Regulatory Effects of S-Abscisic Acid and Soil Conditioner on the Yield and Quality of Hybrid Rice Under Salt Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Details
2.2. Observations and Measurements
2.2.1. Determination of Dry Biomass, Leaf Area Index and Leaf SPAD Values
2.2.2. Determination of Antioxidant Enzyme Activity and Malondialdehyde Content
2.2.3. Determination of Sodium Ion Content
2.2.4. Yield and Yield Components
2.2.5. Determination of Processing and Appearance Quality
2.2.6. Determination of Grain Quality
2.2.7. Determination of Starch Thermodynamics and Viscosity Characteristics
2.3. Calculation and Statistical Methods
3. Results
3.1. Yield and Yield Components
3.2. Dry Biomass Accumulation
3.3. SPAD Values
3.4. Antioxidant Enzyme Activity and Malondialdehyde Content
3.5. Principal Component Analysis (PCA)
3.6. Sodium Ion (Na+) Content in Different Organs
3.7. Rice Processing Quality and Nutritional Quality
3.8. Rice Appearance and Cooking Qualities
3.9. Thermodynamic and Viscosity Properties of Grain Starch
4. Discussion
4.1. Effects of Different Exogenous Regulators on Rice Growth, Development, and Yield Under High Salt Stress
4.2. Effect of Different Exogenous Regulators on Rice Quality Under High Salinity Stress
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Zhou, T.; Zhu, K.; Wang, W.; Zhang, W.; Zhang, H.; Liu, L.; Zhang, Z.; Wang, Z.; Wang, B.; et al. Effects of Salt Stress on Grain Yield and Quality Parameters in Rice Cultivars with Differing Salt Tolerance. Plants 2023, 12, 3243. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Wu, J.; Luo, Q.; Zhang, D.; Zhuang, W.; Xiao, G.; Deng, Q.; Bai, B. Effects of Salinity Stress at Reproductive Growth Stage on Rice (Oryza sativa L.) Composition, Starch Structure, and Physicochemical Properties. Front. Nutr. 2022, 9, 926217. [Google Scholar] [CrossRef]
- Ganapati, R.K.; Naveed, S.A.; Zafar, S.; Wang, W.; Xu, J. Saline-Alkali Tolerance in Rice: Physiological Response, Molecular Mechanism, and QTL Identification and Application to Breeding. Rice Sci. 2022, 29, 412–434. [Google Scholar] [CrossRef]
- Ding, Y.; Gao, X.; Shu, D.; Siddique, K.H.; Song, X.; Wu, P.; Li, C.; Zhao, X. Enhancing soil health and nutrient cycling through soil amendments: Improving the synergy of bacteria and fungi. Sci. Total. Environ. 2024, 923, 171332. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, J.; Dong, C.-H. Molecular regulations of ethylene signaling in plant salt stress responses. Plant Stress 2024, 14, 100583. [Google Scholar] [CrossRef]
- Gu, J.; Chen, Y.; Zhang, H.; Li, Z.; Zhou, Q.; Yu, C.; Kong, X.; Liu, L.; Wang, Z.; Yang, J. Canopy light and nitrogen distributions are related to grain yield and nitrogen use efficiency in rice. Field Crop. Res. 2017, 206, 74–85. [Google Scholar] [CrossRef]
- Li, L.; Huang, Z.; Zhang, Y.; Mu, Y.; Li, Y.; Nie, L. Regulation of 2-acetyl-1-pyrroline (2-AP) biosynthesis and grain quality in fragrant rice under salt stress. Field Crop. Res. 2025, 322, 109747. [Google Scholar] [CrossRef]
- Du, J.; Liu, B.; Zhao, T.; Xu, X.; Lin, H.; Ji, Y.; Li, Y.; Li, Z.; Lu, C.; Li, P.; et al. Silica nanoparticles protect rice against biotic and abiotic stresses. J. Nanobiotechnol. 2022, 20, 197. [Google Scholar] [CrossRef] [PubMed]
- Meng, T.; Zhang, X.; Ge, J.; Chen, X.; Yang, Y.; Zhu, G.; Chen, Y.; Zhou, G.; Wei, H.; Dai, Q. Agronomic and physiological traits facilitating better yield performance of japonica/indica hybrids in saline fields. Field Crop. Res. 2021, 271, 108255. [Google Scholar] [CrossRef]
- Jin, W.; Li, L.; Ma, G.; Wei, Z. Halotolerant Microorganism-Based Soil Conditioner Application Improved the Soil Properties, Yield, Quality and Starch Characteristics of Hybrid Rice under Higher Saline Conditions. Plants 2024, 13, 2325. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, J.; Li, Y.; Quan, R.; Wang, J.; Huang, R.; Qin, H. Salt Stress Promotes Abscisic Acid Accumulation to Affect Cell Proliferation and Expansion of Primary Roots in Rice. Int. J. Mol. Sci. 2021, 22, 10892. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Wang, X.; Wang, Y.; Du, Y.; Zhang, S.; Zhou, H.; Feng, N.; Zheng, D.; Ma, G.; Zhao, L. S-ABA Enhances Rice Salt Tolerance by Regulating Na+/K+ Balance and Hormone Homeostasis. Metabolites 2024, 14, 181. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Zhang, F.; Sun, X.; Shang, D.; He, F.; Li, X.; Zhang, J.; Jiang, X. Effects of S-Abscisic Acid (S-ABA) on Seed Germination, Seedling Growth, and Asr1 Gene Expression Under Drought Stress in Maize. J. Plant Growth Regul. 2019, 38, 1300–1313. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2014, 22, 123–131. [Google Scholar] [CrossRef]
- Munir, N.; Hasnain, M.; Roessner, U.; Abideen, Z. Strategies in improving plant salinity resistance and use of salinity resistant plants for economic sustainability. Crit. Rev. Environ. Sci. Technol. 2021, 52, 2150–2196. [Google Scholar] [CrossRef]
- Shan, S.; Wei, Z.; Cheng, W.; Du, D.; Zheng, D.; Ma, G. Biofertilizer based on halotolerant microorganisms promotes the growth of rice plants and alleviates the effects of saline stress. Front. Microbiol. 2023, 14, 1165631. [Google Scholar] [CrossRef]
- Pan, S.; Liu, H.; Mo, Z.; Patterson, B.; Duan, M.; Tian, H.; Hu, S.; Tang, X. Effects of Nitrogen and Shading on Root Morphologies, Nutrient Accumulation, and Photosynthetic Parameters in Different Rice Genotypes. Sci. Rep. 2016, 6, 32148. [Google Scholar] [CrossRef]
- Li, R.; Zhang, D.; Pan, Y.; Liu, H.; Tang, C.; Liu, X.; Mo, L.; Du, Y.; Zhou, G.; Hu, Y. Effects of Salt Stress During the Growth Period on the Yield and Grain Quality of Hybrid Rice. Agronomy 2024, 15, 21. [Google Scholar] [CrossRef]
- Wang, R.; Liu, T.; Lu, C.; Zhang, Z.; Guo, P.; Jia, B.; Hao, B.; Wang, Y.; Guo, W. Bioorganic fertilizers improve the adaptability and remediation efficiency of Puccinellia distans in multiple heavy metals-contaminated saline soil by regulating the soil microbial community. J. Hazard. Mater. 2023, 448, 130982. [Google Scholar] [CrossRef]
- Li, S.; Liu, S.; Zhang, Q.; Cui, M.; Zhao, M.; Li, N.; Wang, S.; Wu, R.; Zhang, L.; Cao, Y.; et al. The interaction of ABA and ROS in plant growth and stress resistances. Front. Plant Sci. 2022, 13, 1050132. [Google Scholar] [CrossRef]
- Hussain, S.; Nanda, S.; Ashraf, M.; Siddiqui, A.R.; Masood, S.; Khaskheli, M.A.; Suleman, M.; Zhu, L.; Zhu, C.; Cao, X.; et al. Interplay Impact of Exogenous Application of Abscisic Acid (ABA) and Brassinosteroids (BRs) in Rice Growth, Physiology, and Resistance under Sodium Chloride Stress. Life 2023, 13, 498. [Google Scholar] [CrossRef]
- Liu, C.; Mao, B.; Yuan, D.; Chu, C.; Duan, M. Salt tolerance in rice: Physiological responses and molecular mechanisms. Crop. J. 2022, 10, 13–25. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, H.; Lv, X.; Zhang, Y.; Wang, W. Effects of biochar and biofertilizer on cadmium-contaminated cotton growth and the antioxidative defense system. Sci. Rep. 2020, 10, 20112. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.X.; Ma, G.H.; Zhao, L.M.; Huang, A.Q.; Feng, N.J.; Zheng, D.F.; Zhou, W.L. Effects of S-ABA on Physiological Characteristics and Yield of Rice Under Different Salt Stresses. J. Nucl. Agric. Sci. 2023, 37, 2485–2495. [Google Scholar]
- Chen, T.; Li, G.; Islam, M.R.; Fu, W.; Feng, B.; Tao, L.; Fu, G. Abscisic acid synergizes with sucrose to enhance grain yield and quality of rice by improving the source-sink relationship. BMC Plant Biol. 2019, 19, 525. [Google Scholar] [CrossRef] [PubMed]
- Saeed, S. The combined effects of salinity and foliar spray of different hormones on some biological aspects, dry matter accumulation and yield in two varieties of indica rice differing in their level of salt tolerance. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2014, 84, 721–733. [Google Scholar]
- Liu, X.X.; Wang, X.Y.; Yin, L.N.; Deng, X.P.; Wang, S.W. Exogenous application of gibberellic acid participates in up-regulation of lipid biosynthesis under salt stress in rice. Theor. Exp. Plant Physiol. 2018, 30, 335–345. [Google Scholar] [CrossRef]
- Zhou, H.; Xia, D.; He, Y. Rice grain quality—Traditional traits for high quality rice and health-plus substances. Mol. Breed. 2019, 40, 1. [Google Scholar] [CrossRef]
- Liu, X.; Zhong, X.; Liao, J.; Ji, P.; Yang, J.; Cao, Z.; Duan, X.; Xiong, J.; Wang, Y.; Xu, C.; et al. Exogenous abscisic acid improves grain filling capacity under heat stress by enhancing antioxidative defense capability in rice. BMC Plant Biol. 2023, 23, 619. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Bian, X.; Wang, J.; Chen, S.; Yang, R.; Li, R.; Xia, L.; Chen, D.; Fan, X. Loss of RSR1 function increases the abscisic acid content and improves rice quality performance at high temperature. Int. J. Biol. Macromol. 2023, 256, 128426. [Google Scholar] [CrossRef]
- Lin, G.B.; Li, J.; Qian, C. Research progress on mitigative effect of exogenous substances on salt stress in rapeseed. Jiangsu Agric. Sci. 2024, 52, 1–10. [Google Scholar]
- Hao, G.G.; Sun, Z.F.; Zhang, L.Q. A Research Overview of the Plant Resistance to Adverse Environment by Using Abscisic Acid. Chin. Agric. Sci. Bull. 2009, 25, 212–215. [Google Scholar]
- Wang, X.; Ding, J.; Wang, J.; Han, L.; Tan, J.; Ge, X. Ameliorating saline-sodic soils: A global meta-analysis of field studies on the influence of exogenous amendments on crop yield. Land Degrad. Dev. 2024, 35, 3330–3343. [Google Scholar] [CrossRef]
Basic Indicators | 2021 | 2022 | |
---|---|---|---|
pH | 6.17 | 5.77 | |
Na+ (g kg−1) | 5.28 | 6.17 | |
EC (dS m−2) | 1.14 | 2.12 | |
Organic matter (g kg−1) | 18.89 | 20.54 | |
Total N content (g kg−1) | 1.09 | 1.07 | |
Total P content (g kg−1) | 0.53 | 0.75 | |
Total K content (g kg−1) | 26.14 | 27.4 | |
Available N content (g kg−1) | 0.11 | 0.12 | |
Available P content (g kg−1) | 0.046 | 0.081 | |
Available K content (g kg−1) | 0.22 | 0.32 | |
Treatment | Basal Fertilizer | Tiller Fertilizer | Panicle fertilizer |
CK/T1 | 585 kg hm−2 of compound fertilizer and 1001.25 kg hm−2 of P2O5 | 91.5 kg hm−2 of urea and 70.5 kg hm−2 of KCl | 225 kg hm−2 of compound fertilizer 49.5 kg hm−2 of urea and 37.5 kg hm−2 of KCl |
T2/T3 | 2250 kg hm−2 of compound microbial fertilizer and 375 kg hm−2 of compound fertilizer | 75 kg hm−2 of urea and 69 kg hm−2 of KCl | 136.5 kg hm−2 of urea and 37.5 kg hm−2 of KCl |
Year/ Treatments | Panicles (×104 hm−2) | Spikelet per Panicle | Grain Filling (%) | 1000-Grain Weight (g) | Total Spikelets (×108 hm−2) | Sink Capacity (×103 kg hm−2) | Harvested Yield (×103 kg hm−2) |
---|---|---|---|---|---|---|---|
2021 | |||||||
T1 | 184.42 b | 127.55 b | 78.26 a | 19.68 b | 2.38 bc | 4.68 bc | 3.34 b |
T2 | 188.49 ab | 132.66 ab | 80.19 a | 19.93 ab | 2.53 ab | 5.04 ab | 3.56 ab |
T3 | 201.26 a | 136.59 a | 78.97 a | 20.37 a | 2.78 a | 5.66 a | 3.81 a |
CK | 175.73 b | 125.42 b | 77.83 a | 19.30 c | 2.23 c | 4.31 c | 2.81 c |
2022 | |||||||
T1 | 197.06 b | 152.57 ab | 65.80 b | 20.03 a | 3.00 b | 6.05 b | 3.47 b |
T2 | 202.09 b | 158.33 ab | 67.98 ab | 20.16 a | 3.20 ab | 6.45 ab | 3.65 ab |
T3 | 208.75 a | 163.77 a | 69.99 a | 20.34 a | 3.42 a | 7.00 a | 3.96 a |
CK | 184.33 c | 143.53 b | 63.53 b | 19.39 b | 2.61 c | 5.08 c | 2.89 c |
Treatments | HS (×103 kg hm−2) | MS (×103 kg hm−2) | HS-MS (×103 kg hm−2) | Community Growth Rate (×103 kg hm−2 d−1) |
---|---|---|---|---|
2021 | ||||
T1 | 7.14 b | 8.95 c | 1.80 a | 0.056 a |
T2 | 7.77 ab | 9.62 b | 1.85 a | 0.058 a |
T3 | 8.41 a | 10.33 a | 1.92 a | 0.060 a |
CK | 6.11 c | 7.79 d | 1.68 b | 0.052 b |
2022 | ||||
T1 | 8.04 b | 10.64 b | 2.60 b | 0.084 a |
T2 | 8.47 ab | 11.11 b | 2.64 b | 0.085 a |
T3 | 9.27 a | 12.64 a | 3.18 a | 0.103 a |
CK | 6.65 c | 8.21 c | 1.85 c | 0.060 b |
Treatments | Stem Sheath Weight | HS-MS Stem Sheath Dry Matter Conversion | |||
---|---|---|---|---|---|
HS (×103 kg hm−2) | MS (×103 kg hm−2) | Output (×103 kg hm−2) | Output Rate (%) | Conversion Rate (%) | |
2021 | |||||
T1 | 4.56 b | 3.87 bc | 0.69 b | 15.23 a | 19.50 ab |
T2 | 4.88 b | 4.16 ab | 0.72 b | 14.67 ab | 18.57 ab |
T3 | 5.43 a | 4.43 a | 1.01 a | 18.53 a | 24.27 a |
CK | 3.98 c | 3.58 c | 0.40 c | 9.79 b | 13.73 b |
2022 | |||||
T1 | 5.18 a | 4.61 a | 0.57 b | 10.91 ab | 14.72 ab |
T2 | 5.36 a | 4.72 a | 0.64 ab | 11.84 ab | 15.63 ab |
T3 | 5.82 a | 5.09 a | 0.73 a | 12.52 a | 16.75 a |
CK | 4.28 b | 3.86 b | 0.42 c | 9.84 b | 12.96 b |
Treatment | Brown Rice Rate (%) | Polished Rice Rate (%) | Head Rice Rate (%) | Total Starch Content (%) | Protein Content (%) | Fat (%) |
---|---|---|---|---|---|---|
T1 | 80.27 a | 72.53 a | 68.97 a | 70.95 a | 9.99 b | 2.70 c |
T2 | 80.60 a | 72.87 a | 70.50 a | 71.78 a | 10.19 b | 2.67 c |
T3 | 80.97 a | 73.77 a | 71.30 a | 71.58 a | 10.22 b | 3.13 b |
CK | 80.40 a | 70.33 b | 61.70 b | 70.89 a | 11.48 a | 4.37 a |
Treatment | Length mm | Width mm | Length Width Ratio | Area mm2 | Perimeter mm | Chalky Grain Rate (%) | Chalkiness (%) |
---|---|---|---|---|---|---|---|
T1 | 5.66 a | 1.96 a | 2.90 a | 9.12 a | 13.64 a | 2.33 b | 0.37 b |
T2 | 5.71 a | 1.97 a | 2.91 a | 9.28 a | 13.76 a | 2.33 b | 0.31 b |
T3 | 5.76 a | 2.01 a | 2.88 a | 9.54 a | 13.90 a | 2.67 b | 0.36 b |
CK | 5.45 b | 1.88 b | 2.92 a | 8.43 b | 13.09 b | 5.00 a | 0.99 a |
Treatment | Onset Temperature (°C) | Peak Temperature (°C) | Conclusion Temperature (°C) | Temperature Range °C | Enthalpy J g−1 |
---|---|---|---|---|---|
T1 | 67.23 a | 73.94 bc | 80.10 b | 12.87 ab | 4.99 b |
T2 | 68.09 a | 75.00 a | 81.80 a | 13.72 a | 5.39 a |
T3 | 68.23 a | 74.56 ab | 79.95 b | 11.72 b | 5.08 ab |
CK | 67.22 a | 73.58 c | 79.14 b | 11.92 b | 4.40 c |
Treatment | PV | TV | BD | FV | SB |
---|---|---|---|---|---|
cP | cP | cP | cP | cP | |
T1 | 2640.67 a | 1955.33 a | 685.33 a | 3017.33 a | 376.67 a |
T2 | 2616.67 a | 1939.67 a | 677.00 a | 2960.33 a | 343.67 a |
T3 | 2696.33 a | 2022.67 a | 673.67 a | 3040.33 a | 346.33 a |
CK | 2172.00 b | 1514.33 b | 657.67 a | 2582.33 b | 410.33 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, W.; Ma, G.; Li, L.; Wei, Z. Regulatory Effects of S-Abscisic Acid and Soil Conditioner on the Yield and Quality of Hybrid Rice Under Salt Stress. Agriculture 2025, 15, 277. https://doi.org/10.3390/agriculture15030277
Jin W, Ma G, Li L, Wei Z. Regulatory Effects of S-Abscisic Acid and Soil Conditioner on the Yield and Quality of Hybrid Rice Under Salt Stress. Agriculture. 2025; 15(3):277. https://doi.org/10.3390/agriculture15030277
Chicago/Turabian StyleJin, Wenyu, Guohui Ma, Lin Li, and Zhongwei Wei. 2025. "Regulatory Effects of S-Abscisic Acid and Soil Conditioner on the Yield and Quality of Hybrid Rice Under Salt Stress" Agriculture 15, no. 3: 277. https://doi.org/10.3390/agriculture15030277
APA StyleJin, W., Ma, G., Li, L., & Wei, Z. (2025). Regulatory Effects of S-Abscisic Acid and Soil Conditioner on the Yield and Quality of Hybrid Rice Under Salt Stress. Agriculture, 15(3), 277. https://doi.org/10.3390/agriculture15030277