuan, Y.; Tang, C.; Jin, Y.; Cheng, K.; Yang, F. Contribution of Exogenous Humic Substances to Phosphorus Availability in Soil-Plant Ecosystem: A Review. Crit. Rev. Environ. Sci. Technol. 2023, 53, 1085–1102. [Google Scholar] [CrossRef]
- Öztürk, Y.Ö.; Ki̇Bar, B. Effects of Different Growing Media and Humic Acid Doses on Plant Growth and Quality in Radish. Int. J. Agric. Wildl. Sci. 2023, 9, 334–348. [Google Scholar] [CrossRef]
- Hussain, K.; Kiran, M.; Haq, F.; Waseem, K.; Nadeem, M.A.; Ullah, G.; Farid, A.; Aziz, T. Humic Acid as a Growth Booster: Evaluating Its Synergistic Influence on Three Red Radish Varieties. Trends Hortic. 2023, 6, 2335. [Google Scholar] [CrossRef]
- Elkhatib, H.A.; Gabr, S.M.; Brengi, S.H. Impact of Humic Acid Amendments on Alleviating the Harmful Effects of Cadmium in Radish and Bean Plants. Alex. Sci. Exch. J. 2013, 34, 263–282. [Google Scholar] [CrossRef]
- Kłeczek, A. Agricultural Use of Natural Biostimulants—Humic Substances: A Rview. Rocz. Ochr. Śr. 2022, 24, 1–14. [Google Scholar] [CrossRef]
- Rased, A.; Mashayekhi, K.; Mousavizadeh, S.J.; Ghorbani, A. Growth and Physiological Characters of Radish in Response to Humic Acid Enriched with MS Medium. Hortic. Plants Nutr. 2020, 2, 130–141. [Google Scholar] [CrossRef]
- Sahu, J.; Sharma, S.P.; Singh, J.; Deshmukh, U.; Nishad, D.; Mishra, R. Effect of Seaweed Extract and Humic Acid on Yield Parameters of Red Radish. Pharma Innov. J. 2022, 11, 1–5. [Google Scholar]
- Lamar, R.T.; Gralian, J.; Hockaday, W.C.; Jerzykiewicz, M.; Monda, H. Investigation into the Role of Carboxylic Acid and Phenolic Hydroxyl Groups in the Plant Biostimulant Activity of a Humic Acid Purified from an Oxidized Sub-Bituminous Coal. Front. Plant Sci. 2024, 15, 1328006. [Google Scholar] [CrossRef]
- Yildiztugay, E.; Ozfidan-Konakci, C.; Karahan, H.; Kucukoduk, M.; Turkan, I. Ferulic Acid Confers Tolerance against Excess Boron by Regulating ROS Levels and Inducing Antioxidant System in Wheat Leaves (Triticum aestivum). Environ. Exp. Bot. 2019, 161, 193–202. [Google Scholar] [CrossRef]
- Ozfidan-Konakci, C.; Yildiztugay, E.; Bahtiyar, M.; Kucukoduk, M. The Humic Acid-Induced Changes in the Water Status, Chlorophyll Fluorescence and Antioxidant Defense Systems of Wheat Leaves with Cadmium Stress. Ecotoxicol. Environ. Saf. 2018, 155, 66–75. [Google Scholar] [CrossRef]
- Nawaz, H.; Shad, M.A.; Muzaffar, S. Phytochemical Composition and Antioxidant Potential of Brassica. In Brassica Germplasm—Characterization, Breeding and Utilization; El-Esawi, M.A., Ed.; InTech: London, UK, 2018; ISBN 978-1-78984-241-8. [Google Scholar]
- Dejanovic, G.M.; Asllanaj, E.; Gamba, M.; Raguindin, P.F.; Itodo, O.A.; Minder, B.; Bussler, W.; Metzger, B.; Muka, T.; Glisic, M.; et al. Phytochemical Characterization of Turnip Greens (Brassica rapa ssp rapa): A Systematic Review. PLoS ONE 2021, 16, e0247032. [Google Scholar] [CrossRef]
- Conselvan, G.B.; Pizzeghello, D.; Francioso, O.; Di Foggia, M.; Nardi, S.; Carletti, P. Biostimulant Activity of Humic Substances Extracted from Leonardites. Plant Soil 2017, 420, 119–134. [Google Scholar] [CrossRef]
- Jindo, K.; Olivares, F.L.; da Paixão Malcher, D.J.; Sánchez-Monedero, M.A.; Kempenaar, C.; Canellas, L.P. From Lab to Field: Role of Humic Substances Under Open-Field and Greenhouse Conditions as Biostimulant and Biocontrol Agent. Front. Plant Sci. 2020, 11, 426. [Google Scholar] [CrossRef]
- Savarese, C.; Cozzolino, V.; Verrillo, M.; Vinci, G.; De Martino, A.; Scopa, A.; Piccolo, A. Combination of Humic Biostimulants with a Microbial Inoculum Improves Lettuce Productivity, Nutrient Uptake, and Primary and Secondary Metabolism. Plant Soil 2022, 481, 285–314. [Google Scholar] [CrossRef]
- Verhulst, E.P.; Brunton, N.P.; Rai, D.K. Polyphenols in Agricultural Grassland Crops and Their Health-Promoting Activities—A Review. Foods 2023, 12, 4122. [Google Scholar] [CrossRef]
- Arfaoui, L. Dietary Plant Polyphenols: Effects of Food Processing on Their Content and Bioavailability. Molecules 2021, 26, 2959. [Google Scholar] [CrossRef]
- Mohamed Abdoul-Latif, F.; Elmi, A.; Merito, A.; Nour, M.; Risler, A.; Ainane, A.; Bignon, J.; Ainane, T. Essential Oils of Ocimum Basilicum L. and Ocimum Americanum L. from Djibouti: Chemical Composition, Antimicrobial and Cytotoxicity Evaluations. Processes 2022, 10, 1785. [Google Scholar] [CrossRef]
- Stagnari, F.; Galieni, A.; D’Egidio, S.; Pagnani, G.; Ficcadenti, N.; Pisante, M. Defoliation and S Nutrition on Radish: Growth, Polyphenols and Antiradical Activity. Hortic. Bras. 2018, 36, 313–319. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant Biostimulants: Definition, Concept, Main Categories and Regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural Uses of Plant Biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef]
Year | Month | T (°C) | CN (°C) | Evaluation | PRC (mm) | CN (mm) | Evaluation |
---|---|---|---|---|---|---|---|
2021 | VIII | 18.4 | 21.1 | very cold | 128 | 55 | extraordinary wet |
IX | 15.4 | 15.9 | normal | 36 | 58 | dry | |
X | 9.3 | 10.4 | normal | 18 | 46 | very dry | |
2022 | VIII | 21.9 | 21.1 | normal | 60 | 55 | normal |
IX | 13.9 | 15.9 | cold | 7 | 58 | extraordinary dry | |
X | 11.5 | 10.4 | normal | 41 | 46 | normal |
Year | pH | Humus (%) | Content (mg/kg) | |||||
---|---|---|---|---|---|---|---|---|
Nmin | P | K | Ca | Mg | S | |||
2021 | 7.3 | 3.84 | 155 | 198 | 601 | 7850 | 679 | 293 |
2022 | 6.9 | 4.29 | 191 | 148 | 480 | 5750 | 1028 | 275 |
Characteristics/Variety | Kulatá Černá | Nero Tondo d’Inverno | Red Meat |
---|---|---|---|
Root position in the soil | deep | deep | deep |
Root shape | circular | medium elliptic | circular |
Skin color | black | black | white |
Main pulp color | white | white | reddish-purple |
Producer of seeds | Semo a. s. | Semo a. s. | Franchi Sementi S.p.A. |
Origin country | Czech Republic | Czech Republic | Italy |
Source of Variation | Agronomic Parameters | Nutritional Parameters | ||||
---|---|---|---|---|---|---|
W | Y | AC-DPPH | AC-FRAP | AC-ABTS | TPC | |
p-Values | ||||||
Treatment | 0.0000 | 0.0000 | 0.0001 | 0.0520 | 0.2084 | 0.0000 |
Variety | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Year | 0.0000 | 0.0000 | 0.0008 | 0.0000 | 0.0000 | 0.0000 |
T × V | 0.0000 | 0.0910 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
T × Y | 0.0180 | 0.0002 | 0.6723 | 0.0000 | 0.0000 | 0.0000 |
V × Y | 0.0000 | 0.0137 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
T × V × Y | 0.7347 | 0.5448 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Parameters | Control | Agriful |
---|---|---|
W (g) | 65.74 ± 2.23 a | 89.16 ± 2.45 b |
Y (t.ha−1) | 1.87 ± 0.87 a | 2.54 ± 1.25 b |
DPPH (µmolTE.g−1) | 23.47 ± 0.22 a | 26.97 ± 0.50 b |
FRAP (µmolTE.g−1) | 12.71 ± 0.20 | 14.73 ± 0.28 |
ABTS (µmolTE.g−1) | 40.63 ± 0.30 | 42.69 ± 0.37 |
TPC (mgGAE.kg−1) | 3688.9 ± 22.7 a | 4069.7 ± 24.3 b |
Parameters | Kulatá Černá | Nero Tondo d’Inverno | Red Meat |
---|---|---|---|
W (g) | 106.98 ± 3.90 a | 85.39 ± 1.93 b | 39.98 ± 1.20 c |
Y (t.ha−1) | 1.94 ± 0.70 a | 2.86 ± 2.15 b | 1.82 ± 0.33 a |
DPPH (µmolTE.g−1) | 16.36 ± 0.4 b | 11.54 ± 0.23 a | 47.76 ± 0.45 c |
FRAP (µmolTE.g−1) | 4.43 ± 0.25 b | 4.18 ± 0.18 a | 32.56 ± 0.30 c |
ABTS (µmolTE.g−1) | 16.06 ± 0.25 b | 14.87 ± 0.33 a | 24.05 ± 0.43 c |
TPC (mgGAE.kg−1) | 2275.44 ± 19.0 b | 2227.14 ± 25.5 a | 7135.34 ± 104.0 c |
Interaction T × Y | W (g) | Y (t.ha−1) | DPPH (µmolTE.g−1) | FRAP (µmolTE.g−1) | ABTS (µmolTE.g−1) | TPC (mgGAE.kg−1) | |
---|---|---|---|---|---|---|---|
2021 | C | 54.26 a | 1.26 a | 22.02 a | 10.44 a | 45.94 a | 3615.32 a |
A | 75.33 a | 1.80 a | 25.58 a | 11.69 a | 49.17 a | 3907.39 a | |
2022 | C | 77.23 a | 2.52 b | 24.91 a | 14.98 a | 35.32 a | 3762.51 a |
A | 102.99 b | 3.38 c | 28.36 a | 17.77 a | 36.20 a | 4232.01 a |
T × V | W (g) | Y (t.ha−1) | DPPH (µmolTE.g−1) | FRAP (µmolTE.g−1) | ABTS (µmolTE.g−1) | TPC (mgGAE.kg−1) | |
---|---|---|---|---|---|---|---|
Kulatá Černá | C | 90.56 a | 1.70 a | 14.86 b | 3.90 a | 15.42 a | 2117.15 a |
A | 123.40 b | 2.24 ab | 17.87 c | 4.95 a | 16.70 a | 2433.73 b | |
Nero Tondo d’Inverno | C | 72.54 a | 2.44 ab | 10.32 ab | 3.73 a | 14.24 a | 2163.65 a |
A | 98.24ab | 3.29 b | 12.76 abc | 4.62 a | 15.49 a | 2290.63 ab | |
Red Meat | C | 34.13c | 1.54 a | 45.22 d | 30.50 b | 92.23 b | 6785.95 c |
A | 45.84c | 2.23 ab | 50.29 d | 34.62 b | 95.87 b | 7484.73 d |
Interaction T × V × Y | W (g) | Y (t.ha−1) | DPPH (µmolTE.g−1) | FRAP (µmolTE.g−1) | ABTS (µmolTE.g−1) | TPC (mgGAE.kg−1) | ||
---|---|---|---|---|---|---|---|---|
2021 | Kulatá Černá | C | 75.5 d | 1.12 a | 16.3 c | 3.4 a | 18.4 c | 2057 a |
A | 106.4 f | 1.48 ab | 18.4 c | 4.3 b | 19.9 d | 2361 c | ||
Nero Tondo d’Inverno | C | 57.6 c | 1.82 b | 7.8 a | 3.1 a | 16.7 b | 2044 a | |
A | 79.9 d | 2.53 c | 8.6 a | 3.3 a | 18.2 c | 2107 ab | ||
Red Meat | C | 29.8 a | 0.85 a | 42.2 d | 24.9 d | 102.8 f | 6745 e | |
A | 39.7 b | 1.38 ab | 49.7 e | 27.5 e | 109.4 g | 7254 g | ||
2022 | Kulatá Černá | C | 105.7 f | 2.28 bc | 13.5 b | 4.4 b | 12.5 a | 2177 b |
A | 140.4 h | 3.01 d | 17.3 c | 5.6 c | 13.5 a | 2506 d | ||
Nero Tondo d’Inverno | C | 87.5 e | 3.05 d | 12.8 b | 4.4 b | 11.8 a | 2283 c | |
A | 116.6 g | 4.04 e | 16.9 c | 5.9 c | 12.7 a | 2475 cd | ||
Red Meat | C | 38.5 b | 2.23 bc | 48.5 e | 36.1 f | 81.7 e | 6828 f | |
A | 52.0 c | 3.08 d | 50.9 e | 41.8 g | 82.4 e | 7715 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šlosár, M.; Galovičová, L.; Fabianová, J.; Porubská, I.; Schwarzová, M. Effect of Humic Biostimulant Agriful on Agronomic and Nutritional Parameters of Radish (Raphanus sativus). Agriculture 2025, 15, 595. https://doi.org/10.3390/agriculture15060595
Šlosár M, Galovičová L, Fabianová J, Porubská I, Schwarzová M. Effect of Humic Biostimulant Agriful on Agronomic and Nutritional Parameters of Radish (Raphanus sativus). Agriculture. 2025; 15(6):595. https://doi.org/10.3390/agriculture15060595
Chicago/Turabian StyleŠlosár, Miroslav, Lucia Galovičová, Júlia Fabianová, Ivana Porubská, and Marianna Schwarzová. 2025. "Effect of Humic Biostimulant Agriful on Agronomic and Nutritional Parameters of Radish (Raphanus sativus)" Agriculture 15, no. 6: 595. https://doi.org/10.3390/agriculture15060595
APA StyleŠlosár, M., Galovičová, L., Fabianová, J., Porubská, I., & Schwarzová, M. (2025). Effect of Humic Biostimulant Agriful on Agronomic and Nutritional Parameters of Radish (Raphanus sativus). Agriculture, 15(6), 595. https://doi.org/10.3390/agriculture15060595