Dissipation of Two Acidic Herbicides in Agricultural Soil: Impact of Green Compost Application, Herbicide Rate, and Soil Moisture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Herbicides and Reagents
2.2. Experimental Setup
2.3. Herbicide Extraction
2.4. Herbicide Analysis
2.5. Dissipation Mechanism and Analysis of 14C Labelled Iodosulfuron-methyl-sodium
2.6. Data Analysis
3. Results and Discussion
3.1. Degradation of Aminopyralid and Iodosulfuron-methyl-sodium in Unamended and Amended Soils
3.2. Formation of Metsulfuron-methyl and AMMT Metabolites in Unamended and Amended Soils
3.3. Dissipation Mechanism of 14C-iodosulfuron-methyl-sodium in Unamended and Amended Soils
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popp, J.; Petö, K.; Nagy, J. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 2013, 33, 243–255. [Google Scholar] [CrossRef]
- Zhang, W. Global pesticide use: Profile, trend, cost/benefit and more. Proc. Int. Acad. Ecol. Environ. Sci. 2018, 8, 1–27. [Google Scholar]
- The European Parliament and the Council of the European Union. Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. OJ L 2009, 309, 71–86. [Google Scholar]
- Nath, C.P.; Singh, R.G.; Choudhary, V.K.; Datta, D.; Nandan, R.; Singh, S.S. Challenges and alternatives of herbicide-based weed management. Agronomy 2024, 14, 126. [Google Scholar] [CrossRef]
- Mesnage, R.; Székács, A.; Zaller, J.G. Herbicides: Brief history, agricultural use, and potential alternatives for weed control. In Emerging Issues in Analytical Chemistry, Herbicides; Mesnage, R., Zaller, J.G., Eds.; Elsevier in Cooperation with RTI Press: Amsterdam, The Netherlands, 2021; Volume 3, pp. 1–20. [Google Scholar]
- Riemens, M.; Sønderskov, M.; Moonen, A.-C.; Storkey, J.; Kudsk, P. An Integrated Weed Management framework: A pan-European perspective. Eur. J. Agron. 2022, 133, 126443. [Google Scholar] [CrossRef]
- Severo Silva, T.; Arneson, N.J.; Silva, D.V.; Werle, R. Evaluating cover crop tolerance to corn residual herbicides using field-treated soil in greenhouse bioassay. Weed Technol. 2023, 37, 500–511. [Google Scholar] [CrossRef]
- Mikkelson, J.R.; Lym, R.G. Aminopyralid soil residues affect crop rotation in North Dakota soils. Weed Technol. 2011, 25, 422–429. [Google Scholar] [CrossRef]
- Douglas, A. Residual Herbicides—Carryover and Behaviour in Dry Conditions, 7 May 2024. Available online: https://www.agric.wa.gov.au/grains-research-development/residual-herbicides-carryover-and-behaviour-dry-conditions (accessed on 18 November 2024).
- Fast, B.J.; Ferrell, J.A.; MacDonald, G.E.; Sellers, B.A.; MacRae, A.W.; Krutz, L.J.; Kline, W.N. Aminopyralid soil residues affect rotational vegetable crops in Florida. Pest Manag. Sci. 2011, 67, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Paporisch, A.; Laor, Y.; Rubin, B.; Eizenberg, H. Effect of repeated application of sulfonylurea herbicides on sulfosulfuron dissipation rate in soil. Agronomy 2020, 10, 1724. [Google Scholar] [CrossRef]
- Serim, A.T.; Maden, S. Effects of soil residues of sulfosulfuron and mesosulfuron methyl+ iodosulfuron methyl sodium on sunflower varieties. J. Agric. Sci. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Camacho, M.E.; Gannon, T.W.; Ahmed, K.A.; Mulvaney, M.J.; Heitman, J.L.; Amoozegar, A.; Leon, R.G. Evaluation of imazapic and flumioxazin carryover risk for Carinata (Brassica carinata) establishment. Weed Sci. 2022, 70, 503–513. [Google Scholar] [CrossRef]
- Adamson, D.M.; Sbatella, G.M.; Kniss, A.R.; Dayan, F.E. Reduced irrigation impact on soil-applied herbicide dissipation and rotational crop response. Weed Technol. 2024, 38, e11. [Google Scholar] [CrossRef]
- Sparangis, P.; Efthimiadou, A.; Katsenios, N.; Karkanis, A. Control of resistant false cleavers (Galium spurium L.) population to ALS-inhibiting herbicides and its impact on the growth and yield of durum wheat. Agronomy 2023, 13, 1087. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- EFSA, European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance aminopyralid. EFSA J. 2013, 11, 3352. [Google Scholar] [CrossRef]
- EFSA, European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance iodosulfuron-methyl-sodium (approved as iodosulfuron). EFSA J. 2016, 14, 4453. [Google Scholar]
- Lei, Q.; Zhong, J.; Chen, S.-F.; Wu, S.; Huang, Y.; Guo, P.; Mishra, S.; Bhatt, K.; Chen, S. Microbial degradation as a powerful weapon in the removal of sulfonylurea herbicides. Environ. Res. 2023, 235, 116570. [Google Scholar] [CrossRef]
- Tomco, P.L.; Duddleston, K.N.; Schultz, E.J.; Hagedorn, B.; Stevenson, T.J.; Seefeldt, S.S. Field degradation of aminopyralid and clopyralid and microbial community response to application in Alaskan soils. Environ. Toxicol. Chem. 2016, 35, 485–493. [Google Scholar] [CrossRef]
- Sarmah, A.K.; Sabadie, J. Hydrolysis of sulfonylurea herbicides in soils and aqueous solutions: A review. J. Agric. Food Chem. 2002, 50, 6253–6265. [Google Scholar] [CrossRef]
- Rolando, C.A.; Scott, M.B.; Baillie, B.R.; Dean, F.; Todoroki, C.L.; Paul, T.S.H. Persistence of triclopyr, dicamba, and picloram in the environment following aerial spraying for control of dense pine invasion. Invasive Plant Sci. Manag. 2023, 16, 177–190. [Google Scholar] [CrossRef]
- Kaur, P.; Kaur, H.; Kaur, R.; Singh, K.; Bhullar, M.S. Groundwater monitoring and leaching of sulfonylurea herbicides and transformation products. Microchem. J. 2023, 194, 109273. [Google Scholar] [CrossRef]
- de Jesus, R.A.; Barros, G.P.; Bharagava, R.N.; Liu, J.; Mulla, S.I.; Azevedo, L.C.B.; Ferreira, L.F.R. Occurrence of pesticides in wastewater: Bioremediation approach for environmental safety and its toxicity. In Advances in Chemical Pollution, Environmental Management and Protection; Ferreira, L.F.R., Kumar, A., Bilal, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 9, pp. 17–33. [Google Scholar]
- Yu, C.Y.; Lian, J.L.; Gong, Q.; Ren, L.S.; Huang, Z.; Xu, A.X.; Dong, J.G. Sublethal application of various sulfonylurea and imidazolinone herbicides favors outcrossing and hybrid seed production in oilseed rape. BMC Plant Biol. 2020, 20, 69. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Mao, J.; Dai, X.; Zhao, X.; Qiao, C.; Zhang, X.; Pu, E. Residue determination of triclopyr and aminopyralid in pastures and soil by gas chromatography-electron capture detector: Dissipation pattern under open field conditions. Ecotoxicol. Environ. Saf. 2018, 155, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Bork, E.W.; Miller, A.J.; Hall, L.M. Legume re-establishment in northern temperate grasslands following application of aminocyclopyrachlor and aminopyralid. Crop Prot. 2023, 169, 106264. [Google Scholar] [CrossRef]
- García-Miro, A.; Ordax, J.M.; Sánchez-Martín, M.J.; Marín-Benito, J.M.; Rodríguez-Cruz, M.S. Adsorption of ionizable herbicides by agricultural soils without amendment and green compost-amended soils. Rev. Cienc. Agrar. 2022, 45, 614–617. [Google Scholar]
- Pavlidis, G.; Karasali, H.; Tsihrintzis, V.A. Dynamics of changes in the concentrations of herbicides and nutrients in the soils of a combined wheat-poplar tree cultivation: A field experimental model during the growing season. Agrofor. Syst. 2021, 95, 321–338. [Google Scholar] [CrossRef]
- Rouchaud, J.; Moulard, C.; Eelen, H.; Bulcke, R. Persistence of the sulfonylurea herbicide iodosulfuron-methyl in the soil of winter wheat crops. Toxicol. Environ. Chem. 2003, 85, 103–120. [Google Scholar] [CrossRef]
- Guo, Z.-Y.; Tang, M.-Z.; Yuan, M.; Xu, Z. Effects of environmental conditions and microbes on degradation of iodosulfuron-methyl-sodium in soil. J. Ecol. Rural Environ. 2006, 22, 76–79. [Google Scholar]
- Kaur, H.; Kaur, P.; Sharma, S.; Bhullar, M.S. Response of soil enzymatic and microbial activities to mixture formulation of mesosulfuron methyl and iodosulfuron methyl and its degradation in soil. Soil Sediment Contam. 2024, 33, 1–22. [Google Scholar] [CrossRef]
- Schaeffer, A.; Wijntjes, C. Changed degradation behavior of pesticides when present in mixtures. Eco-Environ. Health 2022, 1, 23–30. [Google Scholar] [CrossRef]
- Wijntjes, C.; Weber, Y.; Höger, S.; Nguyen, K.T.; Hollert, H.; Schäffer, A. Decelerated degradation of a sulfonylurea herbicide in four fungicide-treated soils. Environ. Sci. Adv. 2022, 1, 70–82. [Google Scholar] [CrossRef]
- Hall, K.E.; Ray, C.; Ki, S.J.; Spokas, K.A.; Koskinen, W.C. Pesticide sorption and leaching potential on three Hawaiian soils. J. Environ. Manag. 2015, 159, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Sondhia, S. Persistence of metsulfuron in wheat crop and soil. Environ. Monit. Assess. 2008, 147, 463–469. [Google Scholar] [CrossRef]
- Sparks, D.L. Methods of Soil Analysis. Part 3: Chemical Methods; SSSA Series; Wiley: Hoboken, NJ, USA, 1996. [Google Scholar]
- OECD. Test No. 307: Aerobic and Anaerobic Transformation in Soil, OECD Guidelines for the Testing of Chemicals, Section 3; OECD Publishing: Paris, France, 2002. [Google Scholar]
- Douibi, M.; Krishtammagari, A.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S.; Marín-Benito, J.M. Mulching vs. organic soil amendment: Effects on adsorption-desorption of herbicides. Sci. Total Environ. 2023, 892, 164749. [Google Scholar] [CrossRef]
- Reid, B.J.; Fervor, T.R.; Semple, K.T. Induction of PAH-catabolism in mushroom compost and its use in the biodegradation of soil-associated phenanthrene. Environ. Pollut. 2002, 118, 65–73. [Google Scholar] [CrossRef] [PubMed]
- FOCUS, Forum for the Co-Ordination of Pesticide Fate Models and Their Use. Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration; Report of the FOCUS Work Group on Degradation Kinetics. EC Document Reference SANCO/10058/2005-v. 2.0; FOCUS, Forum for the Co-Ordination of Pesticide Fate Models and Their Use: 2006. Available online: https://esdac.jrc.ec.europa.eu/public_path/projects_data/focus/dk/docs/finalreportFOCDegKinetics.pdf (accessed on 1 June 2024).
- Carpio, M.J.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S.; Marín-Benito, J.M. Effect of organic residues on pesticide behavior in soils: A review of laboratory research. Environments 2021, 8, 32. [Google Scholar] [CrossRef]
- Barba, V.; Marín-Benito, J.M.; García-Delgado, C.; Sánchez-Martín, M.J.; Rodríguez–Cruz, M.S. Assessment of 14C–prosulfocarb dissipation mechanism in soil after amendment and its impact on the microbial community. Ecotoxicol. Environ. Saf. 2019, 182, 109395. [Google Scholar] [CrossRef]
- Pose-Juan, E.; Igual, J.M.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Influence of herbicide triasulfuron on soil microbial community in an unamended soil and a soil amended with organic residues. Front. Microbiol. 2017, 8, 378. [Google Scholar] [CrossRef]
- Pons, N.; Barriuso, E. Fate of metsulfuron-methyl in soils in relation to pedo-climatic conditions. Pestic. Sci. 1998, 53, 311–323. [Google Scholar] [CrossRef]
- Ahmad, R.; James, T.K.; Rahman, A.; Holland, P.T. Dissipation of the herbicide clopyralid in an allophanic soil: Laboratory and field studies. J. Environ. Sci. Health B 2003, 38, 683–695. [Google Scholar] [CrossRef]
- Ismail, B.S.; Eng, O.K.; Tayeb, M.A. Degradation of triazine-2-14C metsulfuron-methyl in soil from an oil palm plantation. PLoS ONE 2015, 10, e138170. [Google Scholar]
- Singh, S.B.; Sharma, R.; Singh, N. Persistence of pyrazosulfuron in rice-field and laboratory soil under Indian tropical conditions. Pest Manag. Sci. 2012, 68, 828–833. [Google Scholar] [CrossRef]
- Gennari, M.; Abbate, C.; Baglieri, A.; Nègre, M. Fate and degradation of triasulfuron in soil and water under laboratory conditions. J. Environ. Sci. Health B 2008, 43, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Boschin, G.; D’Agostina, A.; Arnoldi, A.; Marotta, E.; Zanardini, E.; Negri, M.; Valle, A.; Sorlini, C. Biodegradation of chlorsulfuron and metsulfuron-methyl by Aspergillus niger in laboratory conditions. J. Environ. Sci. Health B 2003, 38, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Marín-Benito, J.M.; Andrades, M.S.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Dissipation of fungicides in a vineyard soil amended with different spent mushroom substrates. J. Agric. Food Chem. 2012, 60, 6936–6945. [Google Scholar] [CrossRef]
- Álvarez-Martín, A.; Sánchez-Martín, M.J.; Pose-Juan, E.; Rodríguez-Cruz, M.S. Effect of different rates of spent mushroom substrate on the dissipation and bioavailability of cymoxanil and tebuconazole in an agricultural soil. Sci. Total Environ. 2016, 550, 495–503. [Google Scholar] [CrossRef]
- Obregón Alvarez, D.; Mendes, K.F.; Tosi, M.; Fonseca de Souza, L.; Campos Cedano, J.C.; de Souza Falcão, N.P.; Dunfield, K.; Tsai, S.M.; Tornisielo, V.L. Sorption-desorption and biodegradation of sulfometuron-methyl and its effects on the bacterial communities in Amazonian soils amended with aged biochar. Ecotoxicol. Environ. Saf. 2021, 207, 111222. [Google Scholar] [CrossRef]
- Singh, N.; Singh, S.B.; Raunaq; Das, T.K. Effect of fly ash on persistence, mobility and bio-efficacy of metribuzin and metsulfuron-methyl in crop fields. Ecotoxicol. Environ. Saf. 2013, 97, 236–241. [Google Scholar] [CrossRef]
- Ahmad, K.S. Adsorption evaluation of herbicide iodosulfuron followed by Cedrus deodora sawdust-derived activated carbon removal. Soil Sediment Contam. 2019, 28, 65–80. [Google Scholar] [CrossRef]
- Grey, T.L.; McCullough, P.E. Sulfonylurea herbicides’ fate in soil: Dissipation, mobility, and other processes. Weed Technol. 2012, 26, 579–581. [Google Scholar] [CrossRef]
- EFSA, European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance metsulfuron-methyl. EFSA J. 2015, 13, 3936. [Google Scholar] [CrossRef]
Aminopyralid | Iodosulfuron- methyl-sodium | Metsulfuron-methyl (Metabolite) | AMMT (Metabolite) | |
---|---|---|---|---|
Chemical structure | ||||
Molecular mass | 207.03 | 529.24 | 381.36 | 140.15 |
Dissociation constant (pKa), 25 °C | 2.56 | 3.22 | 3.75 | - |
Solubility—In water, pH 7, 20 °C (mg L−1) | 2480 | 25,000 | 2800 | - |
Octanol–water partition coefficient (log Kow), pH 7, 20 °C | −2.7 | −0.7 | −1.9 | 0.52 |
DT50 in lab, 20 °C (days) | 55.5 | 2.7 | 23.2 | 144 |
DT50 in field (days) | 12.1 | 3.2 | 13.3 | - |
Vapour pressure, 20 °C (mPa) | 2.59 × 10−5 | 2.6 × 10−6 | 1.0 × 10−6 | - |
GUS leaching potential index 1 | 3.34 | 1.19 | 3.28 | 5.04 |
Kd (mL g−1) | 11.2 (GC) 0.72 (S) 3.43 (S+GC) | 3.39 (GC) 0.19 (S) 0.27 (S+GC) | 93.8 (GC) 0.12 (S) 1.09 (S+GC) | 7.11 (GC) 0.21 (S) 0.80 (S+GC) |
pH | EC 1 (dS/m) | OC 2 (%) | DOC 3 (%) | N (%) | C/N | |
---|---|---|---|---|---|---|
GC | 7.8 | 0.33 | 19.1 | 0.703 | 2.100 | 11.4 |
S | 6.2 | 0.10 | 1.12 | 0.003 | 0.126 | 8.9 |
S+GC | 6.3 | 0.29 | 1.37 | 0.007 | 0.162 | 8.5 |
M0 (%) | α/β k (d−1) | DT50 (d) | DT90 (d) | ꭓ2 | r2 | Model | |
---|---|---|---|---|---|---|---|
S-D1-H25% | 101.94 | 0.583/21.3 | 48.6 ± 0.6 de | 1086 | 7.1 | 0.931 | FOMC |
S-D1-H50% | 104.50 | 1.229/56.6 | 42.8 ± 0.1 e | 312 | 8.3 | 0.924 | FOMC |
S-D2-H25% | 101.13 | 0.356/14.5 | 86.8 ± 0.6 c | 9267 | 4.6 | 0.948 | FOMC |
S-D2-H50% | 97.70 | 0.507/19.2 | 56.3 ± 0.3 de | 1790 | 5.5 | 0.950 | FOMC |
S+GC-D1-H25% | 100.32 | 0.225/7.3 | 153 ± 5.4 b | 2 × 105 | 3.2 | 0.897 | FOMC |
S+GC-D1-H50% | 100.79 | 0.353/12.3 | 75.3 ± 1.6 cd | 8308 | 6.6 | 0.896 | FOMC |
S+GC-D2-H25% | 101.81 | 0.204/13.6 | 395 ± 18 a | 1 × 106 | 1.6 | 0.976 | FOMC |
S+GC-D2-H50% | 100.16 | 0.286/17.0 | 175 ± 3.1 b | 5 × 104 | 5.2 | 0.882 | FOMC |
SS-D2-H25% | 96.09 | 9.0 × 10−5 | 8044 ± 184 | 3 × 104 | 2.7 | 0.092 | SFO |
SS-D2-H50% | 97.47 | 4.0 × 10−4 | 1781 ± 97.1 | 5918 | 2.5 | 0.416 | SFO |
SS+GC-D2-H25% | 100.01 | 0.020/0.009 | 4 × 1011 ± 1 × 103 | 3 × 106 | 3.5 | 0.817 | FOMC |
SS+GC-D2-H50% | 97.59 | 4.0 × 10−5 | 2 × 104 ± 200 | 6 × 104 | 3.1 | 0.037 | SFO |
M0 (%) | k (d−1) | DT50 (d) | DT90 (d) | ꭓ2 | r2 | Model | |
---|---|---|---|---|---|---|---|
S-D1-H25% | 99.63 | 0.050 | 14.0 ± 0.6 e | 46.5 | 4.5 | 0.996 | SFO |
S-D1-H50% | 104.83 | 0.038 | 18.5 ± 0.7 d | 61.4 | 7.1 | 0.990 | SFO |
S-D2-H25% | 102.80 | 0.026 | 26.2 ± 0.1 c | 87.0 | 4.5 | 0.993 | SFO |
S-D2-H50% | 100.83 | 0.024 | 29.2 ± 1.6 bc | 97.0 | 4.8 | 0.990 | SFO |
S+GC-D1-H25% | 100.6 | 0.036 | 19.2 ± 0.8 d | 63.8 | 4.7 | 0.994 | SFO |
S+GC-D1-H50% | 102.34 | 0.033 | 20.9 ± 1.6 d | 69.5 | 3.9 | 0.995 | SFO |
S+GC-D2-H25% | 101.64 | 0.021 | 33.2 ± 1.6 ab | 110 | 3.9 | 0.989 | SFO |
S+GC-D2-H50% | 102.08 | 0.021 | 33.8 ± 0.5 a | 112 | 3.4 | 0.993 | SFO |
SS-D2-H25% | 102.54 | 0.007 | 95.9 ± 3.1 | 319 | 8.0 | 0.854 | SFO |
SS-D2-H50% | 103.86 | 0.011 | 64.7 ± 2.0 | 215 | 6.8 | 0.945 | SFO |
SS+GC-D2-H25% | 104.34 | 0.005 | 127 ± 4.8 | 423 | 8.9 | 0.742 | SFO |
SS+GC-D2-H50% | 107.50 | 0.007 | 99.8 ± 2.7 | 332 | 9.4 | 0.803 | SFO |
Time (d) | % Metabolite Max. | Time (d) | % Metabolite | |
---|---|---|---|---|
Metsulfuron-methyl | ||||
S-D1-H25% | 42 | 40.8 ± 3.3 c | 120 | 9.6 ± 0.5 e |
S-D1-H50% | 42 | 45.6 ± 2.7 c | 120 | 17.0 ± 0.3 d |
S-D2-H25% | 70 | 32.5 ± 1.0 d | 120 | 23.0 ± 1.4 c |
S-D2-H50% | 70 | 32.3 ± 0.4 d | 120 | 20.3 ± 2.0 c |
S+GC-D1-H25% | 70 | 51.2 ± 1.2 b | 120 | 34.7 ± 0.4 b |
S+GC-D1-H50% | 70 | 59.2 ± 2.6 a | 120 | 44.4 ± 1.8 a |
S+GC-D2-H25% | 84 | 41.0 ± 0.4 c | 120 | 40.8 ± 0.4 a |
S+GC-D2-H50% | 84 | 42.8 ± 1.6 c | 120 | 41.7 ± 1.8 a |
AMMT | ||||
S-D1-H25% | 120 | 3.3 ± 0.3 c | 120 | 3.3 ± 0.3 c |
S-D1-H50% | 120 | 4.1 ± 0.1 a | 120 | 4.1 ± 0.1 a |
S-D2-H25% | 120 | 2.6 ± 0.1 d | 120 | 2.6 ± 0.1 d |
S-D2-H50% | 120 | 2.5 ± 0.3 d | 120 | 2.5 ± 0.3 d |
S+GC-D1-H25% | 120 | 3.0 ± 0.0 c | 120 | 3.0 ± 0.0 c |
S+GC-D1-H50% | 120 | 3.5 ± 0.0 b | 120 | 3.5 ± 0.0 b |
S+GC-D2-H25% | 120 | 2.3 ± 0.0 d | 120 | 2.3 ± 0.0 d |
S+GC-D2-H50% | 120 | 2.4 ± 0.1 d | 120 | 2.4 ± 0.1 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín-Benito, J.M.; Andrades, M.S.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Dissipation of Two Acidic Herbicides in Agricultural Soil: Impact of Green Compost Application, Herbicide Rate, and Soil Moisture. Agriculture 2025, 15, 552. https://doi.org/10.3390/agriculture15050552
Marín-Benito JM, Andrades MS, Sánchez-Martín MJ, Rodríguez-Cruz MS. Dissipation of Two Acidic Herbicides in Agricultural Soil: Impact of Green Compost Application, Herbicide Rate, and Soil Moisture. Agriculture. 2025; 15(5):552. https://doi.org/10.3390/agriculture15050552
Chicago/Turabian StyleMarín-Benito, Jesús M., María Soledad Andrades, María J. Sánchez-Martín, and María Sonia Rodríguez-Cruz. 2025. "Dissipation of Two Acidic Herbicides in Agricultural Soil: Impact of Green Compost Application, Herbicide Rate, and Soil Moisture" Agriculture 15, no. 5: 552. https://doi.org/10.3390/agriculture15050552
APA StyleMarín-Benito, J. M., Andrades, M. S., Sánchez-Martín, M. J., & Rodríguez-Cruz, M. S. (2025). Dissipation of Two Acidic Herbicides in Agricultural Soil: Impact of Green Compost Application, Herbicide Rate, and Soil Moisture. Agriculture, 15(5), 552. https://doi.org/10.3390/agriculture15050552