Regenerative Farming with Organic Fertilizer and Biologics: A New Approach to Enhancing Soybean Yield and Soil Chemical Quality
Abstract
1. Introduction
2. Materials and Methods
2.1. Local and Experimental Setup
2.2. Experimental Design and Treatments
2.3. Acquisition and Characterization of Composted Sewage Sludge
2.4. Experiment Implementation
2.5. Laboratory and Field Analyses
2.6. Statistical Analysis
3. Results and Discussion
3.1. Soil Chemical Properties
3.2. Soil Nutrient Contents
3.3. Grain Yield
4. Broader Societal Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Selected Indicators/Country. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#country/21 (accessed on 9 December 2024).
- Companhia Nacional de Abastecimento. Acompanhamento da Safra Brasileira de Grãos, Safra 2024/2025, Primeiro Levantamento; Companhia Nacional de Abastecimento: Brasília, Brazil, 2024. Available online: https://www.gov.br/conab/pt-br/atuacao/informacoes-agropecuarias/safras/safra-de-graos/boletim-da-safra-de-graos/1o-levantamento-safra-2024-25/boletim-da-safra-de-graos (accessed on 14 November 2024).
- CNA. Jazidas e Bioinsumos Minimizam Falta de Fertilizante Estrangeiro; Confederação da Agricultura e Pecuária do Brasil: Brasília, Brazil, 2022; Available online: https://www.cnabrasil.org.br/noticias/jazidas-e-bioinsumos-minimizam-falta-de-fertilizante-estrangeiro (accessed on 17 November 2024).
- Nascimento, A.L.; de Souza, A.J.; Oliveira, F.C.; Coscione, A.R.; Viana, D.G.; Regitano, J.B. Chemical attributes of sewage sludges: Relationships to sources and treatments, and implications for sludge usage in agriculture. J. Clean. Prod. 2020, 258, 120746. [Google Scholar] [CrossRef]
- Chagas, J.K.M.; de Figueiredo, C.C.; da Silva, J.; Paz-Ferreiro, J. The residual effect of sewage sludge biochar on soil availability and bioaccumulation of heavy metals: Evidence from a three-year field experiment. J. Environ. Manag. 2021, 279, 111824. [Google Scholar] [CrossRef]
- Regitano, J.B.; Rodrigues, M.M.; Martins, G.L. Vantagens do uso de fertilizantes organominerais a base de lodo de esgoto em condições tropicais. In Anuário Brasileiro de Tecnologia em Nutrição Vegetal; Abisolo: Campinas, Brazil, 2021. [Google Scholar] [CrossRef]
- da Silva, M.V.; Chaer, G.M.; Leles, P.S.d.S.; de Resende, A.S.; da Silva, E.V.; Barros, T.d.O.C. Uso de biossólido em plantios de espécies da Mata Atlântica. Sci. For. 2020, 48, e2728. [Google Scholar] [CrossRef]
- MAPA. Normative Instruction No. 7 of May 16, 2016. In Official Classification and Standards for Organic Fertilizers in Brazil; Ministry of Agriculture, Livestock and Supply: Brasília, Brazil, 2016. Available online: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-05-_ingles.pdf (accessed on 2 October 2024).
- Yagmur, M.; Arpali, D.; Gulser, F. The effects of sewage sludge treatment on triticale straw yield and its chemical contents in rainfed condition. J. Anim. Plant Sci. 2017, 27, 971–977. [Google Scholar]
- Prates, A.R.; Coscione, A.R.; Teixeira Filho, M.C.M.; Miranda, B.G.; Arf, O.; Abreu-Junior, C.H.; Oliveira, F.C.; Moreira, A.; Galindo, F.S.; Sartori, M.M.P.; et al. Composted Sewage Sludge Enhances Soybean Production and Agronomic Performance in Naturally Infertile Soils (Cerrado Region, Brazil). Agronomy 2020, 10, 1677. [Google Scholar] [CrossRef]
- Prates, A.R.; Kawakami, K.C.; Coscione, A.R.; Teixeira Filho, M.C.M.; Arf, O.; Abreu-Junior, C.H.; Oliveira, F.C.; Moreira, A.; Galindo, F.S.; He, Z.; et al. Composted Sewage Sludge Sustains High Maize Productivity on an Infertile Oxisol in the Brazilian Cerrado. Land 2022, 11, 1246. [Google Scholar] [CrossRef]
- Silva, R.d.S.; Jalal, A.; Nascimento, R.E.N.D.; Elias, N.C.; Kawakami, K.C.; Abreu-Junior, C.H.; Oliveira, F.C.; Jani, A.D.; He, Z.; Zhao, F.; et al. Composted Sewage Sludge Application Reduces Mineral Fertilization Requirements and Improves Soil Fertility in Sugarcane Seedling Nurseries. Sustainability 2022, 14, 4684. [Google Scholar] [CrossRef]
- Silva, R.d.S.; Jalal, A.; Nascimento, R.E.N.D.; Elias, N.C.; Kawakami, K.C.; Abreu-Junior, C.H.; Oliveira, F.C.; Jani, A.D.; He, Z.; Zhao, F.; et al. Composted Sewage Sludge Application in a Sugarcane Seedling Nursery: Crop Nutritional Status, Productivity, and Technological Quality Implications. Sustainability 2022, 14, 4682. [Google Scholar] [CrossRef]
- de Oliveira, G.S.; Jalal, A.; Prates, A.R.; Teixeira Filho, M.C.M.; Alves, R.S.; Silva, L.C.; Nascimento, R.E.N.D.; Silva, P.S.T.; Arf, O.; Galindo, F.S.; et al. Common Bean Productivity and Micronutrients in the Soil–Plant System under Residual Applications of Composted Sewage Sludge. Plants 2023, 12, 2153. [Google Scholar] [CrossRef]
- Barbosa, J.Z.; Hungria, M.; Sena, J.V.d.S.; Poggere, G.; dos Reis, A.R.; Corrêa, R.S. Meta-analysis reveals benefits of co-inoculation of soybean with Azospirillum brasilense and Bradyrhizobium spp. in Brazil. Appl. Soil Ecol. 2021, 163, 103913. [Google Scholar] [CrossRef]
- Jalal, A.; Oliveira, C.E.d.S.; Fernandes, H.B.; Galindo, F.S.; da Silva, E.C.; Fernandes, G.C.; Nogueira, T.A.R.; De Carvalho, P.H.G.; Balbino, V.R.; de Lima, B.H.; et al. Diazotrophic Bacteria Is an Alternative Strategy for Increasing Grain Biofortification, Yield and Zinc Use Efficiency of Maize. Plants 2022, 11, 1125. [Google Scholar] [CrossRef]
- Jalal, A.; Oliveira, C.E.d.S.; Freitas, L.A.; Galindo, F.S.; Lima, B.H.; Boleta, E.H.M.; da Silva, E.C.; Nascimento, V.D.; Nogueira, T.A.R.; Buzetti, S.; et al. Agronomic biofortification and productivity of wheat with soil zinc and diazotrophic bacteria in tropical savannah. Crop Pasture Sci. 2022, 73, 817–830. [Google Scholar] [CrossRef]
- Fernandes, G.C.; Rosa, P.A.L.; Jalal, A.; Oliveira, C.E.d.S.; Galindo, F.S.; Viana, R.d.S.; De Carvalho, P.H.G.; da Silva, E.C.; Nogueira, T.A.R.; Al-Askar, A.A.; et al. Technological Quality of Sugarcane Inoculated with Plant-Growth-Promoting Bacteria and Residual Effect of Phosphorus Rates. Plants 2023, 12, 2699. [Google Scholar] [CrossRef] [PubMed]
- Galindo, F.S.; Teixeira Filho, M.C.M.; da Silva, E.C.; Buzetti, S.; Fernandes, G.C.; Rodrigues, W.L. Technical and economic viability of cowpea co-inoculated with Azospirillum brasilense and Bradyrhizobium spp. and nitrogen doses. Rev. Bras. De Eng. Agrícola E Ambient. 2020, 24, 304–311. [Google Scholar] [CrossRef]
- Galindo, F.S.; Pagliari, P.H.; da Silva, E.C.; Silva, V.M.; Fernandes, G.C.; Rodrigues, W.L.; Céu, E.G.O.; de Lima, B.H.; Jalal, A.; Muraoka, T.; et al. Co-Inoculation with Azospirillum brasilense and Bradyrhizobium sp. Enhances Nitrogen Uptake and Yield in Field-Grown Cowpea and Did Not Change N-Fertilizer Recovery. Plants 2022, 11, 1847. [Google Scholar] [CrossRef]
- Galindo, F.S.; Pagliari, P.H.; da Silva, E.C.; de Lima, B.H.; Fernandes, G.C.; Thiengo, C.C.; Bernardes, J.V.S.; Jalal, A.; Oliveira, C.E.S.; Vilela, L.d.S.; et al. Impact of nitrogen fertilizer sustainability on corn crop yield: The role of beneficial microbial inoculation interactions. BMC Plant Biol. 2024, 24, 268. [Google Scholar] [CrossRef]
- Galindo, F.S.; Thiengo, C.C.; Pagliari, P.H.; Bernardes, J.V.S.; dos Santos, G.D.; Longato, P.A.F.; Vilela, L.d.S.; Filho, M.C.M.T.; Azevedo, R.A.; Gaziola, S.A.; et al. Interactive Effects of Bacterial Consortia and Basal Nitrogen Fertilization on Initial Maize Growth: An Investigation Based on Physiological Parameters and 15N Isotopic Analysis. J. Plant Growth Regul. 2024, 43, 1–17. [Google Scholar] [CrossRef]
- Köppen, W.; Geiger, R. Handbuch Der Klimatologie, 3rd ed.; Gerbruder Borntraeger: Berlin, Germany, 1936. [Google Scholar]
- Lombardi Neto, F.; Drugowich, M. Manual Técnico de Manejo e Conservação de Solo e Água; Pellegrini, A., de Cesare Barbosa, G.M., Eds.; Coordenadoria de Assistência Técnica Integral: Campinas, Brazil, 1994; Volume 2. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA Natural Resources Conservation Service: Washington, DC, USA, 2022.
- CONAMA. Resolução n° 375, de 29 de Agosto de 2006; Conselho Nacional do Meio Ambiente: Brasília, Brazil, 2006. Available online: http://www.mma.gov.br/port/conama/res/res06/res37506.pdf (accessed on 1 October 2025).
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Modos de Análise de Solo, 3rd ed.; Brazilian Agricultural Research Corporation: Brasília, Brazil, 2017. [Google Scholar]
- Raij, B.V.; Andrande, J.C.; Cantarella, H.; Quaggio, J.A. Análise Química Para Avaliação da Fertilidade de Solos Tropicais, 1st ed.; Instituto Agronômico de Campinas: Campinas, Brazil, 2001. [Google Scholar]
- Raij, B.V.; Cantarella, H.; Quaggio, J.A.; Furlani, A.M.C. Recomendações de Adubação e Calagem Para o Estado de São Paulo, 2nd ed.; Instituto Agronômico de Campinas: Campinas, Brazil, 1997. [Google Scholar]
- HO Genética. HO Pirapó IPRO. Produtos, Soja—Variedades. Available online: https://www.hogenetica.com/ (accessed on 3 December 2024).
- NOOA Ciência e Tecnologia Agrícola. Aufix. Available online: https://www.nooabrasil.com.br/aufix (accessed on 24 November 2024).
- Ambrosano, E.J.; Tanaka, R.T.; Mascarenhas, H.A.A.; Raij, B.V.; Quaggio, J.A.; Cantarella, H. Leguminosas e oleaginosas. In Recomendações de Adubação e Calagem Para o Estado de São Paulo; Raij, B.V., Cantarella, H., Quaggio, J.A., Furlani, A.M.C., Eds.; Instituto Agronômico de Campinas: Campinas, Brazil, 1997; pp. 189–191. [Google Scholar]
- Abreu, C.A.; Abreu, M.F.; Andrade, J.C. Determinação de cobre, ferro, manganês, zinco, cádmio, cromo, níquel e chumbo em solos usando a solução de DTPA em pH 7.3. In Análise Química Para Avaliação da Fertilidade de Solos Tropicais; Raij, B.V., Andrande, J.C., Cantarella, H., Quaggio, J.A., Eds.; Instituto Agronômico: Campinas, Brazil, 2001; pp. 240–250. [Google Scholar]
- Abreu, M.F.; Abreu, C.A.; Andrade, J.C. Determinação de boro em água quente, usando aquecimento com micro-onda. In Análise Química Para Avaliação da Fertilidade de Solos Tropicais; Raij, B.V., Andrande, J.C., Cantarella, H., Quaggio, J.A., Eds.; Instituto Agronômico: Campinas, Brazil, 2001; pp. 231–239. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 27 October 2023).
- Cantarella, H.; Quaggio, J.A.; Mattos Júnior, D.; Boaretto, R.M.; Raij, B.V. Recomendações de Adubação e Calagem Para o Estado de São Paulo, 3rd ed.; Instituto Agronômico de Campinas: Campinas, Brazil, 2022. [Google Scholar]
- Cerri, C.E.P.; Cherubin, M.R.; Denny, D.M.T.; Cantarella, H.; Nogueira, L.A.H.; Matsuura, M.I.d.S.F.; Gandini, M.; Stuchi, A.A. Carbon balance in the sugarcane sector—Conference Report. J. Clean. Prod. 2022, 375, 134090. [Google Scholar] [CrossRef]
- Silva, C.A.; Cerri, C.E.P.; Andrade, C.A.D.; Martin-Neto, L.; Bettiol, W. Matéria orgânica do solo: Ciclo, compartimentos e funções. In Entendendo a Matéria Orgânica do Solo em Ambientes Tropical e Subtropical; Bettiol, W., Silva, C.A., Cerri, C.E.P., Martin-Neto, L., Andrade, C.A.D., Eds.; Brazilian Agricultural Research Corporation: Brasília, Brazil, 2023; pp. 17–47. [Google Scholar]
- Crusciol, C.A.C.; Marques, R.R.; Carmeis Filho, A.C.A.; Soratto, R.P.; Costa, C.H.M.; Ferrari Neto, J.; Castro, G.S.A.; Pariz, C.M.; Castilhos, A.M.; Franzluebbers, A.J. Lime and gypsum combination improves crop and forage yields and estimated meat production and revenue in a variable charge tropical soil. Nutr. Cycl. Agroecosyst. 2019, 115, 347–372. [Google Scholar] [CrossRef]
- Von Uexküll, H.R.; Mutert, E. Global extent, development and economic impact of acid soils. Plant Soil 1995, 171, 1–15. [Google Scholar] [CrossRef]
- Bossolani, J.W.; dos Santos, F.L.; Meneghette, H.H.A.; Sanches, I.R.; Moretti, L.G.; Parra, L.F.; Lazarini, E. Soybean in Crop Rotation with Maize and Palisade Grass Intercropping Enhances the Long-term Effects of Surface Liming in No-till System. J. Soil Sci. Plant Nutr. 2021, 21, 119–130. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Chapter 7 Ameliorating Soil Acidity of Tropical Oxisols by Liming for Sustainable Crop Production. Adv. Agron. 2008, 99, 345–399. [Google Scholar] [CrossRef]
- Fageria, N.K.; Nascente, A.S. Management of Soil Acidity of South American Soils for Sustainable Crop Production. Adv. Agron. 2014, 128, 221–275. [Google Scholar] [CrossRef]
- Li, Y.; Cui, S.; Chang, S.X.; Zhang, Q. Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: A global meta-analysis. J. Soils Sediments 2019, 19, 1393–1406. [Google Scholar] [CrossRef]
- Kchaou, R.; Baccar, R.; Bouzid, J.; Rejeb, S. Agricultural use of sewage sludge under sub-humid Mediterranean conditions: Effect on growth, yield, and metal content of a forage plant. Arab. J. Geosci. 2018, 11, 746. [Google Scholar] [CrossRef]
- Zuo, W.; Gu, C.; Zhang, W.; Xu, K.; Wang, Y.; Bai, Y.; Shan, Y.; Dai, Q. Sewage sludge amendment improved soil properties and sweet sorghum yield and quality in a newly reclaimed mudflat land. Sci. Total Environ. 2019, 654, 541–549. [Google Scholar] [CrossRef]
- da Silva, W.R.; Nascimento, C.W.A.D.; da Silva, F.B.V.; de Souza, A.A.B.; Fracetto, G.G.M.; Ximenes, D.H.d.S.V. Effects of Sewage Sludge Stabilization Processes on Soil Fertility, Mineral Composition, and Grain Yield of Maize in Successive Cropping. J. Soil Sci. Plant Nutr. 2021, 21, 1076–1088. [Google Scholar] [CrossRef]
- Rufini, M.; Ferreira, P.A.A.; Soares, B.L.; Oliveira, D.P.; de Andrade, M.J.B.; Moreira, F.M.d.S. Simbiose de bactérias fixadoras de nitrogênio com feijoeiro-comum em diferentes valores de pH. Pesqui. Agropecuária Bras. 2011, 46, 81–88. [Google Scholar] [CrossRef]
- Fukami, J.; Cerezini, P.; Hungria, M. Azospirillum: Benefits that go far beyond biological nitrogen fixation. AMB Express 2018, 8, 73. [Google Scholar] [CrossRef]
- D’Angioli, A.M.; Viani, R.A.G.; Lambers, H.; Sawaya, A.C.H.F.; Oliveira, R.S. Inoculation with Azospirillum brasilense (Ab-V4, Ab-V5) increases Zea mays root carboxylate-exudation rates, dependent on soil phosphorus supply. Plant Soil 2017, 410, 499–507. [Google Scholar] [CrossRef]
- de la Luz Mora, M.; Demanet, R.; Acuña, J.J.; Viscardi, S.; Jorquera, M.; Rengel, Z.; Durán, P. Aluminum-tolerant bacteria improve the plant growth and phosphorus content in ryegrass grown in a volcanic soil amended with cattle dung manure. Appl. Soil Ecol. 2017, 115, 19–26. [Google Scholar] [CrossRef]
- Baldotto, M.A.; Baldotto, L.E.B. Ácidos húmicos. Rev. Ceres 2014, 61, 856–881. [Google Scholar] [CrossRef]
- Galindo, F.S. Inoculation with Azospirillum brasilense Associated with Silicon Applied to Correct Soil Acidity and Nitrogen Rates in Corn and Wheat Crops. Ph.D. Thesis, Universidade Estadual Paulista, São Vicente, Brazil, 2020. [Google Scholar]
- Chrispim, M.C.; Souza, F.d.M.d.; Scholz, M.; Nolasco, M.A. A Framework for Sustainable Planning and Decision-Making on Resource Recovery from Wastewater: Showcase for São Paulo Megacity. Water 2020, 12, 3466. [Google Scholar] [CrossRef]
- Curci, M.; Lavecchia, A.; Cucci, G.; Lacolla, G.; De Corato, U.; Crecchio, C. Short-Term Effects of Sewage Sludge Compost Amendment on Semiarid Soil. Soil Syst. 2020, 4, 48. [Google Scholar] [CrossRef]
- Junio, G.R.Z.; Sampaio, R.A.; Nascimento, A.L.; Santos, G.B.; Santos, L.D.T.; Fernandes, L.A. Produtividade de milho adubado com composto de lodo de esgoto e fosfato natural de Gafsa. Rev. Bras. Eng. Agrícola Ambient. 2013, 17, 706–712. [Google Scholar] [CrossRef]
- Sharma, B.; Sarkar, A.; Singh, P.; Singh, R.P. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Manag. 2017, 64, 117–132. [Google Scholar] [CrossRef]
- Ceccon, G. Milho Safrinha no Cerrado Brasileiro. Rev. Plantio Direto E Tecnol. Agrícola 2018, 5–8. Available online: https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/1092717/1/RevistaPlantiodireto2.pdf (accessed on 9 October 2024).
- Moretti, S.M.L.; Bertoncini, E.I.; Vitti, A.C.; Alleoni, L.R.F.; Abreu-Junior, C.H. Concentration of Cu, Zn, Cr, Ni, Cd, and Pb in soil, sugarcane leaf and juice: Residual effect of sewage sludge and organic compost application. Environ. Monit. Assess. 2016, 188, 163. [Google Scholar] [CrossRef]
- Shahid, M.; Shukla, A.K.; Bhattacharyya, P.; Tripathi, R.; Mohanty, S.; Kumar, A.; Lal, B.; Gautam, P.; Raja, R.; Panda, B.B.; et al. Micronutrients (Fe, Mn, Zn and Cu) balance under long-term application of fertilizer and manure in a tropical rice-rice system. J. Soils Sediments 2016, 16, 737–747. [Google Scholar] [CrossRef]
- Jakubus, M.; Graczyk, M. Microelement Variability in Plants as an Effect of Sewage Sludge Compost Application Assessed by Different Statistical Methods. Agronomy 2020, 10, 642. [Google Scholar] [CrossRef]
- Elsalam, H.E.A.; El- Sharnouby, M.E.; Mohamed, A.E.; Raafat, B.M.; El-Gamal, E.H. Effect of Sewage Sludge Compost Usage on Corn and Faba Bean Growth, Carbon and Nitrogen Forms in Plants and Soil. Agronomy 2021, 11, 628. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, T.; Liao, Y.; Reid, B.J.; Chi, H.; Hou, Y.; Cai, C. Modest amendment of sewage sludge biochar to reduce the accumulation of cadmium into rice (Oryza sativa L.): A field study. Environ. Pollut. 2016, 216, 819–825. [Google Scholar] [CrossRef]
- Rehman, R.A.; Qayyum, M.F. Co-composts of sewage sludge, farm manure and rock phosphate can substitute phosphorus fertilizers in rice-wheat cropping system. J. Environ. Manag. 2020, 259, 109700. [Google Scholar] [CrossRef] [PubMed]
- Prando, A.M.; Oliveira, A.B.D.; Lima, D.D.; Possamai, E.J.; Reis, E.A.; Nogueira, M.A.; Hungria, M.; Carnevalli, R.A. Coinoculação da soja com Bradyrhizobium e Azospirillum na safra 2021/2022 no Paraná; Circular Técnica 190; Brazilian Agricultural Research Corporation: Brasília, Brazil, 2022; Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/doc/1150565/1/Circ-Tec-190.pdf (accessed on 16 October 2024).
- Galindo, F.S.; Teixeira Filho, M.C.M.; Buzetti, S.; Ludkiewicz, M.G.Z.; Rosa, P.A.L.; Tritapepe, C.A. Technical and economic viability of co-inoculation with Azospirillum brasilense in soybean cultivars in the Cerrado. Rev. Bras. Eng. Agrícola Ambient. 2018, 22, 51–56. [Google Scholar] [CrossRef]
- Oliveira, L.B.G.; Teixeira Filho, M.C.M.; Galindo, F.S.; Nogueira, T.A.R.; Barco Neto, M.; Buzetti, S. Formas e tipos de coinoculação na cultura da soja no Cerrado. Rev. Ciências Agrárias 2019, 42, 924–932. [Google Scholar] [CrossRef]
- Hungria, M.; Nogueira, M.A.; Araujo, R.S. Co-inoculation of soybeans and common beans with rhizobia and azospirilla: Strategies to improve sustainability. Biol. Fertil. Soils 2013, 49, 791–801. [Google Scholar] [CrossRef]
- Galindo, F.S.; Teixeira Filho, M.C.M.; Buzetti, S.; Santini, J.M.K.; Alves, C.J.; Ludkiewicz, M.G.Z. Wheat yield in the Cerrado as affected by nitrogen fertilization and inoculation with Azospirillum brasilense. Pesqui. Agropecuária Bras. 2017, 52, 794–805. [Google Scholar] [CrossRef]
- Balkrishna, A.; Kaushik, P.; Singh, S.; Agrahari, P.; Kumar, B.; Kumar, P.; Arya, V.P. Potential use of sewage sludge as fertilizer in organic farming. Clean. Waste Syst. 2025, 10, 100245. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Oktriono, K.; Wibisono, Y. Advancing Global Food Security through Waste-to-Fertilizer Technology: Enhancing Nutrient Recovery for Fertilizer Production. FFTC J. Agric. Policy 2025, 1–13. Available online: https://ap.fftc.org.tw/article/3731#:~:text=By%20diverting%20waste%20from%20landfills,responsible%20use%20of%20natural%20resources (accessed on 28 September 2025).
- Biala, J. The Benefits of Using Compost for Mitigating Climate Change; Department of Environment, Climate Change and Water NSW: Parramatta, Australia, 2011. [CrossRef]
- Miao, C.; Zeller, V. Nutrient circularity from waste to fertilizer: A perspective from LCA studies. Sci. Total Environ. 2025, 965, 178623. [Google Scholar] [CrossRef]
- Elwin, P. Growing Fertiliser Risk: Food Company Disclosures are Lagging Behind. Planet Tracker. Available online: https://planet-tracker.org/ (accessed on 29 September 2025).










| Characteristics | Unit | 2017/18 | 2018/19 | 2021/22 | Allowed Value (1) |
|---|---|---|---|---|---|
| Chemical | Dry basis | ||||
| pH (CaCl2) | - (3) | 7.0 ± 0.1 | 7.3 ± 0.1 | 8.0 ± 0.4 | -- (2) |
| Moisture (60–65 °C) | % | 41.0 ± 0.3 | 34.4 ± 0.5 | 36.7 ± 0.1 | -- |
| Total Moisture | % | 45.5 ± 0.2 | 35.8 ± 0.6 | 38.2 ± 0.1 | -- |
| Total Organic Matter | g kg−1 | 308.7 ± 10.0 | 255.0 ± 7.4 | 200.0 ± 26.8 | -- |
| CEC | mmolc kg−1 | 520.0 ± 20.0 | -- | 263.3 ± 81.4 | -- |
| C/N | - | 12.0 ± 0.8 | 9.0 ± 0.6 | 11.00 ± 3.5 | -- |
| N Total | g kg−1 | 13.9 ± 0.2 | 15.3 ± 1.5 | 10.7 ± 3.0 | -- |
| P Total | g kg−1 | 12.3 ± 1.4 | 14.1 ± 0.00 | 16.5 ± 4.5 | -- |
| S Total | g kg−1 | 4.8 ± 0.3 | 8.4 ± 1.4 | 7.3 ± 0.9 | -- |
| Na | mg kg−1 | 3930 ± 32.0 | 3915 ± 41.2 | -- | -- |
| K | g kg−1 | 6.0 ± 2.2 | 8.2 ± 0.4 | 4.7 ± 2.8 | -- |
| Ca | g kg−1 | 19.4 ± 4.4 | 31.1 ± 1.1 | 41.7 ± 17.4 | -- |
| Mg | g kg−1 | 5.2 ± 0.5 | 9.9 ± 0.2 | 11.3 ± 2.2 | -- |
| As | mg kg−1 | 3.2 ± 1.8 | -- | 3.3 ± 1.1 | 20.0 |
| B | mg kg−1 | 94.0 ± 4.5 | 94.0 ± 4.6 | -- | -- |
| Cd | mg kg−1 | 1.00 ± 0.1 | -- | 1.0 ± 0.4 | 3.0 |
| Cu | mg kg−1 | 237.0 ± 16.5 | 191.2 ± 5.8 | 246.3 ± 69.0 | -- |
| Pb | mg kg−1 | 18.1 ± 1.6 | -- | 17.6 ± 0.7 | 150.0 |
| Cr | mg kg−1 | 54.3 ± 1.8 | -- | 64.4 ± 1.0 | -- |
| Fe | mg kg−1 | 16,400 ± 1300 | 14,708 ± 249 | 12,405 ± 522 | -- |
| Mn | mg kg−1 | 246 ± 37.0 | 310.0 ± 15.0 | 591.0 ± 89.1 | -- |
| Hg | mg kg−1 | 0.2 ± 0.1 | -- | 0.1 ± 0.1 | 1.0 |
| Mo | mg kg−1 | 5.2 ± 0.2 | -- | 6.6 ± 2.4 | -- |
| Ni | mg kg−1 | 26.5 ± 0.5 | -- | 23.3 ± 4.6 | 70.0 |
| Zn | mg kg−1 | 456.0 ± 8.0 | 684.0 ± 7.2 | 1083.0 ± 339.5 | -- |
| Microbiological | |||||
| Salmonella sp. | NMP/10 g | Absent | Absent in 10 g of DM | ||
| Thermotolerant coliforms | NMP/g | 0 | 1000.0 | ||
| Viable helminth eggs | Eggs/g of ST | 0.12 | 1.0 | ||
| Attribute | Unit | Soil Layer | |
|---|---|---|---|
| 0.0–0.2 m | 0.2–0.4 m | ||
| pH (CaCl2) | - (3) | 4.5 ± 0.1 | 4.7 ± 0.1 |
| Organic matter | g kg−1 | 19 ± 1.2 | 14 ± 0.6 |
| P | mg kg−1 | 16 ± 0.6 | 9 ± 0.00 |
| K | mmolc kg−1 | 1.7 ± 0.2 | 0.7 ± 0.2 |
| Ca | mmolc kg−1 | 13 ± 0.6 | 11 ± 0.6 |
| Mg | mmolc kg−1 | 12 ± 1.0 | 10 ± 0.0 |
| Aluminum | mmolc kg−1 | 4 ± 0.0 | 2 ± 0.6 |
| H + Al | mmolc kg−1 | 37 ± 2.3 | 32 ± 1.7 |
| SB | mmolc kg−1 | 27.0 ± 1.7 | 22.1 ± 0.7 |
| S-SO4 | mg kg−1 | 15 ± 0.6 | 8 ± 0.6 |
| CEC | mmolc kg−1 | 63.7 ± 0.8 | 54.1 ± 2.4 |
| BS | % | 42 ± 3.2 | 41 ± 0.6 |
| m | % | 13 ± 1.0 | 9 ± 2.3 |
| B | mg kg−1 | 0.2 ± 0.1 | 1.4 ± 0.1 |
| Cu (DTPA) | mg kg−1 | 1.8 ± 0.1 | 7.7 ± 0.1 |
| Fe (DTPA) | mg kg−1 | 15.0 ± 0.6 | 8.0 ± 0.6 |
| Mn (DTPA) | mg kg−1 | 18.8 ± 0.1 | 7.3 ± 0.7 |
| Zn (DTPA) | mg kg−1 | 0.6 ± 0.1 | 0.2 ± 0.0 |
| Particle size distribution | 0–0.4 m | ||
| Sand (>0.05 mm) | g kg−1 | 553 ± 12.86 | |
| Silt (>0.002 e <0.05 mm) | g kg−1 | 81 ± 3.21 | |
| Clay (<0.002 mm) | g kg−1 | 372 ± 19.05 | |
| Texture | - | Clayey | |
| Treatments | OM | pH CaCl2 | H + Al | SB | CEC | BS |
|---|---|---|---|---|---|---|
| ___ g kg−1 ___ | _______________ mmolc kg−1 _______________ | % | ||||
| 0.0–0.2 m | ||||||
| Mineral fertilization | 18.00 | 4.70 | 22.25 | 26.37 ▲ | 48.62 ▲ | 54.00 |
| CSS rates (Mg ha−1) (1) | ||||||
| 0.0 | 18.12 | 5.18 | 17.25 | 31.10 ▲ | 48.35 ▲ | 64.25 |
| 15.0 | 18.62 | 5.34 | 16.87 | 33.01 ▲ | 49.89 ▲ | 66.12 |
| 22.5 | 18.87 | 5.30 | 16.50 | 33.42 ▲ | 49.92 ▲ | 66.62 |
| 30.0 | 19.50 | 5.42 | 15.50 | 39.74 ● | 55.24 ▲ | 71.62 |
| 37.5 | 19.00 | 5.60 | 15.00 | 42.45 ● | 57.45 ● | 73.37 |
| Co inoculation | ||||||
| With A. brasilense (2) | 18.95 | 5.35 | 16.50 | 35.47 | 51.97 | 67.90 |
| Without A. brasilense | 18.70 | 5.38 | 15.95 | 36.41 | 52.36 | 68.90 |
| F Test | ||||||
| CSS rates (R) | 1.76 NS | 6.98 ** | 2.64 NS | 6.30 ** | 5.46 ** | 5.45 ** |
| Co inoculation (C) | 0.54 NS | 0.24 NS | 1.12 NS | 0.29 NS | 0.07 NS | 0.45 NS |
| R x C | 0.16 NS | 1.83 NS | 1.39 NS | 0.83 NS | 0.78 NS | 0.57 NS |
| CV (%) | 5.74 | 3.02 | 9.81 | 15.67 | 9.20 | 7.04 |
| 0.2–0.4 m | ||||||
| Mineral fertilization | 17.00 | 4.70 | 23.00 | 22.17 ▲ | 45.17 | 49.25 |
| CSS rates (Mg ha−1) | ||||||
| 0.0 | 16.12 | 5.01 | 18.12 | 25.46 ▲ | 43.59 | 58.25 |
| 15.0 | 17.00 | 5.11 | 18.25 | 26.90 ▲ | 45.15 | 59.62 |
| 22.5 | 16.87 | 5.21 | 17.12 | 28.12 ▲ | 45.25 | 62.12 |
| 30.0 | 16.87 | 5.15 | 17.12 | 29.06 ▲ | 46.19 | 62.75 |
| 37.5 | 17.37 | 5.39 | 16.62 | 33.79 ● | 50.41 | 66.25 |
| Co inoculation | ||||||
| With A. brasilense | 17.05 | 5.12 | 17.80 | 28.03 | 45.83 | 60.75 |
| Without A. brasilense | 16.65 | 5.22 | 17.10 | 29.30 | 46.40 | 62.85 |
| F Test | ||||||
| CSS rates (R) | 2.21 NS | 4.23 ** | 0.97 NS | 3.83 * | 3.04 * | 2.64 NS |
| Co inoculation (C) | 2.14 NS | 2.73 NS | 1.20 NS | 0.77 NS | 0.18 NS | 1.52 NS |
| R x C | 1.47 NS | 1.54 NS | 1.77 NS | 0.40 NS | 0.08 NS | 0.93 NS |
| CV (%) | 5.12 | 3.73 | 11.28 | 16.28 | 9.08 | 8.87 |
| Treatments | K | Ca | Mg | P | S |
|---|---|---|---|---|---|
| _____________________ mmolc kg−1 _______________________ | ____________ mg kg−1 ____________ | ||||
| 0.0–0.2 m | |||||
| Mineral fertilization | 1.62 | 14.75 ▲ | 10.00 ▲ | 24.75 ▲ | 8.25 |
| CSS rates (Mg ha−1) (1) | |||||
| 0.0 | 1.22 | 18.12 ▲ | 11.75▲ | 5.50 ● | 8.25 |
| 15.0 | 1.39 | 18.00 ▲ | 13.62 ● | 11.87 ● | 9.12 |
| 22.5 | 1.67 | 17.87 ▲ | 13.87 ● | 12.25 ● | 8.50 |
| 30.0 | 1.49 | 21.87 ● | 16.37 ● | 14.87 ● | 8.50 |
| 37.5 | 1.45 | 23.75 ● | 17.25 ● | 19.75 ▲ | 9.37 |
| Co inoculation | |||||
| With A. brasilense (2) | 1.52 | 19.50 | 14.45 | 12.10 | 8.75 |
| Without A. brasilense | 1.36 | 20.35 | 14.70 | 13.60 | 8.75 |
| F Test | |||||
| CSS rates (R) | 1.15 NS | 6.00 ** | 6.63 ** | 10.83 ** | 2.45 NS |
| Co inoculation (C) | 1.38 NS | 0.73 NS | 0.10 NS | 1.14 NS | 0.00 NS |
| R x C | 0.33 NS | 0.98 NS | 0.70 NS | 2.19 NS | 0.42 NS |
| CV (%) | 29.43 | 16.14 | 17.25 | 31.91 | 9.89 |
| Interpretation limit (3) | |||||
| Very low | -- (4) | -- (4) | -- (4) | <7.0 | -- (4) |
| Low | <1.6 | <4.0 | <5.0 | 7.0–15.0 | <5.0 |
| Medium | 1.6–3.0 | 4.0–7.0 | 5.0–8.0 | 16.0–40.0 | 5.0–10.0 |
| High | 3.1–6.0 | >7.0 | >8.0 | >41.0–80.0 | >10.0 |
| Very high | >6.0 | -- (4) | -- (4) | >80.0 | -- (4) |
| 0.2–0.4 m | |||||
| Mineral fertilization | 1.42 | 12.75 ▲ | 8.00 ▲ | 15.25 ▲ | 9.25 |
| CSS rates (Mg ha−1) | |||||
| 0.0 | 1.08 | 14.50 ▲ | 9.87 ▲ | 4.50 ● | 7.62 |
| 15.0 | 1.15 | 14.50 ▲ | 11.25 ● | 9.12 ● | 9.25 |
| 22.5 | 1.26 | 15.00 ▲ | 11.50 ● | 8.62 ● | 8.75 |
| 30.0 | 1.31 | 15.37 ▲ | 12.37 ● | 10.25 ● | 9.25 |
| 37.5 | 1.29 | 19.75 ● | 12.75 ● | 15.75 ▲ | 9.87 |
| Co inoculation | |||||
| With A. brasilense | 1.24 | 15.40 | 11.25 | 9.35 | 8.80 |
| Without A. brasilense | 1.20 | 16.25 | 11.85 | 9.95 | 9.10 |
| F Test | |||||
| CSS rates (R) | 0.70 NS | 4.79 ** | 2.79 * | 17.70 ** | 5.59 ** |
| Co inoculation (C) | 0.15 NS | 0.87 NS | 1.00 NS | 0.49 NS | 0.89 NS |
| R x C | 0.40 NS | 0.25 NS | 0.60 NS | 2.29 NS | 2.68 NS |
| CV (%) | 26.29 | 18.48 | 16.89 | 26.76 | 11.20 |
| Treatments | B | Cu | Fe | Mn | Zn |
|---|---|---|---|---|---|
| mg kg−1 | |||||
| 0.0–0.2 m | |||||
| Mineral fertilization | 0.31 | 1.77 ▲ | 21.75 | 18.70 ▲ | 2.32 ▲ |
| CSS rates (Mg ha−1) (1) | |||||
| 0.0 | 0.22 | 1.70 ▲ | 18.25 | 18.67 ▲ | 0.91 ● |
| 15.0 | 0.22 | 2.04 ▲ | 19.75 | 16.59 ▲ | 2.80 ▲ |
| 22.5 | 0.26 | 2.02 ▲ | 19.87 | 15.81 ▲ | 2.91 ▲ |
| 30.0 | 0.32 | 2.20 ● | 18.75 | 14.58 ● | 3.72 ● |
| 37.5 | 0.26 | 2.24 ● | 17.75 | 13.75 ● | 4.21 ● |
| Co inoculation | |||||
| With A. brasilense (2) | 0.25 | 1.98 | 18.65 | 15.73 | 2.68 |
| Without A. brasilense | 0.26 | 2.10 | 19.10 | 16.01 | 3.14 |
| F Test | |||||
| CSS rates (R) | 2.26 NS | 4.66 ** | 0.74 NS | 6.85 ** | 13.58 ** |
| Co inoculation (C) | 0.15 NS | 1.86 NS | 0.22 NS | 0.18 NS | 2.31 NS |
| R x C | 1.16 NS | 0.93 NS | 1.19 NS | 2.35 NS | 1.02 NS |
| CV (%) | 28.33 | 13.80 | 15.97 | 12.83 | 33.86 |
| Interpretation limit (3) | |||||
| Low | 0–0.20 | 0–0.2 | 0–4.0 | 0–1.2 | 0–0.5 |
| Medium | 0.21–0.60 | 0.3–0.8 | 5.0–12.0 | 1.3–5.0 | 0.6–1.2 |
| High | >0.60 | >0.8 | >12.0 | >5.0 | >1.2 |
| 0.2–0.4 m | |||||
| Mineral fertilization | 0.27 | 1.62 ▲ | 17.50 | 15.62 | 1.45 ▲ |
| CSS rates (Mg ha−1) | |||||
| 0.0 | 0.22 | 1.71 ▲ | 15.00 | 15.12 | 0.55 ▲ |
| 15.0 | 0.24 | 1.81 ▲ | 16.50 | 14.02 | 1.37 ▲ |
| 22.5 | 0.26 | 1.66 ▲ | 15.87 | 11.66 | 1.50 ▲ |
| 30.0 | 0.30 | 1.82 ▲ | 15.00 | 12.10 | 1.66 ▲ |
| 37.5 | 0.29 | 1.97 ● | 16.00 | 12.49 | 2.70 ● |
| Co inoculation | |||||
| With A. brasilense | 0.24 | 1.79 | 16.25 | 13.55 | 1.45 |
| Without A. brasilense | 0.28 | 1.80 | 15.10 | 12.61 | 1.66 |
| F Test | |||||
| CSS rates (R) | 1.13 NS | 3.36 * | 0.73 NS | 2.86 * | 22.82 ** |
| Co inoculation (C) | 2.15 NS | 0.01 NS | 2.76 NS | 1.50 NS | 2.23 NS |
| R x C | 0.25 NS | 0.21 NS | 2.21 NS | 1.02 NS | 0.33 NS |
| CV (%) | 34.30 | 10.43 | 13.81 | 18.20 | 29.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, R.S.; Silva, L.C.; Silva, P.S.T.; Fabrino, F.M.; Marques, P.P.; Arf, O.; Moreira, A.; Galindo, F.S.; Teixeira Filho, M.C.M.; Jani, A.D.; et al. Regenerative Farming with Organic Fertilizer and Biologics: A New Approach to Enhancing Soybean Yield and Soil Chemical Quality. Agriculture 2025, 15, 2388. https://doi.org/10.3390/agriculture15222388
Alves RS, Silva LC, Silva PST, Fabrino FM, Marques PP, Arf O, Moreira A, Galindo FS, Teixeira Filho MCM, Jani AD, et al. Regenerative Farming with Organic Fertilizer and Biologics: A New Approach to Enhancing Soybean Yield and Soil Chemical Quality. Agriculture. 2025; 15(22):2388. https://doi.org/10.3390/agriculture15222388
Chicago/Turabian StyleAlves, Rodrigo Silva, Luana Corrêa Silva, Philippe Solano Toledo Silva, Franco Monici Fabrino, Paulo Paschoalotto Marques, Orivaldo Arf, Adônis Moreira, Fernando Shintate Galindo, Marcelo Carvalho Minhoto Teixeira Filho, Arun Dilipkumar Jani, and et al. 2025. "Regenerative Farming with Organic Fertilizer and Biologics: A New Approach to Enhancing Soybean Yield and Soil Chemical Quality" Agriculture 15, no. 22: 2388. https://doi.org/10.3390/agriculture15222388
APA StyleAlves, R. S., Silva, L. C., Silva, P. S. T., Fabrino, F. M., Marques, P. P., Arf, O., Moreira, A., Galindo, F. S., Teixeira Filho, M. C. M., Jani, A. D., Capra, G. F., Rabêlo, F. H. S., Guelfi, D., & Nogueira, T. A. R. (2025). Regenerative Farming with Organic Fertilizer and Biologics: A New Approach to Enhancing Soybean Yield and Soil Chemical Quality. Agriculture, 15(22), 2388. https://doi.org/10.3390/agriculture15222388

