Development of an Algorithm for Predicting Broiler Shipment Weight in a Smart Farm Environment
Abstract
:1. Introduction
2. Background
2.1. Previous Studies on Broiler Weight Analysis
2.2. Clustering Method and Density Analysis Method for Estimating the Weight Representative Value
2.2.1. Clustering
2.2.2. Kernel Density Estimation
2.3. Growth Trend Representation Method and Time Series Approach for Shipping Weight Prediction
2.3.1. Gompertz Growth Model
2.3.2. Double Exponential Smoothing
2.3.3. ARIMA
2.3.4. Prophet
3. Materials and Methods
3.1. Data Collection
3.2. Algorithm Composition and Design
3.3. Performance Evaluation of the Algorithm
4. Results
4.1. Experimental Results
4.1.1. Experiments in the Daily Weight Estimation Step
4.1.2. Experiments in the Weight Representative Value Selection Step
4.1.3. Experiments in the Shipping Weight Prediction Step
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Torrella, K. How a Shipping Error More than a Century Ago Launched the $30 Billion Chicken Industry. Vox. Available online: https://www.vox.com/future-perfect/2023/2/10/23589333/cecile-steele-chicken-meat-poultry-eggs-delaware (accessed on 10 February 2023).
- Cobb500 Broiler. Performance & Nutrition Supplement (2022) (PDF) (Report); Cobb-Vantress: Siloam Springs, AR, USA, 2022; p. 4. [Google Scholar]
- Korea Rural Economic Institute. Agricultural Outlook 2022; Korea Rural Economic Institute: Naju, Republic of Korea, 2022; Chapter 18; pp. 756–758. [Google Scholar]
- Kim, G.-W.; Kim, J.-H.; Kim, H.-Y.; Kim, B.-K.; Park, H.-B.; Choe, J.; Kim, J.-H. Analysis of Marketing Performances according to Raising Environment in Broilers. Korean J. Poult. Sci. 2019, 46, 25–30. [Google Scholar] [CrossRef]
- Jang, H. Causes of Stress—A Major Disruptor of Broiler Production. Korean J. Poult. Sci. 1997, 29, 140–143. [Google Scholar]
- Choi, H.-C. Dust Generation and Removal Method in the Premises, Monthly Foltree, National Institute of Animal Science, Rural Development Administration. 2010. Available online: https://www.nias.go.kr/front/soboarddown.do?cmCode=M090814151125016&boardSeqNum=120&fileSeqNum=123 (accessed on 10 January 2025).
- Roush, W.; Dozier, W.; Branton, S. Comparison of Gompertz and Neural Network Models of Broiler Growth. Poult. Sci. 2006, 85, 794–797. [Google Scholar] [CrossRef] [PubMed]
- Topal, M.; Bölükbaşı, Ş. Comparison of Nonlinear Growth Curve Models in Broiler Chickens. J. Appl. Anim. Res. 2008, 34, 149–152. [Google Scholar] [CrossRef]
- Ahmad, H.A. Poultry growth modeling using neural networks and simulated data. J. Appl. Poult. Res. 2009, 18, 440–446. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pinto, M.A.; Pereira, R.A.C.; Figueiredo, M.E. Growth curves of broilers fed different nutritional relationships using the Gompertz model. J. Anim. Sci. Technol. 2020, 62, 61–67. [Google Scholar]
- Chumthong, R.; Sripha, S.; Tanaka, T. Using non-linear models to describe growth curves for Thai black-bone chickens. Anim. Sci. Technol. 2021, 65, 847–856. [Google Scholar]
- Alijani, S.; Nematzadeh, R.; Hasanpur, K.; Varnaseri, H. Comparison of different mathematical functions for fitting growth curves of ascitic and healthy chickens. Ank. Üniv. Vet. Fak. Derg. 2021, 68, 289–295. [Google Scholar] [CrossRef]
- Hagan, B.A.; Asumah, C.; Yeboah, E.D.; Lamptey, V.K. Modeling the growth of four commercial broiler genotypes reared in the tropics. Trop. Anim. Health Prod. 2022, 54, 75. [Google Scholar] [CrossRef]
- Park, H.; Kim, N.; Han, Y.; Hahn, H. Implementation of Poultry Weight Measuring System using Object Segmentation based on Mean-shift Clustering. J. Inst. Electron. Inf. Eng. 2018, 55, 55–64. [Google Scholar]
- Wang, C.-Y.; Chen, Y.-J.; Chien, C.-F. Industry 3.5 to empower smart production for poultry farming and an empirical study for broiler live weight prediction. Comput. Ind. Eng. 2021, 151, 106931. [Google Scholar] [CrossRef]
- Oh, Y.; Lyu, P.; Ko, S.; Min, J.; Song, J. Enhancing Broiler Weight Estimation through Gaussian Kernel Density Estimation Modeling. Agriculture 2024, 14, 809. [Google Scholar] [CrossRef]
- Lioyd, S.P. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Loftsgaarden, D.O.; Quesenberry, C.P. A nonparametric estimate of a multivariate density function. Ann. Math. Stat. 1965, 36, 1049–1051. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; CRC Press: Boca Raton, FL, USA, 1986. [Google Scholar]
- Sharpe, D.H.; DeMichele, D.W. A Gompertzian model of population growth with density-dependent feedback. Ecol. Monogr. 1977, 47, 351–380. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis: Forecasting and Control; Holden-Day: San Francisco, CA, USA, 1970. [Google Scholar]
- Taylor, S.J.; Letham, B. Forecasting at scale. Am. Stat. 2018, 72, 37–45. [Google Scholar] [CrossRef]
- Johansen, S.V.; Bendtsen, J.D.; R.-Jensen, M.; Mogensen, J. Broiler weight forecasting using dynamic neural network models with input variable selection. Comput. Electron. Agric. 2019, 159, 97–109. [Google Scholar] [CrossRef]
- Kigon, K.; Sik, C.E.; Hwan, S.S. A Study on Growth Pattern in a New Synthetic Korean Native Commercial Chicken by Sex and Strains. Korean J. Poult. Sci. 2022, 49, 229–237. [Google Scholar]
- Şengül, T.; Çelik, Ş.; Şengül, A.Y.; İnci, H.; Şengül, Ö. Investigation of growth curves with different nonlinear models and MARS algorithm in broiler chickens. PLoS ONE 2024, 19, e0307037. [Google Scholar] [CrossRef]
- Taylor, C.; Guy, J.; Bacardit, J. Prediction of growth in grower-finisher pigs using recurrent neural networks. Biosyst. Eng. 2022, 220, 114–134. [Google Scholar] [CrossRef]
- Shabir, F.; Abdullah, A.I.; Asrul, B.E.W.; Alifah, S.; Nur, A. Implementasi Metode Double Exponential Smoothing Dalam Menentukan Masa Tanam Pada Perkebunan Strawberry. Telemat. J. Inform. Dan Teknol. Inf. 2022, 19, 259–270. [Google Scholar]
- Albeladi, K.; Zafar, B.; Mueen, A. Time Series Forecasting using LSTM and ARIMA. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 313–320. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 2008, 27, 1–22. [Google Scholar] [CrossRef]
Researchers (Year) | Data Collection Method | Analysis Model | Key Findings |
---|---|---|---|
W. B. Roush et al. (2006) [7] | Manual measurement (1–70 days) | Gompertz model, Neural Network | Both models explained growth well; Neural Network performed better (MSE: 382.2, MAPE: 2.983). |
M. Topal et al. (2008) [8] | Manual measurement (weekly, 0–6 weeks) | Weibul, MMF, Gompertz, Bertalanffy, logistic model | The Weibull model performed best (R2: 1.0, MAPE: 0.03). |
Ahmad H.A. et al. (2009) [9] | Manual measurement (0–7 weeks) | Neural Network | Neural Network effectively explained the growth curve (R2: 0.998). |
Pino, M. A. et al. (2020) [10] | No mention (four different comparison groups) | Gompertz model | The Gompertz model had an R-squared of 0.99 for all four data sets. The group fed HCl, SO4, and calcium pidolate showed the highest growth rate. |
Chumthong, R. et al. (2021) [11] | Manual measurement (2-week intervals) | Gompertz, logistic, Von Bertalanffy model | The Von Bertalanffy model best fitted both male and female Blackbone chickens, with an R-squared of 0.9. |
Alijani, S. et al. (2021) [12] | Manual measurement (1–45 days) | Logistic, Gompertz, Richards, Lopez, Von Bertalanffy | The Gompertz model showed an R-squared of 0.99 and an AIC of 68 for healthy broilers. For ascitic broilers, the Richards model was the best fit, with an AIC of 85.4. |
Hangan, B.A. et al. (2022) [13] | Manual measurement (1–42 days) | Gompertz, polynomial growth models | The Gompertz model had an average error rate of less than 0.05 and was suitable for weekly growth modeling. |
Park H. et al. (2018) [14] | Video-based automatic measurement | Mean-shift clustering, CNN | Automatic measurement accuracy: 91.09%; there was a lower accuracy in crowded conditions. |
Chun-Yao Wang et al. (2021) [15] | Automatic measurement (with outliers) | GMM clustering, bootstrap algorithm, Gompertz | The Gompertz model fitted with a corrected representative weight error rate < 5%. |
Oh Y. et al. 2024) [16] | Automatic measurement (with outliers) | Kernel density estimation | Optimized bandwidth selection improved representative weight accuracy. |
Details | |
---|---|
Device Name | Emotion Co., Ltd.’s Kokofarm broiler live weight meter |
Protocol | RS-485 |
Data Types | Broiler Weight Sensor Data |
Weight Unit | Gram (g) |
Collecting Data | Broiler Live Weight (Weight Scale Hit): 1 hit/1 s |
ID | File Name (Date + KokoFarm + Farm ID + House ID) |
---|---|
1 | 20230104130541_KF008102_sensorData.csv |
2 | 20230117075028_KF010101_sensorData.csv |
3 | 20230123080647_KF002101_sensorData.csv |
4 | 20230126152117_KF001602_sensorData.csv |
5 | 20230129085932_KF005505_sensorData.csv |
6 | 20230129090602_KF005504_sensorData.csv |
… | … |
110 | 20240902000000_KF010102_sensorData.csv |
Data | Model | Prophet | ARIMA | D_ES | Gompertz | Actual Weight |
---|---|---|---|---|---|---|
20230126152117 _KF001602 | K-means (error%) | 1540 (3.84) | 1184 (26.03) | 1219 (23.86) | 1271 (20.64) | 1602 |
KDE (error%) | 1876 (17.11) | 1194 (25.43) | 1450 (9.44) | 1396 (12.80) | ||
20230127112722 _KF001603 | K-means (error%) | 1253 (0.30) | 1253 (0.29) | 1299 (3.96) | 1054 (15.65) | 1250 |
KDE (error%) | 2188 (75.07) | 1341 (7.33) | 1461 (16.94) | 894 (28.40) | ||
20230129115417 _KF005511 | K-means (error%) | 1538 (4.19) | 1285 (19.94) | 1335 (16.87) | 1265 (21.17) | 1606 |
KDE (error%) | 1376 (14.28) | 1327 (17.32) | 1378 (14.17) | 1307 (18.60) | ||
20230202114437 _KF001601 | K-means (error%) | 1369 (0.02) | 1288 (5.98) | 1390 (1.50) | 1004 (26.68) | 1370 |
KDE (error%) | 1881 (37.33) | 1334 (2.60) | 1375 (0.36) | 1435 (4.78) | ||
20230213120922 _KF002503 | K-means (error%) | 1304 (2.75) | 1236 (7.78) | 1229 (8.31) | 1081 (19.36) | 1341 |
KDE (error%) | 1801 (34.34) | 1233 (7.98) | 1168 (12,86) | 1248 (6.88) | ||
20230213150747 _KF002501 | K-means (error%) | 1339 (4,18) | 1294 (7.39) | 1274 (8.82) | 1096 (21.59) | 1398 |
KDE (error%) | 1723 (23.26) | 1202 (13.97) | 1255 (10.17) | 979 (29.95) | ||
20230219151207 _KF005207 | K-means (error%) | 1696 (0.90) | 1618 (5.49) | 1627 (4.95) | 1395 (18.45) | 1712 |
KDE (error%) | 1736 (1.41) | 1420 (17.00) | 1599 (6.54) | 1472 (13.98) | ||
20230219151242 _KF005202 | K-means (error%) | 1459 (1.61) | 1360 (8.34) | 1401 (5.55) | 1228 (17.20) | 1484 |
KDE (error%) | 1644 (10.84) | 1360 (8.35) | 1514 (2.08) | 1241 (16.32) | ||
20230303174810 _KF010102 | K-means (error%) | 1532 (1.79) | 1481 (5.03) | 1538 (1.39) | 1517 (2.73) | 1560 |
KDE (error%) | 1733 (11.09) | 1777 (13.94) | 1698 (8.88) | 1871 (19.96) | ||
20230303175712 _KF010101 | K-means (error%) | 1400 (3.40) | 1321 (2.39) | 1379 (1.91) | 1333 (1.50) | 1354 |
KDE (error%) | 1343 (0.77) | 1244 (8.11) | 1297 (4.16) | 1278 (5.60) |
Model | MAE | MAPE | RMSE | Std | Mean |
---|---|---|---|---|---|
K-means + Prophet | 79.65 | 4.92 | 104.84 | 102.18 | 25.41 |
K-means + ARIMA | 228.73 | 14.10 | 272.41 | 173.88 | 210.36 |
K-means + D_ES | 160.51 | 9.82 | 207.99 | 146.55 | 148.25 |
K-means + Gompertz | 289.25 | 17.88 | 340.13 | 192.34 | 281.12 |
KDE + Prophet | 158.91 | 10.34 | 234.59 | 221.86 | −79.41 |
KDE + ARIMA | 216.03 | 13.43 | 262.95 | 207.04 | 163.40 |
KDE + D_ES | 230.80 | 14.41 | 392.70 | 350.82 | 179.60 |
KDE + Gompertz | 299.59 | 18.82 | 436.65 | 400.75 | 177.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, B.; Song, J. Development of an Algorithm for Predicting Broiler Shipment Weight in a Smart Farm Environment. Agriculture 2025, 15, 539. https://doi.org/10.3390/agriculture15050539
Lee B, Song J. Development of an Algorithm for Predicting Broiler Shipment Weight in a Smart Farm Environment. Agriculture. 2025; 15(5):539. https://doi.org/10.3390/agriculture15050539
Chicago/Turabian StyleLee, Bohyeok, and Juwhan Song. 2025. "Development of an Algorithm for Predicting Broiler Shipment Weight in a Smart Farm Environment" Agriculture 15, no. 5: 539. https://doi.org/10.3390/agriculture15050539
APA StyleLee, B., & Song, J. (2025). Development of an Algorithm for Predicting Broiler Shipment Weight in a Smart Farm Environment. Agriculture, 15(5), 539. https://doi.org/10.3390/agriculture15050539