Improving Crop Resilience in Drought-Prone Agroecosystems: Bioinoculants and Biocontrol Strategies from Climate-Adaptive Microorganisms
Abstract
1. Introduction
2. Drought-Prone Agroecosystems and Their Susceptibility Towards Emerging Pathogens and Crop Failure
| Pathogen (Type) | How Drought/Prone Conditions Change Disease Dynamics | Typical Crops Affected | Emerging/Climate-Change Note | Currently Available Control Agents (Examples) | References |
|---|---|---|---|---|---|
| Xylella fastidiosa (xylem-limited bacterium) | Drought-stressed plants change xylem flow, increased symptom severity, and vector (xylem-sap feeding insects) transmission; drought can intensify outbreaks | Olive, grapevine, citrus, almond, many ornamentals. | Rapid geographic expansion in Europe & elsewhere; considered an emergent, high-impact pathogen whose impact is amplified by warmer/drier conditions and vector spread | No broadly effective curative bactericide in field. Management: vector control (insecticides, habitat/vector management), removal of infected trees, use of tolerant/resistant cultivars/rootstocks where available, regulatory (quarantine) measures; experimental chemical approaches | [52,53,54] |
| Fusarium spp. (soil-borne fungi causing Fusarium wilts/root rot) | Drought weakens roots and alters the rhizosphere; some Fusarium species cause worse wilting under water stress (plant defence reduced). Drought can favour root colonization | Tomato, banana, cotton, legumes, many horticultural crops. | Disease severity and range are increasing in some regions with warming and water stress; emergence of new aggressive strains reported locally. | Chemical soil treatments limited; soil fumigation in some systems (where allowed). Biological control: Trichoderma spp., Bacillus subtilis/Bacillus amyloliquefaciens products (commercial biocontrols) Crop rotations, resistant varieties, grafting (horticulture), and improved irrigation management to reduce stress | [55,56,57] |
| Verticillium dahliae (soil-borne vascular fungus) | Causes persistent vascular wilts that are often worse when plants are water-stressed; survives long in soil (microsclerotia), and drought reduces plant compensatory growth | Olive, potato, cotton, many vegetables, and ornamentals. | Historically widespread; drought increases outbreak severity and economic losses in perennial crops | Crop rotation limited effectiveness; soil amendments (organic matter), resistant/tolerant cultivars where available; some bio-agents and anaerobic soil disinfestation are used; long-term integrated management required. | [58,59] |
| Magnaporthe oryzae pathotype Triticum | Episodic drought alternating with warm/humid conditions can drive severe epidemic windows; stress in plants may influence susceptibility | Wheat and grasses. | Listed as an emerging and highly destructive disease—originally in South America, spread to South Asia (Bangladesh) and new regions; climate change is predicted to expand its suitable range and increase risk under some scenarios. | Integrated management: quarantine and surveillance, resistant cultivars (limited durability), seed health standards, adjusted planting dates, fungicides (azoles/strobilurins-resistance concerns), cultural measures; research on improved genetics and forecasts ongoing. | [60,61,62] |
| Puccinia spp. (wheat rusts- stem/stripe/leaf rust) (biotrophic fungi) | Shifts in temperature and rainfall patterns alter pathogen life cycles and migratory ranges; drought can reduce crop vigour and increase yield loss from rust when infection timing aligns with stress | Wheat | New virulent races (e.g., Ug99 lineage and derivatives) continue to emerge and spread; climate change is changing the range and seasonality of rust outbreaks and threatens resistance durability | Major tools: resistant cultivars (gene stacking, adult-plant resistance), fungicides (triazoles), monitoring/early warning systems and global surveillance, and agronomic practices. Breeding advancements. | [63,64] |
| Botryosphaeriaceae & other canker/wood-decay fungi (necrotrophs causing dieback) | Drought predisposes trees and woody crops to opportunistic canker pathogens; repeated droughts increase mortality and chronic dieback | Orchard and forest trees (olive, grapevine trunks, almonds, hardwoods). | Increased tree dieback and mortality observed in many regions as drought frequency/severity rises; opportunistic pathogens become more damaging when hosts are drought-stressed. | Sanitation (prune/remove infected wood), irrigation management to reduce host stress, fungicidal wound protection in some systems, biological wound treatments under study; long-term resilience via species/cultivar choice. | [45,65] |
| Ralstonia solanacearum (soil-borne bacterial wilt) | Warmer temperatures and drought episodes can interact to increase disease pressure in some cropping systems; water management changes (irrigation reuse) affect pathogen spread | Tomato, potato, banana, solanaceous crops and many others. | Several tropical/temperate strains are shifting ranges with warming; complex subspecies show variable responses to environment | Phytosanitary measures (clean seed), soil sanitation, crop rotation, tolerant varieties, bio-controls (e.g., antagonistic bacteria) and grafting; chemical control generally ineffective in soil. Integrated management | [40,66] |
3. Biocontrol Strategies for Emerging Pathogens
4. Climate-Adaptive Biocontrol Agents and Their Mode of Action to Control Pathogens
5. Bioinoculants to Improve Plant Health in Drought Conditions
| Category & Expected Outcome | Drought-Resilient Trait(s) | Representative Microbial Examples | Target Crop(s) | Suitable Environment | Documented Field Performance |
|---|---|---|---|---|---|
| 1. Enhanced Root Architecture & Soil Exploration Greater root length, branching, and root hair density leading to improved water uptake. | ACC-deaminase activity; IAA (Indole-3-acetic acid) production; auxin modulation | Bacillus amyloliquefaciens [131], Azospirillum brasilense [132,133], Pseudomonas fluorescens [134] | Wheat, maize, sorghum, soybean, pearl millet | Arid & semi-arid; low organic matter soils | ↑ Root length; ↑ grain yield |
| 2. Soil Moisture Retention & Rhizosphere Stabilization Better soil aggregation leading to reduced water loss and improved microbial persistence. | Exopolysaccharide (EPS) production; biofilm formation | Pseudomonas putida [135], Bacillus megaterium [136] | Wheat, maize, legumes | Arid, sandy soils; degraded lands | ↑ Soil moisture; ↑ biomass |
| 3. Enhanced Water & Nutrient Foraging Boosted water uptake and nutrient mobilization when root access is limited. | Mycorrhizal hyphal extension; P-mobilization; improved osmotic balance | AMF (Rhizophagus irregularis, Rhizophagus clarus [137,138,139,140] , Funneliformis mosseae [141,142]) | Maize, soybean, vegetables | Arid & nutrient-poor soils | ↑ Water-use efficiency; ↑ yield |
| 4. Stress Priming & Physiological Buffering Greater antioxidant activity and improved resilience of leaves and reproductive structures. | Induced systemic resistance (ISR); ROS detoxification; phytohormone modulation | Trichoderma spp. [143,144,145,146], Bacillus subtilis [147] | Tomato, pepper, grapevine, sunflower | Semi-arid climates; high temperature + drought | ↑ Fruit set; reduced oxidative damage |
| 5. Improved Nitrogen Fixation Under Water Deficit Stable nodulation and maintained N-fixation under moderate to severe drought. | ACC–ethylene balance; osmolyte production; nodulation-enhancing metabolites | Bradyrhizobium japonicum [148] (often with PGPR co-inoculants) | Soybean, chickpea, cowpea | Semi-arid; variable rainfall | ↑ Pod number; ↑ tissue N |
| 6. Multi-Mechanistic Synergy for Severe Drought Combination of water retention, root growth, nutrient uptake, and stress priming. | ACC-deaminase + EPS + osmolyte production + AMF symbiosis | PGPR–AMF consortia (e.g., Pseudomonas + Bacillus + AMF) [57,149] | Cereals, legumes, vegetables | Arid & semi-arid; severe drought | ↑ Survival during >50% water reduction; ↑ biomass and yield |
6. Research Gaps and Future Directions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadowski, A.; Wojcieszak-Zbierska, M.M.; Zmyślona, J. Agricultural Production in the Least Developed Countries and Its Impact on Emission of Greenhouse Gases—An Energy Approach. Land Use Policy 2024, 136, 106968. [Google Scholar] [CrossRef]
- Anderson, R.; Bayer, P.E.; Edwards, D. Climate Change and the Need for Agricultural Adaptation. Curr. Opin. Plant Biol. 2020, 56, 197–202. [Google Scholar] [CrossRef]
- Thomson, L.J.; Macfadyen, S.; Hoffmann, A.A. Predicting the Effects of Climate Change on Natural Enemies of Agricultural Pests. Biol. Control 2010, 52, 296–306. [Google Scholar] [CrossRef]
- Dubey, A.; Malla, M.A.; Khan, F.; Chowdhary, K.; Yadav, S.; Kumar, A.; Sharma, S.; Khare, P.K.; Khan, M.L. Soil Microbiome: A Key Player for Conservation of Soil Health under Changing Climate. Biodivers. Conserv. 2019, 28, 2405–2429. [Google Scholar] [CrossRef]
- Swaine, M.; Bergna, A.; Oyserman, B.; Vasileiadis, S.; Karas, P.A.; Screpanti, C.; Karpouzas, D.G. Impact of Pesticides on Soil Health: Identification of Key Soil Microbial Indicators for Ecotoxicological Assessment Strategies through Meta-Analysis. FEMS Microbiol. Ecol. 2025, 101, fiaf052. [Google Scholar] [CrossRef] [PubMed]
- Sha’arani, S.; Sabri, N.; Hamdi, N.; Riyadi, F. Climate Change Adaptation Measures in the Agricultural Sector in Southeast Asia: A Mini-Review. IOP Conf. Ser. Earth Environ. Sci. 2022, 1091, 012036. [Google Scholar] [CrossRef]
- Chakraborty, S. Migrate or Evolve: Options for Plant Pathogens under Climate Change. Glob. Change Biol. 2013, 19, 1985–2000. [Google Scholar] [CrossRef]
- Pautasso, M.; Döring, T.F.; Garbelotto, M.; Pellis, L.; Jeger, M.J. Impacts of Climate Change on Plant Diseases—Opinions and Trends. Eur. J. Plant Pathol. 2012, 133, 295–313. [Google Scholar] [CrossRef]
- Elad, Y.; Pertot, I. Climate Change Impacts on Plant Pathogens and Plant Diseases. J. Crop Improv. 2014, 28, 99–139. [Google Scholar] [CrossRef]
- Daunoras, J.; Kačergius, A.; Gudiukaitė, R. Role of Soil Microbiota Enzymes in Soil Health and Activity Changes Depending on Climate Change and the Type of Soil Ecosystem. Biology 2024, 13, 85. [Google Scholar] [CrossRef] [PubMed]
- Alori, E.T.; Dare, M.O.; Babalola, O.O. Microbial Inoculants for Soil Quality and Plant Health. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Sustainable Agriculture Reviews; Springer International Publishing: Cham, Switzerland, 2017; Volume 22, pp. 281–307. ISBN 978-3-319-48005-3. [Google Scholar]
- Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil Health and Sustainable Agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Limsakul, A.; Kammuang, A.; Paengkaew, W.; Sooktawee, S.; Aroonchan, N. Changes in Slow-Onset Climate Events in Thailand. Environ. Eng. Res. 2023, 29, 220784. [Google Scholar] [CrossRef]
- Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.; El Hamss, H.; Belabess, Z.; Barka, E.A. Biological Control of Plant Pathogens: A Global Perspective. Microorganisms 2022, 10, 596. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A Globally Coherent Fingerprint of Climate Change Impacts across Natural Systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Bebber, D.P.; Ramotowski, M.A.T.; Gurr, S.J. Crop Pests and Pathogens Move Polewards in a Warming World. Nat. Clim. Change 2013, 3, 985–988. [Google Scholar] [CrossRef]
- Mwangi, R.W.; Mustafa, M.; Charles, K.; Wagara, I.W.; Kappel, N. Selected Emerging and Reemerging Plant Pathogens Affecting the Food Basket: A Threat to Food Security. J. Agric. Food Res. 2023, 14, 100827. [Google Scholar] [CrossRef]
- He, D.-C.; He, M.-H.; Amalin, D.M.; Liu, W.; Alvindia, D.G.; Zhan, J. Biological Control of Plant Diseases: An Evolutionary and Eco-Economic Consideration. Pathogens 2021, 10, 1311. [Google Scholar] [CrossRef]
- Srivastav, A.L.; Dhyani, R.; Ranjan, M.; Madhav, S.; Sillanpää, M. Climate-Resilient Strategies for Sustainable Management of Water Resources and Agriculture. Environ. Sci. Pollut. Res. 2021, 28, 41576–41595. [Google Scholar] [CrossRef]
- Parolin, P.; Bresch, C.; Desneux, N.; Brun, R.; Bout, A.; Boll, R.; Poncet, C. Secondary Plants Used in Biological Control: A Review. Int. J. Pest. Manag. 2012, 58, 91–100. [Google Scholar] [CrossRef]
- Tawfeeq Al-Ani, L.K.; Aguilar-Marcelino, L.; Fiorotti, J.; Sharma, V.; Sarker, M.S.; Furtado, E.L.; Wijayawardene, N.N.; Herrera-Estrella, A. Biological Control Agents and Their Importance for the Plant Health. In Microbial Services in Restoration Ecology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 13–36. ISBN 978-0-12-819978-7. [Google Scholar]
- Olowe, O.M.; Akanmu, A.O.; Asemoloye, M.D. Exploration of Microbial Stimulants for Induction of Systemic Resistance in Plant Disease Management. Ann. Appl. Biol. 2020, 177, 282–293. [Google Scholar] [CrossRef]
- Villavicencio-Vásquez, M.; Espinoza-Lozano, F.; Espinoza-Lozano, L.; Coronel-León, J. Biological Control Agents: Mechanisms of Action, Selection, Formulation and Challenges in Agriculture. Front. Agron. 2025, 7, 1578915. [Google Scholar] [CrossRef]
- Gamage, A.; Gangahagedara, R.; Gamage, J.; Jayasinghe, N.; Kodikara, N.; Suraweera, P.; Merah, O. Role of Organic Farming for Achieving Sustainability in Agriculture. Farming Syst. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Collinge, D.B.; Jensen, D.F.; Rabiey, M.; Sarrocco, S.; Shaw, M.W.; Shaw, R.H. Biological Control of Plant Diseases—What Has Been Achieved and What Is the Direction? Plant Pathol. 2022, 71, 1024–1047. [Google Scholar] [CrossRef]
- Swiontek Brzezinska, M.; Jankiewicz, U.; Burkowska, A.; Walczak, M. Chitinolytic Microorganisms and Their Possible Application in Environmental Protection. Curr. Microbiol. 2014, 68, 71–81. [Google Scholar] [CrossRef]
- Das, S.; Dutta, S.; Ghosh, S.; Mukherjee, A. Chitinolytic Microorganisms for Biological Control of Plant Pathogens: A Comprehensive Review and Meta-Analysis. Crop Prot. 2024, 185, 106888. [Google Scholar] [CrossRef]
- Gomaa, E.Z. Microbial Chitinases: Properties, Enhancement and Potential Applications. Protoplasma 2021, 258, 695–710. [Google Scholar] [CrossRef]
- Prakash, O.; Kumari, B.; Pal, P.; Singh, M.P.; Prakash, A.; Pandey, B.; Agarwal, V.; Singh, A.K. Chitin-Based Nanoparticles for Crop Plant Growth Promotion. In Chitin-Based Nanoparticles for the Agriculture Sectors; Bachheti, R.K., Bachheti, A., Husen, A., Eds.; Smart Nanomaterials Technology; Springer Nature: Singapore, 2025; pp. 133–154. ISBN 978-981-96-0919-2. [Google Scholar]
- Unuofin, J.O.; Odeniyi, O.A.; Majengbasan, O.S.; Igwaran, A.; Moloantoa, K.M.; Khetsha, Z.P.; Iwarere, S.A.; Daramola, M.O. Chitinases: Expanding the Boundaries of Knowledge beyond Routinized Chitin Degradation. Environ. Sci. Pollut. Res. 2024, 31, 38045–38060. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Upadhyay, S.K.; Singh, M.; Sharma, I.; Sharma, P.; Kamboj, P.; Saini, A.; Vorha, R.; Sharma, A.K.; Upadhyay, T.K.; et al. Chitin, Chitinases and Chitin Derivatives in Biopharmaceutical, Agricultural and Environmental Perspective. Biointerface Res. Appl. Chem. 2020, 11, 9985–10005. [Google Scholar] [CrossRef]
- Elieh-Ali-Komi, D.; Hamblin, M.R. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials. Int. J. Adv. Res. 2016, 4, 411–427. [Google Scholar]
- Chakraborty, M.; Hasanuzzaman, M.; Rahman, M.; Khan, M.A.R.; Bhowmik, P.; Mahmud, N.U.; Tanveer, M.; Islam, T. Mechanism of Plant Growth Promotion and Disease Suppression by Chitosan Biopolymer. Agriculture 2020, 10, 624. [Google Scholar] [CrossRef]
- Mehmood, N.; Saeed, M.; Zafarullah, S.; Hyder, S.; Rizvi, Z.F.; Gondal, A.S.; Jamil, N.; Iqbal, R.; Ali, B.; Ercisli, S.; et al. Multifaceted Impacts of Plant-Beneficial Pseudomonas Spp. in Managing Various Plant Diseases and Crop Yield Improvement. ACS Omega 2023, 8, 22296–22315. [Google Scholar] [CrossRef] [PubMed]
- Alattas, H.; Glick, B.R.; Murphy, D.V.; Scott, C. Harnessing Pseudomonas Spp. for Sustainable Plant Crop Protection. Front. Microbiol. 2024, 15, 1485197. [Google Scholar] [CrossRef] [PubMed]
- Cumani, M.; Rojas, O. Characterization of the Agricultural Drought Prone Areas at Global Scale, 1st ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016; ISBN 978-92-5-109286-6. [Google Scholar]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Pandey, P.; Senthil-Kumar, M. Plant-Pathogen Interaction in the Presence of Abiotic Stress: What Do We Know about Plant Responses? Plant Physiol. Rep. 2019, 24, 541–549. [Google Scholar] [CrossRef]
- Wakelin, S.A.; Gomez-Gallego, M.; Jones, E.; Smaill, S.; Lear, G.; Lambie, S. Climate Change Induced Drought Impacts on Plant Diseases in New Zealand. Australas. Plant Pathol. 2018, 47, 101–114. [Google Scholar] [CrossRef]
- Loiko, N.; Islam, M. Plant–Soil Microbial Interaction: Differential Adaptations of Beneficial vs. Pathogenic Bacterial and Fungal Communities to Climate-Induced Drought. Agronomy 2024, 14, 1949. [Google Scholar] [CrossRef]
- Nnadi, N.E.; Carter, D.A. Climate Change and the Emergence of Fungal Pathogens. PLoS Pathog. 2021, 17, e1009503. [Google Scholar] [CrossRef]
- Garrett, K.A.; Nita, M.; De Wolf, E.D.; Esker, P.D.; Gomez-Montano, L.; Sparks, A.H. Plant Pathogens as Indicators of Climate Change. In Climate Change; Elsevier: Amsterdam, The Netherlands, 2021; pp. 499–513. ISBN 978-0-12-821575-3. [Google Scholar]
- Almeida, F.; Rodrigues, M.L.; Coelho, C. The Still Underestimated Problem of Fungal Diseases Worldwide. Front. Microbiol. 2019, 10, 214. [Google Scholar] [CrossRef] [PubMed]
- Nejat, N.; Mantri, N. Plant Immune System: Crosstalk Between Responses to Biotic and Abiotic Stresses the Missing Link in Understanding Plant Defence. Curr. Issues Mol. Biol. 2017, 23, 1–16. [Google Scholar] [CrossRef]
- Garbelotto, M. Drought Heightens Severity of Diseases Caused by Botryosphaeria dothidea and Cryptostroma corticale and Needs to Be Factored in to Properly Assess Pathogenicity or Fulfill Koch’s Postulates. J. Plant Pathol. 2024, 106, 1823–1829. [Google Scholar] [CrossRef]
- Sinha, R.; Irulappan, V.; Mohan-Raju, B.; Suganthi, A.; Senthil-Kumar, M. Impact of Drought Stress on Simultaneously Occurring Pathogen Infection in Field-Grown Chickpea. Sci. Rep. 2019, 9, 5577. [Google Scholar] [CrossRef]
- Rai, A.; Irulappan, V.; Senthil-Kumar, M. Dry Root Rot of Chickpea: A Disease Favored by Drought. Plant Dis. 2022, 106, 346–356. [Google Scholar] [CrossRef]
- Marquez, N.; Giachero, M.L.; Declerck, S.; Ducasse, D.A. Macrophomina phaseolina: General Characteristics of Pathogenicity and Methods of Control. Front. Plant Sci. 2021, 12, 634397. [Google Scholar] [CrossRef] [PubMed]
- Farag, P.F.; Alkhalifah, D.H.M.; Ali, S.K.; Tagyan, A.I.; Hozzein, W.N. Impact of Climate Change on the Potential Global Prevalence of Macrophomina phaseolina (Tassi) Goid. under Several Climatological Scenarios. Front. Plant Sci. 2025, 16, 1512294. [Google Scholar] [CrossRef]
- Martino, I.; Lione, G.; Garbelotto, M.; Gonthier, P.; Guarnaccia, V. Modeling the Effect of Temperature on the Severity of Blueberry Stem Blight and Dieback with a Focus on Neofusicoccum parvum and Cultivar Susceptibility. Horticulturae 2024, 10, 363. [Google Scholar] [CrossRef]
- Ruiz-Gómez, F.J.; Pérez-de-Luque, A.; Navarro-Cerrillo, R.M. The Involvement of Phytophthora Root Rot and Drought Stress in Holm Oak Decline: From Ecophysiology to Microbiome Influence. Curr. For. Rep. 2019, 5, 251–266. [Google Scholar] [CrossRef]
- Portaccio, L.; Vergine, M.; Bene, A.; De Pascali, M.; Sabella, E.; De Bellis, L.; Luvisi, A. Chemical Treatments Tested Against Xylella fastidiosa: Strategies, Successes and Limitations. Pathogens 2025, 14, 840. [Google Scholar] [CrossRef] [PubMed]
- Sicard, A.; Zeilinger, A.R.; Vanhove, M.; Schartel, T.E.; Beal, D.J.; Daugherty, M.P.; Almeida, R.P.P. Xylella fastidiosa: Insights into an Emerging Plant Pathogen. Annu. Rev. Phytopathol. 2018, 56, 181–202. [Google Scholar] [CrossRef] [PubMed]
- Trkulja, V.; Tomić, A.; Iličić, R.; Nožinić, M.; Milovanović, T.P. Xylella fastidiosa in Europe: From the Introduction to the Current Status. Plant Pathol. J. 2022, 38, 551–571. [Google Scholar] [CrossRef] [PubMed]
- Ekwomadu, T.I.; Mwanza, M. Fusarium Fungi Pathogens, Identification, Adverse Effects, Disease Management, and Global Food Security: A Review of the Latest Research. Agriculture 2023, 13, 1810. [Google Scholar] [CrossRef]
- Acosta-González, U.; Silva-Rojas, H.V.; Fuentes-Aragón, D.; Hernández-Castrejón, J.; Romero-Bautista, A.; Rebollar-Alviter, A. Comparative Performance of Fungicides and Biocontrol Products in the Management of Fusarium Wilt of Blackberry. Plant Dis. 2022, 106, 1419–1427. [Google Scholar] [CrossRef] [PubMed]
- Santoyo, G.; Orozco-Mosqueda, M.D.C.; Afridi, M.S.; Mitra, D.; Valencia-Cantero, E.; Macías-Rodríguez, L. Trichoderma and Bacillus Multifunctional Allies for Plant Growth and Health in Saline Soils: Recent Advances and Future Challenges. Front. Microbiol. 2024, 15, 1423980. [Google Scholar] [CrossRef]
- Tani, E.; Kizis, D.; Markellou, E.; Papadakis, I.; Tsamadia, D.; Leventis, G.; Makrogianni, D.; Karapanos, I. Cultivar-Dependent Responses of Eggplant (Solanum melongena L.) to Simultaneous Verticillium dahliae Infection and Drought. Front. Plant Sci. 2018, 9, 1181. [Google Scholar] [CrossRef]
- Reusche, M.; Thole, K.; Janz, D.; Truskina, J.; Rindfleisch, S.; Drübert, C.; Polle, A.; Lipka, V.; Teichmann, T. Verticillium Infection Triggers VASCULAR-RELATED NAC DOMAIN7–Dependent de Novo Xylem Formation and Enhances Drought Tolerance in Arabidopsis. Plant Cell 2012, 24, 3823–3837. [Google Scholar] [CrossRef] [PubMed]
- Latorre, S.M.; Were, V.M.; Foster, A.J.; Langner, T.; Malmgren, A.; Harant, A.; Asuke, S.; Reyes-Avila, S.; Gupta, D.R.; Jensen, C.; et al. Genomic Surveillance Uncovers a Pandemic Clonal Lineage of the Wheat Blast Fungus. PLoS Biol. 2023, 21, e3002052. [Google Scholar] [CrossRef]
- Nizolli, V.O.; Viana, V.E.; Pegoraro, C.; Maia, L.C.D.; Oliveira, A.C.D. Wheat Blast: The Last Enemy of Hunger Fighters. Genet. Mol. Biol. 2023, 46, e20220002. [Google Scholar] [CrossRef]
- Montes, C.; Hussain, S.G.; Krupnik, T.J. Variable Climate Suitability for Wheat Blast (Magnaporthe oryzae Pathotype Triticum) in Asia: Results from a Continental-Scale Modeling Approach. Int. J. Biometeorol. 2022, 66, 2237–2249. [Google Scholar] [CrossRef]
- Singh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; Guirado, E.; Leach, J.E.; Liu, H.; Trivedi, P. Climate Change Impacts on Plant Pathogens, Food Security and Paths Forward. Nat. Rev. Microbiol. 2023, 21, 640–656. [Google Scholar] [CrossRef]
- Jevtić, R.; Župunski, V. The Challenge of Managing Yellow Rust (Puccinia striiformis f.Sp. tritici) in Winter Wheat: How Combined Climate and Pathogen Stressors Impact Variability in Genotype Reactions. Front. Plant Sci. 2023, 14, 1270087. [Google Scholar] [CrossRef]
- Silva-Valderrama, I.; Úrbez-Torres, J.-R.; Davies, T.J. From Host to Host: The Taxonomic and Geographic Expansion of Botryosphaeriaceae. Fungal Biol. Rev. 2024, 48, 100352. [Google Scholar] [CrossRef]
- Álvarez, B.; López, M.M.; Biosca, E.G. Biocontrol of the Major Plant Pathogen Ralstonia solanacearum in Irrigation Water and Host Plants by Novel Waterborne Lytic Bacteriophages. Front. Microbiol. 2019, 10, 2813. [Google Scholar] [CrossRef]
- Kalogiannidis, S.; Kalfas, D.; Chatzitheodoridis, F.; Papaevangelou, O. Role of Crop-Protection Technologies in Sustainable Agricultural Productivity and Management. Land 2022, 11, 1680. [Google Scholar] [CrossRef]
- Fenta, L.; Mekonnen, H. Microbial Biofungicides as a Substitute for Chemical Fungicides in the Control of Phytopathogens: Current Perspectives and Research Directions. Scientifica 2024, 2024, 1–12. [Google Scholar] [CrossRef]
- Williams, M.E.P.; Knox, O.G.G.; Forsyth, L.M. Biological Control Agents: The Importance for Specific and Targeted Screening Techniques to Enable Their Effective and Successful Implementation. Eur. J. Plant Pathol. 2025, 172, 713–728. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Liu, H.; Macdonald, C.A.; Singh, B.K. Microbial Inoculants with Higher Capacity to Colonize Soils Improved Wheat Drought Tolerance. Microb. Biotechnol. 2023, 16, 2131–2144. [Google Scholar] [CrossRef]
- Syed Ab Rahman, S.F.; Singh, E.; Pieterse, C.M.J.; Schenk, P.M. Emerging Microbial Biocontrol Strategies for Plant Pathogens. Plant Sci. 2018, 267, 102–111. [Google Scholar] [CrossRef]
- Dobrzyński, J.; Jakubowska, Z.; Kulkova, I.; Kowalczyk, P.; Kramkowski, K. Biocontrol of Fungal Phytopathogens by Bacillus pumilus. Front. Microbiol. 2023, 14, 1194606. [Google Scholar] [CrossRef]
- Velásquez, A.C.; Castroverde, C.D.M.; He, S.Y. Plant–Pathogen Warfare under Changing Climate Conditions. Curr. Biol. 2018, 28, R619–R634. [Google Scholar] [CrossRef]
- Contreras-Cornejo, H.A.; Larsen, J.; Fernández-Pavía, S.P.; Oyama, K. Climate Change, a Booster of Disease Outbreaks by the Plant Pathogen Phytophthora in Oak Forests. Rhizosphere 2023, 27, 100719. [Google Scholar] [CrossRef]
- Xu, X.; Jeger, M. More Ecological Research Needed for Effective Biocontrol of Plant Pathogens. In How Research Can Stimulate the Development of Commercial Biological Control Against Plant Diseases; De Cal, A., Melgarejo, P., Magan, N., Eds.; Progress in Biological Control; Springer International Publishing: Cham, Switzerland, 2020; Volume 21, pp. 15–30. ISBN 978-3-030-53237-6. [Google Scholar]
- Pertot, I.; Puopolo, G.; Giovannini, O.; Angeli, D.; Sicher, C.; Perazzolli, M. Advantages and Limitations Involved in the Use of Microbial Biofungicides for the Control of Root and Foliar Phytopathogens of Fruit Crops. Italus Hortus 2016, 23, 3–12. [Google Scholar]
- Bardin, M.; Ajouz, S.; Comby, M.; Lopez-Ferber, M.; Graillot, B.; Siegwart, M.; Nicot, P.C. Is the Efficacy of Biological Control against Plant Diseases Likely to Be More Durable than That of Chemical Pesticides? Front. Plant Sci. 2015, 6, 566. [Google Scholar] [CrossRef]
- Bonaterra, A.; Badosa, E.; Cabrefiga, J.; Francés, J.; Montesinos, E. Prospects and Limitations of Microbial Pesticides for Control of Bacterial and Fungal Pomefruit Tree Diseases. Trees 2012, 26, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, A.; Lama Tamang, T.; Kashtoh, H.; Mir, R.A.; Mir, Z.A.; Manzoor, S.; Manzar, N.; Gani, G.; Vishwakarma, S.K.; Almalki, M.A.; et al. A Review on Biocontrol Agents as Sustainable Approach for Crop Disease Management: Applications, Production, and Future Perspectives. Horticulturae 2024, 10, 805. [Google Scholar] [CrossRef]
- Pandit, M.A.; Kumar, J.; Gulati, S.; Bhandari, N.; Mehta, P.; Katyal, R.; Rawat, C.D.; Mishra, V.; Kaur, J. Major Biological Control Strategies for Plant Pathogens. Pathogens 2022, 11, 273. [Google Scholar] [CrossRef]
- Liu, Y.; He, P.; He, P.; Munir, S.; Ahmed, A.; Wu, Y.; Yang, Y.; Lu, J.; Wang, J.; Yang, J.; et al. Potential Biocontrol Efficiency of Trichoderma Species against Oomycete Pathogens. Front. Microbiol. 2022, 13, 974024. [Google Scholar] [CrossRef]
- Ogbe, A.A.; Gupta, S.; Stirk, W.A.; Finnie, J.F.; Van Staden, J. Growth-Promoting Characteristics of Fungal and Bacterial Endophytes Isolated from a Drought-Tolerant Mint Species Endostemon obtusifolius (E. Mey. Ex Benth.) N. E. Br. Plants 2023, 12, 638. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Song, L.; Xiao, Y.; Ge, W. Drought-Tolerant Plant Growth-Promoting Rhizobacteria Associated with Foxtail Millet in a Semi-Arid Agroecosystem and Their Potential in Alleviating Drought Stress. Front. Microbiol. 2018, 8, 2580. [Google Scholar] [CrossRef]
- Astorga-Eló, M.; Gonzalez, S.; Acuña, J.J.; Sadowsky, M.J.; Jorquera, M.A. Rhizobacteria from ‘Flowering Desert’ Events Contribute to the Mitigation of Water Scarcity Stress during Tomato Seedling Germination and Growth. Sci. Rep. 2021, 11, 13745. [Google Scholar] [CrossRef] [PubMed]
- Halo, B.A.; Aljabri, Y.A.S.; Yaish, M.W. Drought-Induced Microbial Dynamics in Cowpea Rhizosphere: Exploring Bacterial Diversity and Bioinoculant Prospects. PLoS ONE 2025, 20, e0320197. [Google Scholar] [CrossRef]
- Prajakta, B.M.; Suvarna, P.P.; Raghvendra, S.P.; Alok, R.R. Potential Biocontrol and Superlative Plant Growth Promoting Activity of Indigenous Bacillus mojavensis PB-35(R11) of Soybean (Glycine max) Rhizosphere. SN Appl. Sci. 2019, 1, 1143. [Google Scholar] [CrossRef]
- Woo, O.-G.; Kim, H.; Kim, J.-S.; Keum, H.L.; Lee, K.-C.; Sul, W.J.; Lee, J.-H. Bacillus subtilis Strain GOT9 Confers Enhanced Tolerance to Drought and Salt Stresses in Arabidopsis thaliana and Brassica campestris. Plant Physiol. Biochem. 2020, 148, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Hanaka, A.; Ozimek, E.; Reszczyńska, E.; Jaroszuk-Ściseł, J.; Stolarz, M. Plant Tolerance to Drought Stress in the Presence of Supporting Bacteria and Fungi: An Efficient Strategy in Horticulture. Horticulturae 2021, 7, 390. [Google Scholar] [CrossRef]
- Treseder, K.K.; Lennon, J.T. Fungal Traits That Drive Ecosystem Dynamics on Land. Microbiol. Mol. Biol. Rev. 2015, 79, 243–262. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt, P.P.; Alves, A.F.; Ferreira, M.B.; Da Silva Irineu, L.E.S.; Pinto, V.B.; Olivares, F.L. Mechanisms and Applications of Bacterial Inoculants in Plant Drought Stress Tolerance. Microorganisms 2023, 11, 502. [Google Scholar] [CrossRef]
- Silambarasan, S.; Logeswari, P.; Cornejo, P.; Kannan, V.R. Evaluation of the Production of Exopolysaccharide by Plant Growth Promoting Yeast Rhodotorula Sp. Strain CAH2 under Abiotic Stress Conditions. Int. J. Biol. Macromol. 2019, 121, 55–62. [Google Scholar] [CrossRef]
- Shah, A.; Nazari, M.; Antar, M.; Msimbira, L.A.; Naamala, J.; Lyu, D.; Rabileh, M.; Zajonc, J.; Smith, D.L. PGPR in Agriculture: A Sustainable Approach to Increasing Climate Change Resilience. Front. Sustain. Food Syst. 2021, 5, 667546. [Google Scholar] [CrossRef]
- Angelotti, F.; Hamada, E.; Bettiol, W. A Comprehensive Review of Climate Change and Plant Diseases in Brazil. Plants 2024, 13, 2447. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, X.; Qu, Z.; Zhang, C.; Wang, F.; Gao, T.; Yao, Y.; Liang, J. Progress in Research on Prevention and Control of Crop Fungal Diseases in the Context of Climate Change. Agriculture 2024, 14, 1108. [Google Scholar] [CrossRef]
- Di Francesco, A.; Ugolini, L.; D’Aquino, S.; Pagnotta, E.; Mari, M. Biocontrol of Monilinia laxa by Aureobasidium pullulans Strains: Insights on Competition for Nutrients and Space. Int. J. Food Microbiol. 2017, 248, 32–38. [Google Scholar] [CrossRef]
- Sui, Y.; Wisniewski, M.; Droby, S.; Liu, J. Responses of Yeast Biocontrol Agents to Environmental Stress. Appl. Environ. Microbiol. 2015, 81, 2968–2975. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sui, Y.; Wisniewski, M.; Droby, S.; Liu, Y. Review: Utilization of Antagonistic Yeasts to Manage Postharvest Fungal Diseases of Fruit. Int. J. Food Microbiol. 2013, 167, 153–160. [Google Scholar] [CrossRef]
- Wang, Y.; Bao, Y.; Shen, D.; Feng, W.; Yu, T.; Zhang, J.; Zheng, X.D. Biocontrol of Alternaria alternata on Cherry Tomato Fruit by Use of Marine Yeast Rhodosporidium paludigenum Fell & Tallman. Int. J. Food Microbiol. 2008, 123, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, P.; Xia, J.; Yu, T.; Lou, B.; Wang, J.; Zheng, X.D. Effect of Water Activity on Stress Tolerance and Biocontrol Activity in Antagonistic Yeast Rhodosporidium paludigenum. Int. J. Food Microbiol. 2010, 143, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Ming, X.; Wang, Y.; Sui, Y. Pretreatment of the Antagonistic Yeast, Debaryomyces Hansenii, with Mannitol and Sorbitol Improves Stress Tolerance and Biocontrol Efficacy. Front. Microbiol. 2020, 11, 601. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, X.; Tang, D.; Wang, W. Oxidative Stress Adaptation Improves the Heat Tolerance of Pseudomonas fluorescens SN15-2. Biol. Control 2019, 138, 104070. [Google Scholar] [CrossRef]
- Akram, F.; Jabbar, Z.; Aqeel, A.; Haq, I.U.; Tariq, S.; Malik, K. A Contemporary Appraisal on Impending Industrial and Agricultural Applications of Thermophilic-Recombinant Chitinolytic Enzymes from Microbial Sources. Mol. Biotechnol. 2022, 64, 1055–1075. [Google Scholar] [CrossRef]
- Mitra, D.; Chaudhary, P.; Verma, D.; Khoshru, B.; Senapati, A.; Mahakur, B.; Panneerselvam, P.; Das Mohapatra, P.K.; Anđelković, S. Bioinformatics’ Role in Studying Microbe- Mediated Biotic and Abiotic Stress Tolerance. In Microbial Management of Plant Stresses; Elsevier: Amsterdam, The Netherlands, 2021; pp. 203–219. ISBN 978-0-323-85193-0. [Google Scholar]
- Shelake, R.M.; Wagh, S.G.; Patil, A.M.; Červený, J.; Waghunde, R.R.; Kim, J.-Y. Heat Stress and Plant–Biotic Interactions: Advances and Perspectives. Plants 2024, 13, 2022. [Google Scholar] [CrossRef]
- Mota, T.M.; Oshiquiri, L.H.; Lopes, É.C.V.; Barbosa Filho, J.R.; Ulhoa, C.J.; Georg, R.C. Hsp Genes Are Differentially Expressed during Trichoderma asperellum Self-Recognition, Mycoparasitism and Thermal Stress. Microbiol. Res. 2019, 227, 126296. [Google Scholar] [CrossRef]
- Poosapati, S.; Ravulapalli, P.D.; Viswanathaswamy, D.K.; Kannan, M. Proteomics of Two Thermotolerant Isolates of Trichoderma under High-Temperature Stress. J. Fungi 2021, 7, 1002. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, C.; Huo, X.; Lai, X.; Zhu, W.; Hao, Y.; Zheng, Z.; Guo, K. Enhanced Resistance to Heat and Fungal Infection in Transgenic Trichoderma via Over-Expressing the HSP70 Gene. AMB Expr. 2024, 14, 34. [Google Scholar] [CrossRef]
- Torres-Quintero, M.-C.; Gómez, I.; Pacheco, S.; Sánchez, J.; Flores, H.; Osuna, J.; Mendoza, G.; Soberón, M.; Bravo, A. Engineering Bacillus thuringiensis Cyt1Aa Toxin Specificity from Dipteran to Lepidopteran Toxicity. Sci. Rep. 2018, 8, 4989. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.; Sansinenea, E.; Keswani, C.; Minkina, T.; Singh, S.P.; Rekadwad, B.; Borriss, R.; Hefferon, K.; Hoat, T.X.; Mitra, D.; et al. Bioengineering Bacillus Spp. for Sustainable Crop Production: Recent Advances and Resources for Biotechnological Applications. J. Plant Growth Regul. 2025, 44, 1868–1885. [Google Scholar] [CrossRef]
- Ferreira Filho, J.A.; Horta, M.A.C.; Dos Santos, C.A.; Almeida, D.A.; Murad, N.F.; Mendes, J.S.; Sforça, D.A.; Silva, C.B.C.; Crucello, A.; De Souza, A.P. Integrative Genomic Analysis of the Bioprospection of Regulators and Accessory Enzymes Associated with Cellulose Degradation in a Filamentous Fungus (Trichoderma harzianum). BMC Genom. 2020, 21, 757. [Google Scholar] [CrossRef] [PubMed]
- Sentis, A.; Hemptinne, J.; Magro, A.; Outreman, Y. Biological Control Needs Evolutionary Perspectives of Ecological Interactions. Evol. Appl. 2022, 15, 1537–1554. [Google Scholar] [CrossRef]
- Løvschall, K.B.; Velasquez, S.T.R.; Kowalska, B.; Ptaszek, M.; Jarecka, A.; Szczech, M.; Wurm, F.R. Enhancing Stability and Efficacy of Trichoderma Bio-Control Agents Through Layer-by-Layer Encapsulation for Sustainable Plant Protection. Adv. Sustain. Syst. 2024, 8, 2300409. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, S.; Pranaw, K.; Kumar, S.; Singh, B.; Poria, V. Bioinoculants as Mitigators of Multiple Stresses: A Ray of Hope for Agriculture in the Darkness of Climate Change. Heliyon 2022, 8, e11269. [Google Scholar] [CrossRef]
- Kour, D.; Khan, S.S.; Kaur, T.; Kour, H.; Singh, G.; Yadav, A.; Yadav, A.N. Drought Adaptive Microbes as Bioinoculants for the Horticultural Crops. Heliyon 2022, 8, e09493. [Google Scholar] [CrossRef]
- Fite, T.; Kebede, E.; Tefera, T.; Bekeko, Z. Endophytic Fungi: Versatile Partners for Pest Biocontrol, Growth Promotion, and Climate Change Resilience in Plants. Front. Sustain. Food Syst. 2023, 7, 1322861. [Google Scholar] [CrossRef]
- Timofeeva, A.M.; Galyamova, M.R.; Sedykh, S.E. Plant Growth-Promoting Bacteria of Soil: Designing of Consortia Beneficial for Crop Production. Microorganisms 2023, 11, 2864. [Google Scholar] [CrossRef]
- Meel, S.; Saharan, B.S. Enhancing Crop Resilience towards Drought: By Integrating Nanotechnology, Microbiomes, and Growth-Promoting Rhizobacteria. Discov. Agric. 2024, 2, 112. [Google Scholar] [CrossRef]
- Mawar, R.; Ranawat, M.; Ram, L.; Sayyed, R.Z. Harnessing Drought-Tolerant PGPM in Arid Agroecosystem for Plant Disease Management and Soil Amelioration. In Plant Growth Promoting Microorganisms of Arid Region; Mawar, R., Sayyed, R.Z., Sharma, S.K., Sattiraju, K.S., Eds.; Springer Nature: Singapore, 2023; pp. 27–43. ISBN 978-981-19-4123-8. [Google Scholar]
- Thiem, D.; Piernik, A.; Hrynkiewicz, K. Ectomycorrhizal and Endophytic Fungi Associated with Alnus glutinosa Growing in a Saline Area of Central Poland. Symbiosis 2018, 75, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Urbano, M.; Goicoechea, N.; Velasco, P.; Poveda, J. Development of Agricultural Bio-Inoculants Based on Mycorrhizal Fungi and Endophytic Filamentous Fungi: Co-Inoculants for Improve Plant-Physiological Responses in Sustainable Agriculture. Biol. Control 2023, 182, 105223. [Google Scholar] [CrossRef]
- Bokszczanin, K. Perspectives on Deciphering Mechanisms Underlying Plant Heat Stress Response and Thermotolerance. Front. Plant Sci. 2013, 4, 315. [Google Scholar] [CrossRef]
- Karavolias, N.G.; Horner, W.; Abugu, M.N.; Evanega, S.N. Application of Gene Editing for Climate Change in Agriculture. Front. Sustain. Food Syst. 2021, 5, 685801. [Google Scholar] [CrossRef]
- Benmrid, B.; Ghoulam, C.; Zeroual, Y.; Kouisni, L.; Bargaz, A. Bioinoculants as a Means of Increasing Crop Tolerance to Drought and Phosphorus Deficiency in Legume-Cereal Intercropping Systems. Commun. Biol. 2023, 6, 1016. [Google Scholar] [CrossRef]
- Housh, A.B.; Benoit, M.; Wilder, S.L.; Scott, S.; Powell, G.; Schueller, M.J.; Ferrieri, R.A. Plant-Growth-Promoting Bacteria Can Impact Zinc Uptake in Zea mays: An Examination of the Mechanisms of Action Using Functional Mutants of Azospirillum brasilense. Microorganisms 2021, 9, 1002. [Google Scholar] [CrossRef]
- Bahadir, P.S.; Liaqat, F.; Eltem, R. Plant Growth Promoting Properties of Phosphate Solubilizing Bacillus Species Isolated from the Aegean Region of Turkey. Turk. J. Bot. 2018, 42, 183–196. [Google Scholar] [CrossRef]
- Vasconcelos, J.C.S.; Arantes, C.S.; Gomes, E.A.; Oliveira-Paiva, C.A.D.; De Sousa, S.M.; Speranza, E.A.; Antunes, J.F.G.; Lana, U.G.D.P.; Cançado, G.M.D.A. Bacillus-Based Inoculants Enhance Drought Resilience in Soybean: Agronomic Performance and Remote Sensing Analysis from Multi-Location Trials in Brazil. Front. Plant Sci. 2025, 16, 1630127. [Google Scholar] [CrossRef]
- Kavian, S.; Zarei, M.; Niazi, A.; Ghasemi-Fasaei, R.; Shahriari, A.G.; Janda, T. Morphophysiological and Biochemical Responses of Zea mays L. under Cadmium and Drought Stresses Integrated with Fungal and Bacterial Inoculation. Agronomy 2023, 13, 1675. [Google Scholar] [CrossRef]
- Xie, F.; Andrews, B.; Asenjo, J.A.; Goodfellow, M.; Pathom-aree, W. Atacama Desert Actinomycetes: Taxonomic Analysis, Drought Tolerance and Plant Growth Promoting Potential. World J. Microbiol. Biotechnol. 2024, 40, 283. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Wei, S.; Gao, Y.; Zhang, X.; Cheng, Y.; Wang, J.; Ma, J.; Shi, G.; Bai, L.; Xie, R.; et al. Character Variation of Root Space Microbial Community Composition in the Response of Drought-Tolerant Spring Wheat to Drought Stress. Front. Microbiol. 2023, 14, 1235708. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zhang, X.; Liu, Y.; Tang, X.; Li, Y.; Sun, T.; Yan, G.; Yin, C. Drought Stress Increases the Complexity of the Bacterial Network in the Rhizosphere and Endosphere of Rice (Oryza sativa L.). Agronomy 2024, 14, 1662. [Google Scholar] [CrossRef]
- Murali, M.; Singh, S.B.; Gowtham, H.G.; Shilpa, N.; Prasad, M.; Aiyaz, M.; Amruthesh, K.N. Induction of Drought Tolerance in Pennisetum Glaucum by ACC Deaminase Producing PGPR- Bacillus amyloliquefaciens through Antioxidant Defense System. Microbiol. Res. 2021, 253, 126891. [Google Scholar] [CrossRef]
- Barbosa, M.S.; Rodrigues, E.P.; Stolf-Moreira, R.; Tischer, C.A.; De Oliveira, A.L.M. Root Exudate Supplemented Inoculant of Azospirillum brasilense Ab-V5 Is More Effective in Enhancing Rhizosphere Colonization and Growth of Maize. Environ. Sustain. 2020, 3, 187–197. [Google Scholar] [CrossRef]
- Rondina, A.B.L.; Dos Santos Sanzovo, A.W.; Guimarães, G.S.; Wendling, J.R.; Nogueira, M.A.; Hungria, M. Changes in Root Morphological Traits in Soybean Co-Inoculated with Bradyrhizobium Spp. and Azospirillum brasilense or Treated with A. brasilense Exudates. Biol. Fertil. Soils 2020, 56, 537–549. [Google Scholar] [CrossRef]
- Ortiz-Castro, R.; Campos-García, J.; López-Bucio, J. Pseudomonas putida and Pseudomonas fluorescens Influence Arabidopsis Root System Architecture Through an Auxin Response Mediated by Bioactive Cyclodipeptides. J. Plant Growth Regul. 2020, 39, 254–265. [Google Scholar] [CrossRef]
- Chieb, M.; Gachomo, E.W. The Role of Plant Growth Promoting Rhizobacteria in Plant Drought Stress Responses. BMC Plant Biol. 2023, 23, 407. [Google Scholar] [CrossRef]
- Rashid, U.; Yasmin, H.; Hassan, M.N.; Naz, R.; Nosheen, A.; Sajjad, M.; Ilyas, N.; Keyani, R.; Jabeen, Z.; Mumtaz, S.; et al. Drought-Tolerant Bacillus megaterium Isolated from Semi-Arid Conditions Induces Systemic Tolerance of Wheat under Drought Conditions. Plant Cell Rep. 2022, 41, 549–569. [Google Scholar] [CrossRef]
- Begum, N.; Xiao, Y.; Wang, L.; Li, D.; Irshad, A.; Zhao, T. Arbuscular Mycorrhizal Fungus Rhizophagus irregularis Alleviates Drought Stress in Soybean with Overexpressing the GmSPL9d Gene by Promoting Photosynthetic Apparatus and Regulating the Antioxidant System. Microbiol. Res. 2023, 273, 127398. [Google Scholar] [CrossRef] [PubMed]
- Abrar, M.; Zhu, Y.; Maqsood Ur Rehman, M.; Batool, A.; Duan, H.-X.; Ashraf, U.; Aqeel, M.; Gong, X.-F.; Peng, Y.-N.; Khan, W.; et al. Functionality of Arbuscular Mycorrhizal Fungi Varies across Different Growth Stages of Maize under Drought Conditions. Plant Physiol. Biochem. 2024, 213, 108839. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, T.C.; Cabral, J.S.R.; Santana, L.R.; Tavares, G.G.; Santos, L.D.S.; Paim, T.P.; Müller, C.; Silva, F.G.; Costa, A.C.; Souchie, E.L.; et al. The Arbuscular Mycorrhizal Fungus Rhizophagus clarus Improves Physiological Tolerance to Drought Stress in Soybean Plants. Sci. Rep. 2022, 12, 9044. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ni, Y.; Xie, K.; Li, Y.; Wu, W.; Shan, H.; Cheng, B.; Li, X. Aquaporin ZmTIP2;3 Promotes Drought Resistance of Maize through Symbiosis with Arbuscular Mycorrhizal Fungi. Int. J. Mol. Sci. 2024, 25, 4205. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Luo, X.; Wen, M.; Dong, X.; Sharifi, S.; Xie, D.; He, X. Funneliformis mosseae Improves Growth and Nutrient Accumulation in Wheat by Facilitating Soil Nutrient Uptake under Elevated CO2 at Daytime, Not Nighttime. J. Fungi 2021, 7, 458. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, X.; Bao, J.; Tian, Z.; Zhang, F.; Zhang, M. A Combined Strategy Using Funneliformis mosseae and Phosphorus Addition for Enhancing Oat Drought Tolerance. Agronomy 2025, 15, 2033. [Google Scholar] [CrossRef]
- Yao, X.; Guo, H.; Zhang, K.; Zhao, M.; Ruan, J.; Chen, J. Trichoderma and Its Role in Biological Control of Plant Fungal and Nematode Disease. Front. Microbiol. 2023, 14, 1160551. [Google Scholar] [CrossRef]
- Guzmán-Guzmán, P.; Kumar, A.; De Los Santos-Villalobos, S.; Parra-Cota, F.I.; Orozco-Mosqueda, M.D.C.; Fadiji, A.E.; Hyder, S.; Babalola, O.O.; Santoyo, G. Trichoderma Species: Our Best Fungal Allies in the Biocontrol of Plant Diseases—A Review. Plants 2023, 12, 432. [Google Scholar] [CrossRef]
- Rawal, R.; Scheerens, J.C.; Fenstemaker, S.M.; Francis, D.M.; Miller, S.A.; Benitez, M.-S. Novel Trichoderma Isolates Alleviate Water Deficit Stress in Susceptible Tomato Genotypes. Front. Plant Sci. 2022, 13, 869090. [Google Scholar] [CrossRef]
- Senizza, B.; Araniti, F.; Lewin, S.; Wende, S.; Kolb, S.; Lucini, L. Trichoderma Spp.-Mediated Mitigation of Heat, Drought, and Their Combination on the Arabidopsis thaliana Holobiont: A Metabolomics and Metabarcoding Approach. Front. Plant Sci. 2023, 14, 1190304. [Google Scholar] [CrossRef]
- Lastochkina, O.; Garshina, D.; Ivanov, S.; Yuldashev, R.; Khafizova, R.; Allagulova, C.; Fedorova, K.; Avalbaev, A.; Maslennikova, D.; Bosacchi, M. Seed Priming with Endophytic Bacillus subtilis Modulates Physiological Responses of Two Different Triticum aestivum L. Cultivars under Drought Stress. Plants 2020, 9, 1810. [Google Scholar] [CrossRef]
- Szczerba, A.; Płażek, A.; Kopeć, P.; Surówka, E.; Dubert, F. Mitigating Soil Drought Effects in Soybean with Bradyrhizobium japonicum Inoculants. BMC Plant Biol. 2025, 25, 1533. [Google Scholar] [CrossRef]
- Kai, M.; Effmert, U.; Piechulla, B. Bacterial-Plant-Interactions: Approaches to Unravel the Biological Function of Bacterial Volatiles in the Rhizosphere. Front. Microbiol. 2016, 7, 108. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Pathom-Aree, W.; Lotfi, R.; Balaji, P.; Elshery, N.; Grska, E.B.; Swiatek, M.; Horaczek, T.; Mojski, J.; Kociel, H.; et al. Effect of Microbial Consortia on Photosynthetic Efficiency of Arabidopsis thaliana under Drought Stress. Chiang Mai J. Sci. 2017, 45, 1–10. [Google Scholar]
- Kaboosi, E.; Rahimi, A.; Abdoli, M.; Ghabooli, M. Comparison of Serendipita indica Inoculums and a Commercial Biofertilizer Effects on Physiological Characteristics and Antioxidant Capacity of Maize Under Drought Stress. J. Soil. Sci. Plant Nutr. 2023, 23, 900–911. [Google Scholar] [CrossRef]
- Klein, M.N.; Kupper, K.C. Biofilm Production by Aureobasidium pullulans Improves Biocontrol against Sour Rot in Citrus. Food Microbiol. 2018, 69, 1–10. [Google Scholar] [CrossRef]
- Sylla, J.; Alsanius, B.; Krüger, E.; Reineke, A.; Bischoff-Schaefer, M.; Wohanka, W. Introduction of Aureobasidium pullulans to the Phyllosphere of Organically Grown Strawberries with Focus on Its Establishment and Interactions with the Resident Microbiome. Agronomy 2013, 3, 704–731. [Google Scholar] [CrossRef]
- Mannaa, M.; Han, G.; Jung, H.; Park, J.; Kim, J.-C.; Park, A.R.; Seo, Y.-S. Aureobasidium pullulans Treatment Mitigates Drought Stress in Abies koreana via Rhizosphere Microbiome Modulation. Plants 2023, 12, 3653. [Google Scholar] [CrossRef] [PubMed]
- Santhanam, P.; Madina, M.H.; Albuini, F.M.; Labbé, C.; Fietto, L.G.; Bélanger, R.R. A Unique Effector Secreted by Pseudozyma flocculosa Mediates Its Biocontrol Activity. BMC Biol. 2023, 21, 118. [Google Scholar] [CrossRef] [PubMed]
- Hammami, W.; Castro, C.Q.; Rémus-Borel, W.; Labbé, C.; Bélanger, R.R. Ecological Basis of the Interaction between Pseudozyma flocculosa and Powdery Mildew Fungi. Appl. Environ. Microbiol. 2011, 77, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Amprayn, K.; Rose, M.T.; Kecskés, M.; Pereg, L.; Nguyen, H.T.; Kennedy, I.R. Plant Growth Promoting Characteristics of Soil Yeast (Candida tropicalis HY) and Its Effectiveness for Promoting Rice Growth. Appl. Soil. Ecol. 2012, 61, 295–299. [Google Scholar] [CrossRef]
- Pérez-Moncada, U.A.; Santander, C.; Ruiz, A.; Vidal, C.; Santos, C.; Cornejo, P. Design of Microbial Consortia Based on Arbuscular Mycorrhizal Fungi, Yeasts, and Bacteria to Improve the Biochemical, Nutritional, and Physiological Status of Strawberry Plants Growing under Water Deficits. Plants 2024, 13, 1556. [Google Scholar] [CrossRef]
- Kaur, R.; Saxena, S. Evaluation of Drought-Tolerant Endophytic Fungus Talaromyces Purpureogenus as a Bioinoculant for Wheat Seedlings under Normal and Drought-Stressed Circumstances. Folia Microbiol. 2023, 68, 781–799. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Saxena, S. Penicillium citrinum, a Drought-Tolerant Endophytic Fungus Isolated from Wheat (Triticum aestivum L.) Leaves with Plant Growth-Promoting Abilities. Curr. Microbiol. 2023, 80, 184. [Google Scholar] [CrossRef]
- Ashwin, R.; Bagyaraj, D.J.; Mohan Raju, B. Dual Inoculation with Rhizobia and Arbuscular Mycorrhizal Fungus Improves Water Stress Tolerance and Productivity in Soybean. Plant Stress. 2022, 4, 100084. [Google Scholar] [CrossRef]
- Gomez-Garay, A.; Bonaventura Roca-Campos, D.; Irles Sánchez, S.; Pintos López, B. Biocontrol Potential and Mitigation of Abiotic Stress Effects of Meyerozyma guilliermondii on Cucumber (Cucumis sativus L.). Agriculture 2024, 14, 1189. [Google Scholar] [CrossRef]
- Barriga-Medina, N.; Decker, T.; Ramirez-Villacis, D.X.; León-Reyes, A.E.; Dong, V.; Worley, C.; Ruales, C.; Pieterse, C.; Leon-Reyes, A. Exploring Fungal Pathogens to Control the Plant Invasive Rubus niveus on Galapagos Island San Cristobal. Sci. Rep. 2025, 15, 20358. [Google Scholar] [CrossRef]
- Mikiciuk, G.; Miller, T.; Kisiel, A.; Cembrowska-Lech, D.; Mikiciuk, M.; Łobodzińska, A.; Bokszczanin, K. Harnessing Beneficial Microbes for Drought Tolerance: A Review of Ecological and Agricultural Innovations. Agriculture 2024, 14, 2228. [Google Scholar] [CrossRef]
- Carrazco, A.M.; Díaz-Rodríguez, A.M.; Parra Cota, F.I.; Villalobos, S.D.L.S. Legal Framework for the Development of Microbial Inoculants. In New Insights, Trends, and Challenges in the Development and Applications of Microbial Inoculants in Agriculture; Elsevier: Amsterdam, The Netherlands, 2024; pp. 143–151. ISBN 978-0-443-18855-8. [Google Scholar]
- O’Callaghan, M.; Ballard, R.A.; Wright, D. Soil Microbial Inoculants for Sustainable Agriculture: Limitations and Opportunities. Soil. Use Manag. 2022, 38, 1340–1369. [Google Scholar] [CrossRef]
- Rocha, I.; Ma, Y.; Souza-Alonso, P.; Vosátka, M.; Freitas, H.; Oliveira, R.S. Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops. Front. Plant Sci. 2019, 10, 1357. [Google Scholar] [CrossRef]
- Jindo, K.; Goron, T.L.; Pizarro-Tobías, P.; Sánchez-Monedero, M.Á.; Audette, Y.; Deolu-Ajayi, A.O.; Van Der Werf, A.; Goitom Teklu, M.; Shenker, M.; Pombo Sudré, C.; et al. Application of Biostimulant Products and Biological Control Agents in Sustainable Viticulture: A Review. Front. Plant Sci. 2022, 13, 932311. [Google Scholar] [CrossRef]
- Hossain, M.M.; Sultana, F.; Mostafa, M.; Ferdus, H.; Rahman, M.; Rana, J.A.; Islam, S.S.; Adhikary, S.; Sannal, A.; Al Emran Hosen, M.; et al. Plant Disease Dynamics in a Changing Climate: Impacts, Molecular Mechanisms, and Climate-Informed Strategies for Sustainable Management. Discov. Agric. 2024, 2, 132. [Google Scholar] [CrossRef]
- Kumar, S.; Sindhu, S.S. Drought Stress Mitigation through Bioengineering of Microbes and Crop Varieties for Sustainable Agriculture and Food Security. Curr. Res. Microb. Sci. 2024, 7, 100285. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.; Shamshad, J.; Khalid, F.; Kuzyakov, Y.; Younas, A.; Li, L. Biotechnological and Sustainable Approaches to Climate-Resilient Agriculture. J. Agron. Crop Sci. 2025, 211, e70105. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harishchandra, D.L.; Karunarathna, A.; Haituk, S.; Sittihan, S.; Wongwan, T.; Cheewangkoon, R. Improving Crop Resilience in Drought-Prone Agroecosystems: Bioinoculants and Biocontrol Strategies from Climate-Adaptive Microorganisms. Agriculture 2025, 15, 2479. https://doi.org/10.3390/agriculture15232479
Harishchandra DL, Karunarathna A, Haituk S, Sittihan S, Wongwan T, Cheewangkoon R. Improving Crop Resilience in Drought-Prone Agroecosystems: Bioinoculants and Biocontrol Strategies from Climate-Adaptive Microorganisms. Agriculture. 2025; 15(23):2479. https://doi.org/10.3390/agriculture15232479
Chicago/Turabian StyleHarishchandra, Dulanjalee L., Anuruddha Karunarathna, Sukanya Haituk, Sirikanlaya Sittihan, Thitima Wongwan, and Ratchadawan Cheewangkoon. 2025. "Improving Crop Resilience in Drought-Prone Agroecosystems: Bioinoculants and Biocontrol Strategies from Climate-Adaptive Microorganisms" Agriculture 15, no. 23: 2479. https://doi.org/10.3390/agriculture15232479
APA StyleHarishchandra, D. L., Karunarathna, A., Haituk, S., Sittihan, S., Wongwan, T., & Cheewangkoon, R. (2025). Improving Crop Resilience in Drought-Prone Agroecosystems: Bioinoculants and Biocontrol Strategies from Climate-Adaptive Microorganisms. Agriculture, 15(23), 2479. https://doi.org/10.3390/agriculture15232479

