Fermented Bamboo Powder Affects Dwarf Yellow-Feathered Broiler Growth, Blood Biochemistry, Antioxidant Status, Intestinal Morphology, and Nutrient Transporter Gene Expression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diets, Animals, and Experimental Design
2.2. Sampling and Data Collection
2.3. HE Staining of Tissue Sections
2.4. Serum Biochemical Measurements and Antioxidant Enzymes
2.5. RNA Extraction and Quantitative PCR
2.5.1. RNA Isolation and cDNA Synthesis
2.5.2. Q-PCR (Quantitative Real-Time Polymerase Chain Reaction)
2.6. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Carcass and Organ Weight
3.3. Intestinal Morphology
3.4. Serum Biochemical Index
3.5. Antioxidant Status
3.6. Impact of FBP on the Relative mRNA Expression Levels of Nutrition Transporter Genes in the Intestine
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bian, F.; Zhong, Z.; Zhang, X.; Yang, C.; Gai, X. Bamboo—An untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemosphere 2020, 246, 125750. [Google Scholar] [CrossRef]
- Qi, S.; Song, B.; Liu, C.; Gong, P.; Luo, J.; Zhang, M.; Xiong, T. Bamboo Forest Mapping in China Using the Dense Landsat 8 Image Archive and Google Earth Engine. Remote Sens. 2022, 14, 762. [Google Scholar] [CrossRef]
- Chongtham, N.; Bisht, M.S. Bamboo: A Prospective Ingredient for Functional Food and Nutraceuticals. In Proceedings of the 10th World Bamboo Congress, Damyang, Republic of Korea, 17–22 September 2015. [Google Scholar]
- Cheng, Y.; Wan, S.; Yao, L.; Lin, D.; Wu, T.; Chen, Y.; Zhang, A.; Lu, C. Bamboo leaf: A review of traditional medicinal property, phytochemistry, pharmacology, and purification technology. J. Ethnopharmacol. 2023, 306, 116166. [Google Scholar] [CrossRef]
- Rattanawut, J.; Pimpa, O.; Yamauchi, K.E. Effects of dietary bamboo vinegar supplementation on performance, eggshell quality, ileal microflora composition, and intestinal villus morphology of laying hens in the late phase of production. Anim. Sci. J. 2018, 89, 1572–1580. [Google Scholar] [CrossRef] [PubMed]
- Nirmala, C.; Bisht, M.S.; Bajwa, H.K.; Santosh, O. Bamboo: A Rich Source of Natural Antioxidants and its Applications in the Food and Pharmaceutical Industry. Trends Food Sci. Technol. 2018, 77, 91–99. [Google Scholar] [CrossRef]
- Murthy, H.N.; Paek, K.Y. Bioactive Compounds in Underutilized Vegetables and Legumes; Reference Series in Phytochemistry; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 419–440. [Google Scholar]
- Pei, R.; Liu, X.; Bolling, B. Flavonoids and gut health. Curr. Opin. Biotechnol. 2020, 61, 153–159. [Google Scholar] [CrossRef]
- Kwon, J.H.; Hwang, S.Y.; Han, J.S. Bamboo (Phyllostachys bambusoides) leaf extracts inhibit adipogenesis by regulating adipogenic transcription factors and enzymes in 3T3-L1 adipocytes. Food Sci. Biotechnol. 2017, 26, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Van Hoyweghen, L.; De Beer, T.; Deforce, D.; Heyerick, A. Phenolic compounds and anti-oxidant capacity of twelve morphologically heterogeneous bamboo species. Phytochem. Anal. 2012, 23, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Rattanawut, J.; Pimpa, O.; Venkatachalam, K.; Yamauchi, K.E. Effects of bamboo charcoal powder, bamboo vinegar, and their combination in laying hens on performance, egg quality, relative organ weights, and intestinal bacterial populations. Trop. Anim. Health Prod. 2021, 53, 83. [Google Scholar] [CrossRef]
- Huang, Y.; Peng, Y.; Yang, Z.; Chen, S.; Liu, J.; Wang, Z.; Wang, G.; Lan, S. Effects of Fermented Bamboo Shoot Processing Waste on Growth Performance, Serum Parameters, and Gut Microbiota of Weaned Piglets. Animals 2022, 12, 2728. [Google Scholar] [CrossRef] [PubMed]
- Bam, Y. Effect of Fermentation on Nutrient Composition of Bamboo Shoot. Int. J. Pure Appl. Biosci. 2017, 5, 1015–1023. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhang, Q.; Dai, J.; Wang, X.; Yang, Q.; Cai, C.; Mao, J.; Ge, Q. Structural characterization, antioxidant and antimicrobial activity of water-soluble polysaccharides from bamboo (Phyllostachys pubescens Mazel) leaves. Int. J. Biol. Macromol. 2020, 142, 432–442. [Google Scholar] [CrossRef]
- Liu, Z.; Li, N.; Zhou, X.; Zheng, Z.; Zhang, C.; Liang, S.; Li, Y.; Yan, J.; Li, Q.; Mu, S. Effects of Fermented Bamboo Powder Supplementation on Serum Biochemical Parameters, Immune Indices, and Fecal Microbial Composition in Growing-Finishing Pigs. Animals 2022, 12, 3127. [Google Scholar] [CrossRef]
- Fotiadis, D.; Kanai, Y.; Palacin, M. The SLC3 and SLC7 families of amino acid transporters. Mol. Asp. Med. 2013, 34, 139–158. [Google Scholar] [CrossRef] [PubMed]
- Roder, P.V.; Geillinger, K.E.; Zietek, T.S.; Thorens, B.; Koepsell, H.; Daniel, H. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS ONE 2014, 9, e89977. [Google Scholar] [CrossRef] [PubMed]
- Malyar, R.M.; Wei, Q.; Hou, L.; Elsaid, S.H.; Zhang, Y.; Banuree, S.A.H.; Saifullah; Zhou, W.; Shi, F. Fermented Bamboo Powder Activates Gut Odorant Receptors, and Promotes Intestinal Health and Growth Performance of Dwarf Yellow-Feathered Broiler Chickens. Poult. Sci. 2024, 103, 70. [Google Scholar] [CrossRef] [PubMed]
- Nain, S.; Renema, R.; Zuidhof, M.; Korver, D.R. Effect of metabolic efficiency and intestinal morphology on variability in n-3 polyunsaturated fatty acid enrichment of eggs. Poult. Sci. 2012, 91, 888–898. [Google Scholar] [CrossRef]
- Jimenez-Moreno, E.; de Coca-Sinova, A.; Gonzalez-Alvarado, J.M.; Mateos, G.G. Inclusion of insoluble fiber sources in mash or pellet diets for young broilers. 1. Effects on growth performance and water intake. Poult. Sci. 2016, 95, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Moreno, E.; Gonzalez-Alvarado, J.M.; de Coca-Sinova, A.; Lazaro, R.P.; Camara, L.; Mateos, G.G. Insoluble fiber sources in mash or pellets diets for young broilers. 2. Effects on gastrointestinal tract development and nutrient digestibility. Poult. Sci. 2019, 98, 2531–2547. [Google Scholar] [CrossRef]
- Pourazadi, Z.; Salari, S.; Tabandeh, M.R.; Abdollahi, M.R. Effect of particle size of insoluble fibre on growth performance, apparent ileal digestibility and caecal microbial population in broiler chickens fed barley-containing diets. Br. Poult. Sci. 2020, 61, 734–745. [Google Scholar] [CrossRef]
- Tejeda, O.J.; Kim, W.K. Effects of fiber type, particle size, and inclusion level on the growth performance, digestive organ growth, intestinal morphology, intestinal viscosity, and gene expression of broilers. Poult. Sci. 2021, 100, 1397. [Google Scholar] [CrossRef] [PubMed]
- Berrocoso, J.D.; Garcia-Ruiz, A.; Page, G.; Jaworski, N.W. The effect of added oat hulls or sugar beet pulp to diets containing rapidly or slowly digestible protein sources on broiler growth performance from 0 to 36 days of age. Poult. Sci. 2020, 99, 6859–6866. [Google Scholar] [CrossRef] [PubMed]
- Amerah, A.M.; Ravindran, V.; Lentle, R.G. Influence of insoluble fibre and whole wheat inclusion on the performance, digestive tract development and ileal microbiota profile of broiler chickens. Br. Poult. Sci. 2009, 50, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, M.; Yrjälä, K.; Vinod, K.K.; Sharma, A.; Cho, J.; Satheesh, V.; Zhou, M. Genetics and genomics of moso bamboo (Phyllostachys edulis): Current status, future challenges, and biotechnological opportunities toward a sustainable bamboo industry. Food Energy Secur. 2020, 9, e229. [Google Scholar] [CrossRef]
- Dai, F.; Lin, T.; Cheng, L.; Wang, J.; Zuo, J.; Feng, D. Effects of micronized bamboo powder on growth performance, serum biochemical indexes, cecal chyme microflora and metabolism of broilers aged 1–22 days. Trop. Anim. Health Prod. 2022, 54, 166. [Google Scholar] [CrossRef]
- Dai, F.; Lin, T.; Huang, X.; Yang, Y.; Nong, X.; Zuo, J.; Feng, D. Effects of micronised bamboo powder on growth performance, intestinal development, caecal chyme microflora and metabolic pathway of broilers aged 24–45 days. Anim. Prod. Sci. 2023, 63, 1196–1207. [Google Scholar] [CrossRef]
- Ogbuewu, I.P.; Emenalom, O.O.; Okoli, I.C. Alternative feedstuffs and their effects on blood chemistry and haematology of rabbits and chickens: A review. Comp. Clin. Pathol. 2015, 26, 277–286. [Google Scholar] [CrossRef]
- Weingartner, O.; Weingartner, N.; Scheller, B.; Lutjohann, D.; Graber, S.; Schafers, H.J.; Bohm, M.; Laufs, U. Alterations in cholesterol homeostasis are associated with coronary heart disease in patients with aortic stenosis. Coron. Artery Dis. 2009, 20, 376–382. [Google Scholar] [CrossRef]
- Lee, E.J.; Kim, M.H.; Kim, Y.R.; Park, J.W.; Park, W.J. Proteasome inhibition protects against diet-induced gallstone formation through modulation of cholesterol and bile acid homeostasis. Int. J. Mol. Med. 2018, 41, 1715–1723. [Google Scholar] [CrossRef]
- Oloruntola, O.D.; Agbede, J.O.; Ayodele, S.O.; Oloruntola, D.A. Neem, pawpaw and bamboo leaf meal dietary supplementation in broiler chickens: Effect on performance and health status. J. Food Biochem. 2019, 43, e12723. [Google Scholar] [CrossRef]
- Ge, Q.; Li, H.; Wu, P.; Sha, R.; Xiao, Z.; Dai, J.; Mao, J. Investigation of physicochemical properties and antioxidant activity of ultrafine bamboo leaf powder prepared by ball milling. J. Food Process. Preserv. 2020, 44, e14506. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Q.; Zheng, B.; Lin, L.; Chen, B.; Zheng, Y.; Xiao, J. Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice. Food Chem. Toxicol. 2017, 109, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Ingale, S.L.; Lee, S.H.; Kim, K.H.; Kim, J.S.; Lee, J.H.; Chae, B.J. Effects of energy levels of diet and β-mannanase supplementation on growth performance, apparent total tract digestibility and blood metabolites in growing pigs. Anim. Feed Sci. Technol. 2013, 186, 64–70. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Zhao, Y.N.; Liu, H.; Liu, J.; Makkar, H.P.S.; Becker, K. Effects of replacing soybean meal by detoxified Jatropha curcas kernel meal in the diet of growing pigs on their growth, serum biochemical parameters and visceral organs. Anim. Feed Sci. Technol. 2011, 170, 141–146. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Wan, X.L.; Zhang, X.H.; Zhao, L.G.; He, J.T.; Zhang, J.F.; Zhang, L.L.; Wang, T. Effect of supplemental fermented Ginkgo biloba leaves at different levels on growth performance, meat quality, and antioxidant status of breast and thigh muscles in broiler chickens. Poult. Sci. 2017, 96, 869–877. [Google Scholar] [CrossRef]
- Wan, X.L.; Song, Z.H.; Niu, Y.; Cheng, K.; Zhang, J.F.; Ahmad, H.; Zhang, L.L.; Wang, T. Evaluation of enzymatically treated Artemisia annua L. on growth performance, meat quality, and oxidative stability of breast and thigh muscles in broilers. Poult. Sci. 2017, 96, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Xie, Z.; Jia, M.; Li, A.; Han, H.; Wang, T.; Zhang, L. Effect of Bamboo Leaf Extract on Antioxidant Status and Cholesterol Metabolism in Broiler Chickens. Animals 2019, 9, 699. [Google Scholar] [CrossRef]
- Malyar, R.M.; Ding, W.; Wei, Q.; Sun, J.; Hou, L.; Elsaid, S.H.; Ali, I.; Zhou, W.; Shi, F. Effects of fermented bamboo powder supplementation on gene expressions of antioxidant, odorant receptors, growth and immunity in yellow-feather broiler chickens. Anim. Adv. 2024, 1, e005. [Google Scholar] [CrossRef]
- Montagne, L.; Pluske, J.R.; Hampson, D.J. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol. 2003, 108, 95–117. [Google Scholar] [CrossRef]
- Xie, Z.; Yu, G.; Yun, Y.; Zhang, X.; Shen, M.; Jia, M.; Li, A.; Zhang, H.; Wang, T.; Zhang, J.; et al. Effects of bamboo leaf extract on energy metabolism, antioxidant capacity, and biogenesis of small intestine mitochondria in broilers. J. Anim. Sci. 2022, 101, skac391. [Google Scholar] [CrossRef]
- Li, Q.; Fang, X.; Chen, H.; Han, Y.; Liu, R.; Wu, W.; Gao, H. Retarding effect of dietary fibers from bamboo shoot (Phyllostachys edulis) in hyperlipidemic rats induced by a high-fat diet. Food Funct. 2021, 12, 4696–4706. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, N.A.; Wong, E.A. Differential mRNA expression of nutrient transporters in male and female chickens. Poult. Sci. 2018, 97, 313–318. [Google Scholar] [CrossRef]
- Kheravii, S.K.; Swick, R.A.; Choct, M.; Wu, S.B. Upregulation of genes encoding digestive enzymes and nutrient transporters in the digestive system of broiler chickens by dietary supplementation of fiber and inclusion of coarse particle size corn. BMC Genom. 2018, 19, 208. [Google Scholar] [CrossRef] [PubMed]
- Al-Khalaifah, H.S.; Shahin, S.E.; Omar, A.E.; Mohammed, H.A.; Mahmoud, H.I.; Ibrahim, D. Effects of graded levels of microbial fermented or enzymatically treated dried brewer’s grains on growth, digestive and nutrient transporter genes expression and cost effectiveness in broiler chickens. BMC Vet. Res. 2020, 16, 424. [Google Scholar] [CrossRef] [PubMed]
Item | Phase I, Days 1–22 1.0 g/kg | Phase II, Days 23–45 2.0 g/kg |
---|---|---|
Corn | 406.6 | 297.3 |
Wheat | 200 | 400 |
Soybean meal | 223.1 | 57.3 |
Sunflower | 30 | 50 |
Rapeseed meal | 30 | 40 |
Palm kernel meal | 0 | 20 |
Corn gluten meal | 40 | 50 |
Rice husk oil | 23.1 | 42.2 |
Calcium bisphosphate | 14 | 10.3 |
Limestone | 11.8 | 11.2 |
Liquid methionine (88%) | 1.4 | 2.3 |
Premix | 20 | 20 |
Total | 1000 | 1000 |
Calculation of nutrients | ||
Metabolizable energy (Kcal/kg) | 2956 | 3008 |
Crude protein (g kg−1) | 211.4 | 208.7 |
Crude fat (g kg−1) | 40.48 | 44.1 |
Methionine (g kg−1) | 4.86 | 7.64 |
Lysine (g kg−1) | 10.97 | 13.65 |
Calcium (g kg−1) | 9.89 | 9.62 |
Available phosphorus (g kg−1) | 4.85 | 5.1 |
Item | FBP Composition (%) |
---|---|
Moisture | 11.21 |
Crude protein | 17.07 |
Coarse fiber | 17.66 |
Total Carbohydrate | 28.89 |
Crude fat | 3.48 |
Coarse ash content | 9.21 |
Acid soluble protein | 7.13 |
Acid washing lignin | 3.41 |
Calcium (%) | 0.12 |
Total phosphorus (%) | 0.02 |
Compound | Before Fermentation (mg/100 g) | After Fermentation (mg/100 g) |
---|---|---|
Ferulic Acid | 5.2 | 7.6 |
p-Coumaric Acid | 3.8 | 5.3 |
Caffeic Acid | 2.9 | 4.2 |
Protocatechuic Acid | 4.1 | 6.0 |
p-Hydroxybenzoic Acid | 3.5 | 5.1 |
Catechin | 6.0 | 8.6 |
Syringic Acid | 2.7 | 4.0 |
Chlorogenic Acid | 3.2 | 4.5 |
β-Sitosterol | 0.8 | 1.1 |
Campesterol | 0.6 | 0.9 |
Stigmasterol | 0.5 | 0.8 |
Cholesterol | 0.4 | 0.6 |
Ergosterol | 0.3 | 0.5 |
Stigmastanol | 0.2 | 0.4 |
Phytosterols | 2.4 | 3.6 |
Tannins | 1.5 | 2.2 |
Saponins | 1.2 | 1.6 |
Flavonoids | 4.0 | 5.4 |
Gene | Reverse Primer (5′-3′) | Amplicon Size (bp) | Accession No. |
---|---|---|---|
β-actin | F/GCCCTCTTCCAGCCATCTTT R/CAATGGAGGGTCCGGATTCA | 107 bp | NM_205518.2 |
GLUT1 | F/ATGGGCTTCCAGTACATTGC R/TTTGTCTCCGGCACCTTGA | 110 bp | NM_205209.2 |
GLUT2 | F/GTTCCTGGCTGGTCTGATGG R/TGGCGACCATGCTGACATAA | 107 bp | NM_207178.2 |
CAT1 | F/GCAAAGCGACTTTCCGGACT R/GCCTGTAAGAAACTCTGAGAAACC | 132 bp | NM_001398060.1 |
CAT2 | F/TTGCTACATTGGTGGTGTCCT R/TGAAACCAAGTGCCATCCAG | 198 bp | XM_040699004.2 |
LAT1 | F/TGCGTTACAAGAAGCCGGAG R/CGATCCCGCATTCCTTTGGT | 129 bp | XM_046911929.1 |
PepT1 | F/CCTTATCGTGGCTGGAGCAT R/TGGGCTTCAACCTCATTTGGA | 144 bp | NM_204365.2 |
PepT2 | F/TAGGTCATCCAACCTGCTCCT R/TGCCTGGAGGAGAAAGAACAC | 109 bp | NM_001319028.3 |
Parameters | CON | FBP | SEM | p-Value |
---|---|---|---|---|
Initial BW (g) | 51.98 | 52.35 | 0.53 | 0.477 |
days 1–22 (1% FBP) | ||||
BW (g) | 424.83 | 466.88 *** | 4.95 | <0.001 |
BWG (g) | 372.85 | 414.53 *** | 7.23 | <0.001 |
ADFI (g) | 50.82 | 43.31 | 2.96 | 0.334 |
ADG (g) | 17.75 | 19.73 *** | 0.35 | <0.001 |
FCR | 2.86 | 2.19 | 0.34 | 0.086 |
Mortality rate % | 1.33 | 1.17 | 0.54 | 0.766 |
days 23–45 (2% FBP) | ||||
BW (g) | 1154.33 | 1288.67 *** | 21.52 | <0.001 |
BWG (g) | 729.50 | 821.79 *** | 20.93 | <0.001 |
ADFI (g) | 78.18 | 73.73 | 4.03 | 0.332 |
ADG (g) | 31.72 | 35.73 *** | 0.91 | <0.001 |
FCR | 2.46 | 2.06 * | 0.19 | 0.053 |
Mortality rate % | 1.25 | 1.00 | 0.32 | 0.470 |
days 1–45 | ||||
BW (g) | 1154.33 | 1288.67 *** | 21.52 | <0.001 |
BWG (g) | 1102.35 | 1236.32 *** | 26.05 | <0.001 |
ADFI (g) | 70.71 | 65.21 | 3.72 | 0.330 |
ADG (g) | 25.05 | 28.10 *** | 0.59 | <0.001 |
FCR | 2.82 | 2.28 * | 0.22 | 0.054 |
Mortality rate % | 2.58 | 2.08 | 0.23 | 0.069 |
Item | CON | FBP | SEM | p-Value |
---|---|---|---|---|
duodenum | ||||
VH (mm) | 0.58 | 0.67 ** | 0.02 | 0.003 |
CD (mm) | 0.10 | 0.17 | 0.04 | 0.096 |
VCR | 6.63 | 4.81 | 1.08 | 0.153 |
VA (mm2) | 1.66 | 1.92 | 0.21 | 0.263 |
jejunum | ||||
VH (mm) | 0.46 | 0.59 ** | 0.03 | 0.007 |
CD (mm) | 0.09 | 0.13 ** | 0.01 | 0.007 |
VCR | 5.12 | 4.66 | 0.45 | 0.347 |
VA (mm2) | 1.80 | 2.01 | 0.27 | 0.474 |
ileum | ||||
VH (mm) | 0.60 | 0.74 * | 0.05 | 0.038 |
CD (mm) | 0.34 | 0.49 * | 0.04 | 0.021 |
VCR | 1.85 | 1.52 | 0.20 | 0.142 |
VA (mm2) | 1.55 | 2.86 * | 0.50 | 0.048 |
Parameters | Dietary Treatment | SEM | p-Value | |
---|---|---|---|---|
CON | FBP | |||
TC (mmol/L) | 3.38 | 2.78 | 0.54 | 0.323 |
TG (mmol/L) | 0.80 | 0.57 * | 0.07 | 0.025 |
GLU (mmol/L) | 7.25 | 6.55 | 0.70 | 0.079 |
LDL (mmol/L) | 1.14 | 0.81 | 0.32 | 0.406 |
HDL (mmol/L) | 1.87 | 2.25 | 0.16 | 0.133 |
TP (g/L) | 23.80 | 26.35 | 1.24 | 0.108 |
ALB (g/L) | 13.40 | 14.57 | 1.06 | 0.385 |
GLB (g/L) | 11.63 | 12.77 | 1.57 | 0.510 |
CREA (mmol/L) | 10.73 | 8.47 | 3.14 | 0.511 |
UREA (mmol/L) | 1.22 | 0.59 * | 0.14 | 0.011 |
AST (U/L) | 303.30 | 259.83 | 29.87 | 0.277 |
ALT (U/L) | 3.33 | 2.30 * | 0.31 | 0.028 |
Item | CON | FBP | SEM | p-Value |
---|---|---|---|---|
SOD (U/mL) | 48.79 | 122.90 ** | 5.28 | 0.005 |
GSH-PX (U/mg) | 119.64 | 136.63 | 7.31 | 0.146 |
CAT (nmol/mg prot) | 40.73 | 116.38 ** | 3.84 | 0.003 |
MDA (nmol/mg prot) | 2.29 | 0.49 ** | 0.19 | 0.011 |
HO-1 (pg/mL) | 255.37 | 243.03 | 22.01 | 0.631 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shoura, H.E.; Ding, W.; Hou, L.; Malyar, R.M.; Wei, Q.; Zhou, W.; Shi, F. Fermented Bamboo Powder Affects Dwarf Yellow-Feathered Broiler Growth, Blood Biochemistry, Antioxidant Status, Intestinal Morphology, and Nutrient Transporter Gene Expression. Agriculture 2025, 15, 240. https://doi.org/10.3390/agriculture15030240
Shoura HE, Ding W, Hou L, Malyar RM, Wei Q, Zhou W, Shi F. Fermented Bamboo Powder Affects Dwarf Yellow-Feathered Broiler Growth, Blood Biochemistry, Antioxidant Status, Intestinal Morphology, and Nutrient Transporter Gene Expression. Agriculture. 2025; 15(3):240. https://doi.org/10.3390/agriculture15030240
Chicago/Turabian StyleShoura, Hytham Elsaid, Wei Ding, Linsong Hou, Rahmani Mohammad Malyar, Quanwei Wei, Weisheng Zhou, and Fangxiong Shi. 2025. "Fermented Bamboo Powder Affects Dwarf Yellow-Feathered Broiler Growth, Blood Biochemistry, Antioxidant Status, Intestinal Morphology, and Nutrient Transporter Gene Expression" Agriculture 15, no. 3: 240. https://doi.org/10.3390/agriculture15030240
APA StyleShoura, H. E., Ding, W., Hou, L., Malyar, R. M., Wei, Q., Zhou, W., & Shi, F. (2025). Fermented Bamboo Powder Affects Dwarf Yellow-Feathered Broiler Growth, Blood Biochemistry, Antioxidant Status, Intestinal Morphology, and Nutrient Transporter Gene Expression. Agriculture, 15(3), 240. https://doi.org/10.3390/agriculture15030240