Standardized Metrics in Regenerative Agriculture for Climate Change Adaptation and Mitigation
Abstract
1. Introduction
2. Materials and Methods
2.1. Context Analysis
2.2. Content Analysis
3. Results
3.1. Dual Role of Agriculture in Climate Change
3.2. Metrics for Regenerative Agriculture
3.3. Socio-Economic Indicators in Regenerative Agriculture
3.4. Monitoring, Reporting, Verification Framework in Regenerative Agriculture
3.5. Current Issues, Gaps, Challenges, Opportunities and Innovations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Grigorieva, E.; Livenets, A.; Stelmakh, E. Adaptation of Agriculture to Climate Change: A Scoping Review. Climate 2023, 11, 202. [Google Scholar] [CrossRef]
- Schreefel, L.; Creamer, R.E.; van Zanten, H.H.E.; de Olde, E.M.; Koppelmäki, K.; Debernardini, M.; de Boer, I.J.M.; Schulte, R.P.O. How to Monitor the ‘Success’ of Agricultural Sustainability: A Perspective. Glob. Food Secur. 2024, 43, 100810. [Google Scholar] [CrossRef]
- Lillemets, J.; Fertő, I.; Viira, A.-H. The Socioeconomic Impacts of the CAP: Systematic Literature Review. Land Use Policy 2022, 114, 105968. [Google Scholar] [CrossRef]
- Jayasinghe, S.L.; Thomas, D.T.; Anderson, J.P.; Chen, C.; Macdonald, B.C.T. Global Application of Regenerative Agriculture: A Review of Definitions and Assessment Approaches. Sustainability 2023, 15, 15941. [Google Scholar] [CrossRef]
- Fenster, T.L.D.; LaCanne, C.E.; Pecenka, J.R.; Schmid, R.B.; Bredeson, M.M.; Busenitz, K.M.; Michels, A.M.; Welch, K.D.; Lundgren, J.G. Defining and Validating Regenerative Farm Systems Using a Composite of Ranked Agricultural Practices. F1000Research 2021, 10, 115. [Google Scholar] [CrossRef]
- Prairie, A.M.; King, A.E.; Cotrufo, M.F. Restoring Particulate and Mineral-Associated Organic Carbon through Regenerative Agriculture. Proc. Natl. Acad. Sci. USA 2023, 120, e2217481120. [Google Scholar] [CrossRef]
- Jian, J.; Du, X.; Reiter, M.S.; Stewart, R.D. A Meta-Analysis of Global Cropland Soil Carbon Changes Due to Cover Cropping. Soil Biol. Biochem. 2020, 143, 107735. [Google Scholar] [CrossRef]
- EU CAP Network Focus Group ‘Regenerative Agriculture for Soil Health’|EU CAP Network. Available online: https://eu-cap-network.ec.europa.eu/publications/eu-cap-network-focus-group-regenerative-agriculture-soil-health_en (accessed on 11 October 2025).
- Berthon, K.; Wade, R.; Chapman, P.; Jaworski, C.C.; Leake, J.R.; McHugh, N.; Collins, L.; Daniell, T.; Zhao, Y.; Watt, P.; et al. Measuring the Socio-Economic and Environmental Outcomes of Regenerative Agriculture across Spatio-Temporal Scales. Philos. Trans. R. Soc. B Biol. Sci. 2025, 380, 20240157. [Google Scholar] [CrossRef]
- O’Donoghue, T.; Minasny, B.; McBratney, A. Regenerative Agriculture and Its Potential to Improve Farmscape Function. Sustainability 2022, 14, 5815. [Google Scholar] [CrossRef]
- Newton, P.; Civita, N.; Frankel-Goldwater, L.; Bartel, K.; Johns, C. What Is Regenerative Agriculture? A Review of Scholar and Practitioner Definitions Based on Processes and Outcomes. Front. Sustain. Food Syst. 2020, 4, 577723. [Google Scholar] [CrossRef]
- Schreefel, L.; Schulte, R.P.O.; de Boer, I.J.M.; Schrijver, A.P.; van Zanten, H.H.E. Regenerative Agriculture—The Soil Is the Base. Glob. Food Secur. 2020, 26, 100404. [Google Scholar] [CrossRef]
- Tittonell, P.; El Mujtar, V.; Felix, G.; Kebede, Y.; Laborda, L.; Luján Soto, R.; de Vente, J. Regenerative Agriculture—Agroecology without Politics? Front. Sustain. Food Syst. 2022, 6, 844261. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Arrouays, D.; Chabbi, A.; Field, D.J.; Kopittke, P.M.; Morgan, C.L.S.; Padarian, J.; Rumpel, C. Soil Carbon Sequestration: Much More Than a Climate Solution. Environ. Sci. Technol. 2023, 57, 19094–19098. [Google Scholar] [CrossRef]
- Frank, S.; Lessa Derci Augustynczik, A.; Havlík, P.; Boere, E.; Ermolieva, T.; Fricko, O.; Di Fulvio, F.; Gusti, M.; Krisztin, T.; Lauri, P.; et al. Enhanced Agricultural Carbon Sinks Provide Benefits for Farmers and the Climate. Nat. Food 2024, 5, 742–753. [Google Scholar] [CrossRef]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural Climate Solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef]
- Dynarski, K.A.; Bossio, D.A.; Scow, K.M. Dynamic Stability of Soil Carbon: Reassessing the “Permanence” of Soil Carbon Sequestration. Front. Environ. Sci. 2020, 8, 514701. [Google Scholar] [CrossRef]
- Colombi, G.; Martani, E.; Fornara, D. Regenerative Organic Agriculture and Soil Ecosystem Service Delivery: A Literature Review. Ecosyst. Serv. 2025, 73, 101721. [Google Scholar] [CrossRef]
- Khangura, R.; Ferris, D.; Wagg, C.; Bowyer, J. Regenerative Agriculture—A Literature Review on the Practices and Mechanisms Used to Improve Soil Health. Sustainability 2023, 15, 2338. [Google Scholar] [CrossRef]
- Schulte, L.A.; Dale, B.E.; Bozzetto, S.; Liebman, M.; Souza, G.M.; Haddad, N.; Richard, T.L.; Basso, B.; Brown, R.C.; Hilbert, J.A.; et al. Meeting Global Challenges with Regenerative Agriculture Producing Food and Energy. Nat. Sustain. 2022, 5, 384–388. [Google Scholar] [CrossRef]
- Jones, M.O.; Figueiredo, G.; Howson, S.; Toro, A.; Rundquist, S.; Garner, G.; Della Nave, F.; Delgado, G.; Yi, Z.-F.; Ahn, P.; et al. Monitoring and Mapping a Decade of Regenerative Agricultural Practices Across the Contiguous United States. Land 2024, 13, 2246. [Google Scholar] [CrossRef]
- Ecklu, J.; Thomas, E. Digital Monitoring, Reporting, and Verification Technologies Supporting Carbon Credit-Generating Water Security Programs: State of the Art and Technology Roadmap. Environ. Sci. Technol. Lett. 2025, 12, 251–260. [Google Scholar] [CrossRef]
- Jumaat, N.F.H.; Ahmad, B.; Dutsenwai, H.S. Land Cover Change Mapping Using High Resolution Satellites and Unmanned Aerial Vehicle. IOP Conf. Ser. Earth Environ. Sci. 2018, 169, 012076. [Google Scholar] [CrossRef]
- PRISMA Statement. Available online: https://www.prisma-statement.org (accessed on 11 October 2025).
- Climate Change—European Commission. Available online: https://agriculture.ec.europa.eu/cap-my-country/sustainability/environmental-sustainability/climate-change_en (accessed on 27 August 2025).
- Pawłowski, L.; Pawłowska, M.; Kwiatkowski, C.A.; Harasim, E. The Role of Agriculture in Climate Change Mitigation—A Polish Example. Energies 2021, 14, 3657. [Google Scholar] [CrossRef]
- Hodge, I.; Hauck, J.; Bonn, A. The alignment of agricultural and nature conservation policies in the European Union. Conserv. Biol. 2015, 29, 996–1005. [Google Scholar] [CrossRef] [PubMed]
- Pe’er, G.; Bonn, A.; Bruelheide, H.; Dieker, P.; Eisenhauer, N.; Feindt, P.H.; Hagedorn, G.; Hansjürgens, B.; Herzon, I.; Lomba, Â.; et al. Action Needed for the EU Common Agricultural Policy to Address Sustainability Challenges. People Nat. 2020, 2, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Regenerative Agriculture for Food and Climate. J. Soil Water Conserv. 2020, 75, 123A–124A. [Google Scholar] [CrossRef]
- Sher, A.; Li, H.; Ullah, A.; Hamid, Y.; Nasir, B.; Zhang, J. Importance of Regenerative Agriculture: Climate, Soil Health, Biodiversity and Its Socioecological Impact. Discov. Sustain. 2024, 5, 462. [Google Scholar] [CrossRef]
- Yunibandhu, R.; Hallinger, P. From Sustainability to Regeneration: Mapping the Conceptual Foundations and Future Directions of Regenerative Development. Sustain. Dev. 2025, 1–17. [Google Scholar] [CrossRef]
- Das, S.; Beegum, S.; Acharya, B.S.; Panday, D. Soil Carbon Sequestration: A Mechanistic Perspective on Limitations and Future Possibilities. Sustainability 2025, 17, 6015. [Google Scholar] [CrossRef]
- Okoli, A.O.; Birkenberg, A. Monitoring Soil Carbon in Smallholder Carbon Projects: Insights from Kenya. Clim. Change 2024, 177, 143. [Google Scholar] [CrossRef]
- Smith, P.; Soussana, J.-F.; Angers, D.; Schipper, L.; Chenu, C.; Rasse, D.P.; Batjes, N.H.; van Egmond, F.; McNeill, S.; Kuhnert, M.; et al. How to Measure, Report and Verify Soil Carbon Change to Realize the Potential of Soil Carbon Sequestration for Atmospheric Greenhouse Gas Removal. Glob. Change Biol. 2020, 26, 219–241. [Google Scholar] [CrossRef] [PubMed]
- Billah, M.M.; Rahman, M.M.; Mahimairaja, S.; Lal, A.; Srinivasulu, A.; Naidu, R. Constraints and Prospects of Adoption of Climate Smart Agriculture Interventions: Implication for Farm Sustainability. Clim. Smart Agric. 2025, 2, 100066. [Google Scholar] [CrossRef]
- Francaviglia, R.; Almagro, M.; Vicente-Vicente, J.L. Conservation Agriculture and Soil Organic Carbon: Principles, Processes, Practices and Policy Options. Soil Syst. 2023, 7, 17. [Google Scholar] [CrossRef]
- Francaviglia, R.; Álvaro-Fuentes, J.; Di Bene, C.; Gai, L.; Regina, K.; Turtola, E. Diversified Arable Cropping Systems and Management Schemes in Selected European Regions Have Positive Effects on Soil Organic Carbon Content. Agriculture 2019, 9, 261. [Google Scholar] [CrossRef]
- Merante, P.; Dibari, C.; Ferrise, R.; Sánchez, B.; Iglesias, A.; Lesschen, J.P.; Kuikman, P.; Yeluripati, J.; Smith, P.; Bindi, M. Adopting Soil Organic Carbon Management Practices in Soils of Varying Quality: Implications and Perspectives in Europe. Soil Tillage Res. 2017, 165, 95–106. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Stocks under Present and Future Climate with Specific Reference to European Ecoregions. Nutr. Cycl. Agroecosyst. 2008, 81, 113–127. [Google Scholar] [CrossRef]
- Jordon, M.W.; Smith, P.; Long, P.R.; Bürkner, P.-C.; Petrokofsky, G.; Willis, K.J. Can Regenerative Agriculture Increase National Soil Carbon Stocks? Simulated Country-Scale Adoption of Reduced Tillage, Cover Cropping, and Ley-Arable Integration Using RothC. Sci. Total Environ. 2022, 825, 153955. [Google Scholar] [CrossRef]
- Bogunovic, I. Carbon Sequestration Under Different Agricultural Land Use in Croatia. Agriculture 2025, 15, 1821. [Google Scholar] [CrossRef]
- Rosa, A.; Pawłowska, A.; Dudek, M. Eco-Scheme—Carbon Farming and Nutrient Management—A New Tool to Support Sustainable Agriculture in Poland. Sustainability 2025, 17, 5067. [Google Scholar] [CrossRef]
- Chahal, I.; Vyn, R.J.; Mayers, D.; Van Eerd, L.L. Cumulative Impact of Cover Crops on Soil Carbon Sequestration and Profitability in a Temperate Humid Climate. Sci. Rep. 2020, 10, 13381. [Google Scholar] [CrossRef]
- Fernández-Soler, C.; Garcia-Franco, N.; Almagro, M.; Díaz-Pereira, E.; Luján, R.; García, E.; Martínez-Mena, M. Cover Crops Improve the Long-Term Stabilization of Soil Organic Carbon and Total Nitrogen through Physico-Chemical Protection in Rainfed Semiarid Mediterranean Woody Crop Systems. Soil Use Manag. 2024, 40, e13066. [Google Scholar] [CrossRef]
- Özbolat, O.; Sánchez-Navarro, V.; Zornoza, R.; Egea-Cortines, M.; Cuartero, J.; Ros, M.; Pascual, J.A.; Boix-Fayos, C.; Almagro, M.; de Vente, J.; et al. Long-Term Adoption of Reduced Tillage and Green Manure Improves Soil Physicochemical Properties and Increases the Abundance of Beneficial Bacteria in a Mediterranean Rainfed Almond Orchard. Geoderma 2023, 429, 116218. [Google Scholar] [CrossRef]
- Van Oudenhove, M.; Martínez-Mena, M.; Almagro, M.; Díaz-Pereira, E.; Carrillo, E.; de Vente, J.; Fernández-Soler, C.; Luján-Soto, R.; Boix-Fayos, C. The Impact of Regenerative Agriculture on Provisioning Ecosystem Services: An Example in Southeast Spain. Biol. Life Sci. Forum 2024, 30, 28. [Google Scholar] [CrossRef]
- Regenerative Agriculture Statistics Statistics: Market Data Report 2025. Available online: https://worldmetrics.org/regenerative-agriculture-statistics/ (accessed on 28 August 2025).
- Guenet, B.; Gabrielle, B.; Chenu, C.; Arrouays, D.; Balesdent, J.; Bernoux, M.; Bruni, E.; Caliman, J.-P.; Cardinael, R.; Chen, S.; et al. Can N2O Emissions Offset the Benefits from Soil Organic Carbon Storage? Glob. Change Biol. 2021, 27, 237–256. [Google Scholar] [CrossRef]
- Zaehle, S.; Ciais, P.; Friend, A.D.; Prieur, V. Carbon Benefits of Anthropogenic Reactive Nitrogen Offset by Nitrous Oxide Emissions. Nat. Geosci. 2011, 4, 601–605. [Google Scholar] [CrossRef]
- Li, C.; Frolking, S.; Butterbach-Bahl, K. Carbon Sequestration in Arable Soils Is Likely to Increase Nitrous Oxide Emissions, Offsetting Reductions in Climate Radiative Forcing. Clim. Change 2005, 72, 321–338. [Google Scholar] [CrossRef]
- Qiu, T.; Shi, Y.; Peñuelas, J.; Liu, J.; Cui, Q.; Sardans, J.; Zhou, F.; Xia, L.; Yan, W.; Zhao, S.; et al. Optimizing Cover Crop Practices as a Sustainable Solution for Global Agroecosystem Services. Nat. Commun. 2024, 15, 10617. [Google Scholar] [CrossRef]
- de Carvalho, A.M.; de Jesus, D.R.; de Sousa, T.R.; Ramos, M.L.G.; de Figueiredo, C.C.; de Oliveira, A.D.; Marchão, R.L.; Ribeiro, F.P.; Dantas, R.d.A.; Borges, L.d.A.B. Soil Carbon Stocks and Greenhouse Gas Mitigation of Agriculture in the Brazilian Cerrado—A Review. Plants 2023, 12, 2449. [Google Scholar] [CrossRef]
- Gomes, V.M.; Miranda Júnior, M.S.; Silva, L.J.; Teixeira, M.V.; Teixeira, G.; Schossler, K.; Freitas, D.A.F.d.; Oliveira, D.M.d.S. A Global Meta-Analysis of Soil Carbon Stock in Agroforestry Coffee Cultivation. Agronomy 2025, 15, 480. [Google Scholar] [CrossRef]
- Diop, M.; Chirinda, N.; Beniaich, A.; El Gharous, M.; El Mejahed, K. Soil and Water Conservation in Africa: State of Play and Potential Role in Tackling Soil Degradation and Building Soil Health in Agricultural Lands. Sustainability 2022, 14, 13425. [Google Scholar] [CrossRef]
- Kibet, E.; Musafiri, C.M.; Kiboi, M.N.; Macharia, J.; Ng’etich, O.K.; Kosgei, D.K.; Mulianga, B.; Okoti, M.; Zeila, A.; Ngetich, F.K. Soil Organic Carbon Stocks under Different Land Utilization Types in Western Kenya. Sustainability 2022, 14, 8267. [Google Scholar] [CrossRef]
- Bowers, M.J.; Kasaine, S.; Schulte, B.A. Zai Pits as a Climate-Smart Agriculture Technique in Southern Kenya: Maize Success Is Influenced More by Manure Than Depth. Resources 2024, 13, 120. [Google Scholar] [CrossRef]
- Banerjee, O.; Cicowiez, M.; Honeck, E.C.; Dechjejaruwat, R.; Markandya, A.; Pollitt, H.; Muthukumara, M.S. Arresting Environmental Degradation to Build Wealth in Thailand. Sci. Total Environ. 2024, 956, 177386. [Google Scholar] [CrossRef]
- Soilueang, P.; Chromkaew, Y.; Mawan, N.; Wicharuck, S.; Kullachonphuri, S.; Buachun, S.; Wu, Y.-T.; Chen, Y.; Iamsaard, K.; Khongdee, N. Temporal Dynamics of Soil Carbon Stocks and Mineralization Rates in Coffea Arabica Agroforestry Systems. Agriculture 2025, 15, 14. [Google Scholar] [CrossRef]
- Page, C.; Witt, B. A Leap of Faith: Regenerative Agriculture as a Contested Worldview Rather Than as a Practice Change Issue. Sustainability 2022, 14, 14803. [Google Scholar] [CrossRef]
- Bathaei, A.; Štreimikienė, D. A Systematic Review of Agricultural Sustainability Indicators. Agriculture 2023, 13, 241. [Google Scholar] [CrossRef]
- Tomaš Simin, M.; Glavaš-Trbić, D.; Miljatović, A.; Despotović, J.; Novaković, T. Farm Sustainability Indicators—Exploring FADN Database. Land 2025, 14, 1950. [Google Scholar] [CrossRef]
- Schreefel, L.; de Boer, I.J.M.; Timler, C.J.; Groot, J.C.J.; Zwetsloot, M.J.; Creamer, R.E.; Schrijver, A.P.; van Zanten, H.H.E.; Schulte, R.P.O. How to Make Regenerative Practices Work on the Farm: A Modelling Framework. Agric. Syst. 2022, 198, 103371. [Google Scholar] [CrossRef]
- Musto, G.A.; Swanepoel, P.A.; Strauss, J.A. Regenerative Agriculture v. Conservation Agriculture: Potential Effects on Soil Quality, Crop Productivity and Whole-Farm Economics in Mediterranean-Climate Regions. J. Agric. Sci. 2023, 161, 328–338. [Google Scholar] [CrossRef]
- Mishra, A.K.; Sinha, D.D.; Grover, D.; Roohi; Mishra, S.; Tyagi, R.; Sheoran, H.S.; Sharma, S. Regenerative Agriculture as Climate Smart Solution to Improve Soil Health and Crop Productivity Thereby Catalysing Farmers’ Livelihood and Sustainability. In Towards Sustainable Natural Resources: Monitoring and Managing Ecosystem Biodiversity; Rani, M., Chaudhary, B.S., Jamal, S., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 295–309. ISBN 978-3-031-06443-2. [Google Scholar]
- McLennon, E.; Dari, B.; Jha, G.; Sihi, D.; Kankarla, V. Regenerative Agriculture and Integrative Permaculture for Sustainable and Technology Driven Global Food Production and Security. Agron. J. 2021, 113, 4541–4559. [Google Scholar] [CrossRef]
- Beacham, J.D.; Jackson, P.; Jaworski, C.C.; Krzywoszynska, A.; Dicks, L.V. Contextualising Farmer Perspectives on Regenerative Agriculture: A Post-Productivist Future? J. Rural Stud. 2023, 102, 103100. [Google Scholar] [CrossRef]
- Van Niekerk, A.J. Economic Inclusion: Green Finance and the SDGs. Sustainability 2024, 16, 1128. [Google Scholar] [CrossRef]
- Tindwa, H.J.; Semu, E.W.; Singh, B.R. Circular Regenerative Agricultural Practices in Africa: Techniques and Their Potential for Soil Restoration and Sustainable Food Production. Agronomy 2024, 14, 2423. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Bationo, A.; Chianu, J.; Giller, K.E.; Merckx, R.; Mokwunye, U.; Ohiokpehai, O.; Pypers, P.; Tabo, R.; Shepherd, K.D.; et al. Integrated Soil Fertility Management: Operational Definition and Consequences for Implementation and Dissemination. Outlook Agric. 2010, 39, 17–24. [Google Scholar] [CrossRef]
- Amede, T.; Konde, A.A.; Muhinda, J.J.; Bigirwa, G. Sustainable Farming in Practice: Building Resilient and Profitable Smallholder Agricultural Systems in Sub-Saharan Africa. Sustainability 2023, 15, 5731. [Google Scholar] [CrossRef]
- Liu, C.; Plaza-Bonilla, D.; Coulter, J.A.; Kutcher, H.R.; Beckie, H.J.; Wang, L.; Floc’h, J.-B.; Hamel, C.; Siddique, K.H.M.; Li, L.; et al. Chapter Six—Diversifying Crop Rotations Enhances Agroecosystem Services and Resilience. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: New York, NY, USA, 2022; Volume 173, pp. 299–335. [Google Scholar]
- How Regenerative Agriculture Builds Resilient Climate Solutions. Available online: https://www.weforum.org/stories/2024/11/regenerative-agriculture-climate-solutions-resilient/ (accessed on 28 August 2025).
- Alders, R.; Wingett, K.; McFarlane, R.A.; Sutherland, S.; Borevitz, J.; Covic, N. Nutrition, Soil Organic Carbon and Sustainability: Multiple Benefits of Agriculture Regeneration. In Climate Change and Global Health; CABI Books: London, UK, 2024; pp. 342–351. ISBN 978-1-80062-000-1. [Google Scholar]
- von Cossel, M.; Scordia, D.; Altieri, M.; Gresta, F. Spotlight on Agroecological Cropping Practices to Improve the Resilience of Farming Systems: A Qualitative Review of Meta-Analytic Studies. Front. Agron. 2025, 7, 1495846. [Google Scholar] [CrossRef]
- Lemke, S.; Smith, N.; Thiim, C.; Stump, K. Drivers and Barriers to Adoption of Regenerative Agriculture: Cases Studies on Lessons Learned from Organic. Int. J. Agric. Sustain. 2024, 22, 2324216. [Google Scholar] [CrossRef]
- Moisés, C.; Arrobas, M.; Tsitos, D.; Pinho, D.; Rezende, R.F.; Rodrigues, M.Â. Regenerative Agriculture: Insights and Challenges in Farmer Adoption. Sustainability 2025, 17, 7235. [Google Scholar] [CrossRef]
- Coon, J.J.; Easley, M.J.; Williams, J.L.; Hambrick, G. Farmer Perceptions of Regenerative Agriculture in the Corn Belt: Exploring Motivations and Barriers to Adoption. Agric. Hum. Values 2025, 42, 1847–1864. [Google Scholar] [CrossRef]
- Kurdyś-Kujawska, A.; Soliwoda, M.; Grzelczak, M.; Apanel, A. Financial Innovation in Building Agricultural Sector Resilience: New Horizons and Challenges for Blended Finance in Poland. Agriculture 2025, 15, 754. [Google Scholar] [CrossRef]
- Havemann, T.; Negra, C.; Werneck, F. Blended Finance for Agriculture: Exploring the Constraints and Possibilities of Combining Financial Instruments for Sustainable Transitions. Agric. Hum. Values 2020, 37, 1281–1292. [Google Scholar] [CrossRef]
- Smith, J.; Samuelson, M.; Libanda, B.M.; Roe, D.; Alhassan, L. Getting Blended Finance to Where It’s Needed: The Case of CBNRM Enterprises in Southern Africa. Land 2022, 11, 637. [Google Scholar] [CrossRef]
- Biodiversity and Ecosystems|Department of Economic and Social Affairs. Available online: https://sdgs.un.org/topics/biodiversity-and-ecosystems (accessed on 28 August 2025).
- Mapanje, O.; Karuaihe, S.; Machethe, C.; Amis, M. Financing Sustainable Agriculture in Sub-Saharan Africa: A Review of the Role of Financial Technologies. Sustainability 2023, 15, 4587. [Google Scholar] [CrossRef]
- Chepkochei, L.C.; Karanja, F.; Siriba, D. Gendered Differentiated Determinants of Climate-Smart Agricultural Practices Adoption in Livestock Farming Systems in Baringo County, Kenya. Clim. Smart Agric. 2025, 2, 100069. [Google Scholar] [CrossRef]
- Feyissa, A.A.; Tolera, A.; Senbeta, F.; Diriba Guta, D. Adoption Decisions for Climate-Smart Dairy Farming Practices: Evidence from Smallholder Farmers in the Salale Highlands of Ethiopia. Clim. Smart Agric. 2025, 2, 100039. [Google Scholar] [CrossRef]
- Kassie, M.; Jaleta, M.; Shiferaw, B.; Mmbando, F.; Mekuria, M. Adoption of Interrelated Sustainable Agricultural Practices in Smallholder Systems: Evidence from Rural Tanzania. Technol. Forecast. Soc. Change 2013, 80, 525–540. [Google Scholar] [CrossRef]
- Teklewold, H.; Mekonnen, A.; Kohlin, G. Climate Change Adaptation: A Study of Multiple Climate-Smart Practices in the Nile Basin of Ethiopia. Clim. Dev. 2019, 11, 180–192. [Google Scholar] [CrossRef]
- Gordon, E.; Davila, F.; Riedy, C. Regenerative Agriculture: A Potentially Transformative Storyline Shared by Nine Discourses. Sustain. Sci. 2023, 18, 1833–1849. [Google Scholar] [CrossRef]
- Gosnell, H. Regenerating Soil, Regenerating Soul: An Integral Approach to Understanding Agricultural Transformation. Sustain. Sci. 2022, 17, 603–620. [Google Scholar] [CrossRef]
- Socially Sustainable CAP—European Commission. Available online: https://agriculture.ec.europa.eu/cap-my-country/sustainability/socially-sustainable-cap_en (accessed on 28 August 2025).
- Georgescu, P.-L.; Barbuta-Misu, N.; Zlati, M.L.; Fortea, C.; Antohi, V.M. Quantifying the Performance of European Agriculture Through the New European Sustainability Model. Agriculture 2025, 15, 210. [Google Scholar] [CrossRef]
- Spânu, I.-A.; Ozunu, A.; Petrescu, D.C.; Petrescu-Mag, R.M. A Comparative View of Agri-Environmental Indicators and Stakeholders’ Assessment of Their Quality. Agriculture 2022, 12, 490. [Google Scholar] [CrossRef]
- Doukas, Y.E.; Salvati, L.; Vardopoulos, I. Unraveling the European Agricultural Policy Sustainable Development Trajectory. Land 2023, 12, 1749. [Google Scholar] [CrossRef]
- Latham, A.; Matovich, I.; Doolan, B.; Anderson, S.-L.; Shahwar, D.; Freestone, C.; Gregory, D.; Cotton, J.; Kennedy, A. Understanding the Phases and Tensions of Regenerative Agriculture for Better Health Outcomes for Farmers. Agric. Hum. Values 2025, 1–16. [Google Scholar] [CrossRef]
- Batjes, N.H.; Ceschia, E.; Heuvelink, G.B.M.; Demenois, J.; le Maire, G.; Cardinael, R.; Arias-Navarro, C.; van Egmond, F. Towards a Modular, Multi-Ecosystem Monitoring, Reporting and Verification (MRV) Framework for Soil Organic Carbon Stock Change Assessment. Carbon Manag. 2024, 15, 2410812. [Google Scholar] [CrossRef]
- Brummitt, C.D.; Mathers, C.A.; Keating, R.A.; O’Leary, K.; Easter, M.; Friedl, M.A.; DuBuisson, M.; Campbell, E.E.; Pape, R.; Peters, S.J.W.; et al. Solutions and Insights for Agricultural Monitoring, Reporting, and Verification (MRV) from Three Consecutive Issuances of Soil Carbon Credits. J. Environ. Manag. 2024, 369, 122284. [Google Scholar] [CrossRef]
- Antón, R.; Arricibita, F.J.; Ruiz-Sagaseta, A.; Enrique, A.; de Soto, I.; Orcaray, L.; Zaragüeta, A.; Virto, I. Soil Organic Carbon Monitoring to Assess Agricultural Climate Change Adaptation Practices in Navarre, Spain. Reg. Environ. Change 2021, 21, 63. [Google Scholar] [CrossRef]
- Schuster, J.; Hagn, L.; Mittermayer, M.; Maidl, F.-X.; Hülsbergen, K.-J. Using Remote and Proximal Sensing in Organic Agriculture to Assess Yield and Environmental Performance. Agronomy 2023, 13, 1868. [Google Scholar] [CrossRef]
- Hagn, L.; Schuster, J.; Mittermayer, M.; Hülsbergen, K.-J. A New Method for Satellite-Based Remote Sensing Analysis of Plant-Specific Biomass Yield Patterns for Precision Farming Applications. Precis. Agric. 2024, 25, 2801–2830. [Google Scholar] [CrossRef]
- Schuster, J.; Mittermayer, M.; Maidl, F.-X.; Nätscher, L.; Hülsbergen, K.-J. Spatial Variability of Soil Properties, Nitrogen Balance and Nitrate Leaching Using Digital Methods on Heterogeneous Arable Fields in Southern Germany. Precis. Agric. 2023, 24, 647–676. [Google Scholar] [CrossRef]
- Säurich, A.; Möller, M.; Gerighausen, H. A Novel Remote Sensing-Based Approach to Determine Loss of Agricultural Soils Due to Soil Sealing—A Case Study in Germany. Environ. Monit. Assess. 2024, 196, 510. [Google Scholar] [CrossRef]
- Boton, X.; Nitschelm, L.; Juillard, M.; van der Werf, H.M.G. Modelling Greenhouse Gas Emissions of Land Use and Land-Use Change Using Spatially Explicit Land Conversion Data for French Crops. Int. J. Life Cycle Assess. 2025, 30, 285–300. [Google Scholar] [CrossRef]
- Flynn, H.C.; Canals, L.M.I.; Keller, E.; King, H.; Sim, S.; Hastings, A.; Wang, S.; Smith, P. Quantifying global greenhouse gas emissions from land-use change for crop production. Glob. Change Biol. 2012, 18, 1622–1635. [Google Scholar] [CrossRef]
- Roman Dobarco, M.; Martin, M.; Saby, N.; Bourennane, H.; Arrouays, D.; Cousin, I.; Le Bas, C. Digital Soil Mapping of Available Water Capacity for Metropolitan France. In Proceedings of the Abstract Book Pedometrics, Wageningen, The Netherlands, 26–30 June 2017; p. 298. [Google Scholar]
- Loubet, B.; Laville, P.; Lehuger, S.; Larmanou, E.; Fléchard, C.; Mascher, N.; Genermont, S.; Roche, R.; Ferrara, R.M.; Stella, P.; et al. Carbon, Nitrogen and Greenhouse Gases Budgets over a Four Years Crop Rotation in Northern France. Plant Soil 2011, 343, 109–137. [Google Scholar] [CrossRef]
- Biswal, P.; Faisal, A.; Swain, D.K.; Bhowmick, G.D.; Mohan, G. NDVI Is the Best Parameter for Yield Prediction at the Peak Vegetative Stage of Potato (Solanum tuberosum L.). Clim. Smart Agric. 2025, 2, 100053. [Google Scholar] [CrossRef]
- Yu, L.; Du, Z.; Li, X.; Zheng, J.; Zhao, Q.; Wu, H.; Weise, D.; Yang, Y.; Zhang, Q.; Li, X.; et al. Enhancing Global Agricultural Monitoring System for Climate-Smart Agriculture. Clim. Smart Agric. 2025, 2, 100037. [Google Scholar] [CrossRef]
- Perosa, B.; Newton, P.; da Silva, R.F.B. A Monitoring, Reporting and Verification System for Low Carbon Agriculture: A Case Study from Brazil. Environ. Sci. Policy 2023, 140, 286–296. [Google Scholar] [CrossRef]
- Jarial, S. Internet of Things Application in Indian Agriculture, Challenges and Effect on the Extension Advisory Services—A Review. J. Agribus. Dev. Emerg. Econ. 2022, 13, 505–519. [Google Scholar] [CrossRef]
- Gupta, S.; Jagtap, S. Unlocking Digital Growth: Overcoming Barriers to Digital Transformation for Indian Food SMEs. Discov. Food 2024, 4, 55. [Google Scholar] [CrossRef]
- Sun, B.; Yu, J.; Khattak, S.I.; Tariq, S.; Zahid, M. Digital Innovation, Business Models Transformations, and Agricultural SMEs: A PRISMA-Based Review of Challenges and Prospects. Systems 2025, 13, 673. [Google Scholar] [CrossRef]
- Song, C.; Ma, W.; Li, J.; Qi, B.; Liu, B. Development Trends in Precision Agriculture and Its Management in China Based on Data Visualization. Agronomy 2022, 12, 2905. [Google Scholar] [CrossRef]
- Kamal, M.; Bablu, T.A. Mobile Applications Empowering Smallholder Farmers: A Review of the Impact on Agricultural Development. Int. J. Soc. Anal. 2023, 8, 36–50. [Google Scholar]
- Okoronkwo, D.J.; Ozioko, R.I.; Ugwoke, R.U.; Nwagbo, U.V.; Nwobodo, C.; Ugwu, C.H.; Okoro, G.G.; Mbah, E.C. Climate Smart Agriculture? Adaptation Strategies of Traditional Agriculture to Climate Change in Sub-Saharan Africa. Front. Clim. 2024, 6, 1272320. [Google Scholar] [CrossRef]
- Paul, B.K.; Mutegi, J.K.; Wironen, M.B.; Wood, S.A.; Peters, M.; Nyawira, S.S.; Misiko, M.T.; Dutta, S.K.; Zingore, S.; Oberthür, T.; et al. Livestock Solutions to Regenerate Soils and Landscapes for Sustainable Agri-Food Systems Transformation in Africa. Outlook Agric. 2023, 52, 103–115. [Google Scholar] [CrossRef]
- Sharma, C.; Pathak, P.; Kumar, A.; Gautam, S. Sustainable Regenerative Agriculture Allied with Digital Agri-Technologies and Future Perspectives for Transforming Indian Agriculture. Environ. Dev. Sustain. 2024, 26, 30409–30444. [Google Scholar] [CrossRef]
- O’Donoghue, T.; Minasny, B.; McBratney, A. Digital Regenerative Agriculture. Npj Sustain. Agric. 2024, 2, 5. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; Lutton, E.; Bisquert, P.; Brossard, L.; Chambaron-Ginhac, S.; Labarthe, P.; Lagacherie, P.; Martignac, F.; Molenat, J.; Parisey, N.; et al. Digital Revolution for the Agroecological Transition of Food Systems: A Responsible Research and Innovation Perspective. Agric. Syst. 2022, 203, 103524. [Google Scholar] [CrossRef]
- James, J.; Choudhary, P.; Singh, S.; Archana, N.; Sharma, N. Regenerative Agriculture: Potential, Progress, Opportunities, and Challenges. In Regenerative Agriculture for Sustainable Food Systems; Kumar, S., Meena, R.S., Sheoran, P., Jhariya, M.K., Ghosh, S., Eds.; Springer Nature: Singapore, 2024; pp. 49–82. ISBN 978-981-97-6691-8. [Google Scholar]
- Loria, N.; Lal, R. Global Perspectives on Carbon Farming. In Carbon Farming: Science and Practice; Loria, N., Lal, R., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 291–319. ISBN 978-3-032-00842-8. [Google Scholar]
- Kyriakarakos, G.; Petropoulos, T.; Marinoudi, V.; Berruto, R.; Bochtis, D. Carbon Farming: Bridging Technology Development with Policy Goals. Sustainability 2024, 16, 1903. [Google Scholar] [CrossRef]
- Klauser, D.; de Candido, J.; Clark, A.; Leclerc, Y.; Drabaek, I.; Henry, M.; Lockwood, S.; Thomson, R.; Lawrence, J.; Henry, M.; et al. Giving Regenerative Agriculture an Agronomic Perspective: A Proposed Framework from the Food and Beverage Industry. Front. Sustain. Food Syst. 2025, 9, 1576611. [Google Scholar] [CrossRef]
- Barbieri, L.; Bittner, C.; Wollenberg, E.; Adair, E.C. Climate Change Adaptation and Mitigation in Agriculture: A Review of the Evidence for Synergies and Tradeoffs. Environ. Res. Lett. 2024, 19, 013005. [Google Scholar] [CrossRef]
- Eswaran, S.; Anand, A.; Lairenjam, G.; Mohan, G.; Sharma, N.; Khare, A.; Bhargavi, A. Climate Change Impacts on Agricultural Systems Mitigation and Adaptation Strategies: A Review. J. Exp. Agric. Int. 2024, 46, 1–12. [Google Scholar] [CrossRef]
- Mambo, T.; Nelson, F.; Huda, J.; Lhermie, G. “Why Would a Farmer Pay More Money to Use Something That’s Not Gonna Give Them Anything Back”: Identifying Gaps and Opportunities to Promote Regenerative Agriculture in Alberta, Canada. J. Rural Stud. 2025, 119, 103748. [Google Scholar] [CrossRef]
- Simelton, E.; McCampbell, M. Do Digital Climate Services for Farmers Encourage Resilient Farming Practices? Pinpointing Gaps through the Responsible Research and Innovation Framework. Agriculture 2021, 11, 953. [Google Scholar] [CrossRef]
- Kapoor, P.; Kamboj, M.; Langaya, S.; Swami, S.; Yadav, S.; Panigrahi, S.; Goswami, R.; Saini, M. Biotechnology for Advancing Regenerative Agriculture: Opportunities and Challenges. In Regenerative Agriculture for Sustainable Food Systems; Kumar, S., Meena, R.S., Sheoran, P., Jhariya, M.K., Eds.; Springer Nature: Singapore, 2024; pp. 453–493. ISBN 978-981-97-6691-8. [Google Scholar]
- Eshetae, M.A.; Balcha, Y.; Yeboah, S.; Adimassu, Z.; Abera, W. Farm Typology-Based Strategy for Targeting Climate-Smart Agricultural Interventions: A Case Study in the Guinea Savannah Agro-Ecological Zone of Ghana. Clim. Smart Agric. 2025, 2, 100050. [Google Scholar] [CrossRef]
- Mudzielwana, R.V.A. Climate-Smart Food Systems: Integrating Adaptation and Mitigation Strategies for Sustainable Agriculture in South Africa. Front. Sustain. Food Syst. 2025, 9, 1580516. [Google Scholar] [CrossRef]
- Luján Soto, R.; Cuéllar-Padilla, M.; Rivera Méndez, M.; Pinto-Correia, T.; Boix-Fayos, C.; de Vente, J. Participatory Monitoring and Evaluation to Enable Social Learning, Adoption, and out-Scaling of Regenerative Agriculture. Ecol. Soc. 2021, 26, 29. [Google Scholar] [CrossRef]
- Luján Soto, R.; de Vente, J.; Cuéllar Padilla, M. Learning from Farmers’ Experiences with Participatory Monitoring and Evaluation of Regenerative Agriculture Based on Visual Soil Assessment. J. Rural Stud. 2021, 88, 192–204. [Google Scholar] [CrossRef]
- Deel, H.L.; Moore, J.M.; Manter, D.K. SEMWISE: A National Soil Health Scoring Framework for Agricultural Systems. Appl. Soil Ecol. 2024, 195, 105273. [Google Scholar] [CrossRef]
- Gutierrez, S.; Greve, M.H.; Møller, A.B.; Beucher, A.; Arthur, E.; Normand, S.; Wollesen de Jonge, L.; Gomes, L.d.C. A Systematic Benchmarking Framework for Future Assessments of Soil Health: An Example from Denmark. J. Environ. Manag. 2024, 366, 121882. [Google Scholar] [CrossRef]
- Ros, G.H.; Verweij, S.E.; Janssen, S.J.C.; De Haan, J.; Fujita, Y. An Open Soil Health Assessment Framework Facilitating Sustainable Soil Management. Environ. Sci. Technol. 2022, 56, 17375–17384. [Google Scholar] [CrossRef]
- Bernardini, L.G.; Bruni, E.; Izquierdo-Verdiguier, E.; Keiblinger, K.; Rosinger, C.; Bodner, G. Benchmarking the Benchmark: A Case-Study in Generating Soil Organic Carbon Benchmarks. 2025. [CrossRef]
- Gordon, E.; Davila, F.; Riedy, C. Designing Accreditation Systems That Enhance the Transformative Potential of Regenerative Agriculture: An Action-Oriented Case Study on Discursive Institutionalization. Agroecol. Sustain. Food Syst. 2024, 48, 713–736. [Google Scholar] [CrossRef]
- Wilson, K.R.; Hendrickson, M.K.; Myers, R.L. A Buzzword, a “Win-Win”, or a Signal towards the Future of Agriculture? A Critical Analysis of Regenerative Agriculture. Agric. Hum. Values 2025, 42, 257–269. [Google Scholar] [CrossRef]
- Willoughby, C.M.; Topp, C.F.E.; Hallett, P.D.; Stockdale, E.A.; Walker, R.L.; Hilton, A.J.; Watson, C.A. Soil Health Metrics Reflect Yields in Long-Term Cropping System Experiments. Agron. Sustain. Dev. 2023, 43, 65. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, C.; Hu, W.; Khan, K.S.; Zhao, Y.; Huang, B. Development of Soil Quality Assessment Framework: A Comprehensive Review of Indicators, Functions, and Approaches. Ecol. Indic. 2025, 172, 113272. [Google Scholar] [CrossRef]
- Mgendi, G. Unlocking the Potential of Precision Agriculture for Sustainable Farming. Discov. Agric. 2024, 2, 87. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Impacts of Agricultural Management Practices on Soil Health. In Exploring Linkages Between Soil Health and Human Health; National Academies Press: Washington, DC, USA, 2024. [Google Scholar]
- Sherwood, S.; Uphoff, N. Soil Health: Research, Practice and Policy for a More Regenerative Agriculture. Appl. Soil Ecol. 2000, 15, 85–97. [Google Scholar] [CrossRef]
- Howard, M.; Hopkinson, P.; Miemczyk, J. The Regenerative Supply Chain: A Framework for Developing Circular Economy Indicators. Int. J. Prod. Res. 2019, 57, 7300–7318. [Google Scholar] [CrossRef]
- Bag, S.; Chiarini, A.; Srivastava, G. Building Regenerative Supply Chains: A Qualitative Study of SMEs in the Agro-Food Chains. Bus. Strategy Environ. 2025; early review. [Google Scholar] [CrossRef]
- Hargreaves-Méndez, M.J.; Hötzel, M.J. A Systematic Review on Whether Regenerative Agriculture Improves Animal Welfare: A Qualitative Analysis with a One Welfare Perspective. Anim. Welf. 2023, 32, e36. [Google Scholar] [CrossRef]
- Bagnall, D.K.; Rieke, E.L.; Morgan, C.L.S.; Liptzin, D.L.; Cappellazzi, S.B.; Honeycutt, C.W. A Minimum Suite of Soil Health Indicators for North American Agriculture. Soil Secur. 2023, 10, 100084. [Google Scholar] [CrossRef]
- Gremmen, B. Regenerative Agriculture as a Biomimetic Technology. Outlook Agric. 2022, 51, 39–45. [Google Scholar] [CrossRef]
- Das, A.; Bocken, N. Regenerative Business Strategies: A Database and Typology to Inspire Business Experimentation towards Sustainability. Sustain. Prod. Consum. 2024, 49, 529–544. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, K.; Grunwald, S.; Smith, P.; Ciais, P.; Wang, B.; Wadoux, A.M.J.-C.; Ferreira, C.; Karunaratne, S.; Shurpali, N.; et al. Advancing Soil Organic Carbon Prediction: A Comprehensive Review of Technologies, AI, Process-Based and Hybrid Modelling Approaches. Adv. Sci. 2025, 12, e04152. [Google Scholar] [CrossRef]
- Petropoulos, T.; Benos, L.; Busato, P.; Kyriakarakos, G.; Kateris, D.; Aidonis, D.; Bochtis, D. Soil Organic Carbon Assessment for Carbon Farming: A Review. Agriculture 2025, 15, 567. [Google Scholar] [CrossRef]
- Boix-Fayos, C.; de Vente, J. Challenges and Potential Pathways towards Sustainable Agriculture within the European Green Deal. Agric. Syst. 2023, 207, 103634. [Google Scholar] [CrossRef]
- Fowler, A.F.; Basso, B.; Millar, N.; Brinton, W.F. A Simple Soil Mass Correction for a More Accurate Determination of Soil Carbon Stock Changes. Sci. Rep. 2023, 13, 2242. [Google Scholar] [CrossRef] [PubMed]










| Region | Regenerative Agricultural Practices | Monitored Indicators | Reported Effects | Methodological Notes |
|---|---|---|---|---|
| Europe | cover crops, minimum tillage, diversified crop rotations | SOC (Mg C/ha), biodiversity, aggregate stability | significant SOC accumulation in 0–30 cm and 0–100 cm layers, biodiversity restoration, reduced erosion | emphasis on time windows (years–decades) and standardized depth layers |
| United States | cover crops, reduced tillage | SOC, GHG (CO2, N2O), soil health indicators | average SOC increases, improved soil health, regional N2O emission variability may offset carbon storage gains | simultaneous measurement of SOC and GHG fluxes recommended |
| Africa | zai pits, agroforestry, water conservation | SOC, soil fertility, socio-economic indicators | SOC and fertility improvements in small-scale systems, increased income resilience | indicators should be adapted to local socio-ecological contexts |
| Asia and Australia | agroforestry, perennial systems | SOC, ecological functions, soil moisture, plant physiological indicators | measurable SOC increases; strong dependence on climate and management practices | inclusion of moisture and physiological metrics is crucial |
| Global | integrated MRV and ESG frameworks | SOC, GHG, biodiversity, economic indicators | SOC recognized as a key metric, biodiversity increases (microbial diversity up to +50%), alignment with carbon market standards | requires harmonized MRV protocols, clear rules on sampling depth, time windows, and reporting units |
| Key Socio-Economic Aspect | Example Indicators/Metrics |
|---|---|
| farm profitability | economic yield per ha, cost–benefit ratio, reduction in input costs |
| income stability | yearly income variance, revenue diversification |
| food security and community resilience | crop diversification, yield variability, local supply stability |
| labor and farmer well-being | skilled labor demand, pesticide exposure rates, occupational health |
| access to innovative financing and carbon markets | green loans, carbon credit revenue, ecosystem service payments |
| social inclusion and equity | land access, financial support received, training participation |
| socio-economic indicators for policy alignment | standardized metrics for profitability, resilience, equity |
| Region | MRV | Focus of Application | Strengths | Context Specificities |
|---|---|---|---|---|
| America | medium- and high-resolution satellite imagery, deep learning algorithms | monitoring crop rotations, cover crops, soil disturbance | high scalability, continuous monitoring, good accuracy (78–80%) | requires advanced digital infrastructure |
| Europe | satellite remote sensing, proximity sensors, soil sampling, national soil databases, regional modeling | carbon sequestration monitoring, agroforestry, diversified rotations | strong institutional support, multi-scale monitoring | variable pedoclimatic contexts require site-specific adaptation |
| Asia | mobile digital apps, predictive models, satellite imagery | data collection from small farms, large-scale reporting | rapid data centralization | high farm fragmentation, variable technical capacity |
| Africa | portable sensors, wide-coverage satellite imagery | soil degradation monitoring, productivity and resilience assessment | affordable and scalable technologies | limited infrastructure, climatic variability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakatos, E.S.; Vatca, S.D.; Cioca, L.-I.; Rhazzali, A.L.; Kis, E.; Boinceanu, B.; Perciun, R. Standardized Metrics in Regenerative Agriculture for Climate Change Adaptation and Mitigation. Agriculture 2025, 15, 2278. https://doi.org/10.3390/agriculture15212278
Lakatos ES, Vatca SD, Cioca L-I, Rhazzali AL, Kis E, Boinceanu B, Perciun R. Standardized Metrics in Regenerative Agriculture for Climate Change Adaptation and Mitigation. Agriculture. 2025; 15(21):2278. https://doi.org/10.3390/agriculture15212278
Chicago/Turabian StyleLakatos, Elena Simina, Sorin Daniel Vatca, Lucian-Ionel Cioca, Andreea Loredana Rhazzali (Birgovan), Erzsebeth Kis, Boris Boinceanu, and Rodica Perciun. 2025. "Standardized Metrics in Regenerative Agriculture for Climate Change Adaptation and Mitigation" Agriculture 15, no. 21: 2278. https://doi.org/10.3390/agriculture15212278
APA StyleLakatos, E. S., Vatca, S. D., Cioca, L.-I., Rhazzali, A. L., Kis, E., Boinceanu, B., & Perciun, R. (2025). Standardized Metrics in Regenerative Agriculture for Climate Change Adaptation and Mitigation. Agriculture, 15(21), 2278. https://doi.org/10.3390/agriculture15212278

