Biomarker-Based Evaluation of a Zearalenone-Degrading Enzyme in Broilers and Piglets Across Multiple Biological Matrices
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Experiments
2.1.1. General
2.1.2. Broiler Trial
2.1.3. Piglet Trial
2.2. Analysis of ZEN Biomarkers in Animal Specimens
2.2.1. Chemicals and Reagents
2.2.2. Sample Preparation
2.2.3. Chromatography and LC-MS/MS Parameters
2.2.4. Method Validation Plasma and Urine
2.3. Statistics
3. Results and Discussion
3.1. Broiler Trial
3.1.1. Performance
3.1.2. Biomarkers
3.2. Piglet Trial
3.2.1. Performance
3.2.2. Biomarkers
3.3. Broader Context, Limitations and Outlook
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACN | Acetonitrile |
| α-ZEL | α-zearalenol |
| BSA | Bovine serum albumin |
| β-ZEL | β-zearalenol |
| Crea | Creatinine |
| DHZEN | Decarboxylated hydrolyzed zearalenone |
| DON | Deoxynivalenol |
| FCR | Feed conversion ratio |
| GI | Gastrointestinal |
| HZEN | Hydrolyzed zearalenone |
| LC-MS/MS | Liquid chromatography–tandem mass spectrometry |
| LOQ | Limit of quantification |
| MRM | Multiple reaction monitoring |
| NaCl | Sodium chloride |
| NOAEL | No observed adverse effect level |
| RSD | Relative standard deviation |
| ZEN | Zearalenone |
References
- Kolawole, O.; Valliere, C.; Krska, R.; David, M.; Lorran, G.; Schatzmayr, D.; Schatzmayr, G.; Eskola, M.; Petchkongkaew, A.; Elliott, C. Potential economic and environmental impacts of mycotoxins in poultry: A meta-analysis and life cycle assessment approach. Environ. Impact Assess. Rev. 2025, 115, 107989. [Google Scholar] [CrossRef]
- Lee, H.J.; Ryu, D. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health perspectives of their co-occurrence. J. Agric. Food Chem. 2017, 65, 7034–7051. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global mycotoxin occurrence in feed: A ten-year survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef]
- Fink-Gremmels, J.; Malekinejad, H. Clinical effects and biochemical mechanisms associated with exposure to the mycoestrogen zearalenone. Anim. Feed Sci. Technol. 2007, 137, 326–341. [Google Scholar] [CrossRef]
- Liu, J.; Applegate, T. Zearalenone (ZEN) in livestock and poultry: Dose, toxicokinetics, toxicity and estrogenicity. Toxins 2020, 12, 377. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, K.; Habrowska-Górczyńska, D.E.; Piastowska-Ciesielska, A.W. Zearalenone as an endocrine disruptor in humans. Environ. Toxicol. Pharmacol. 2016, 48, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Gajęcka, M.; Zielonka, Ł.; Gajęcki, M. Activity of zearalenone in the porcine intestinal tract. Molecules 2016, 22, 18. [Google Scholar] [CrossRef] [PubMed]
- Bulgaru, C.V.; Marin, D.E.; Pistol, G.C.; Taranu, I. Zearalenone and the immune response. Toxins 2021, 13, 248. [Google Scholar] [CrossRef] [PubMed]
- Dänicke, S.; Winkler, J. Invited review: Diagnosis of zearalenone (ZEN) exposure of farm animals and transfer of its residues into edible tissues (carry over). Food Chem. Toxicol. 2015, 84, 225–249. [Google Scholar] [CrossRef]
- Devreese, M.; Antonissen, G.; Broekaert, N.; De Baere, S.; Vanhaecke, L.; De Backer, P.; Croubels, S. Comparative toxicokinetics, absolute oral bioavailability, and biotransformation of zearalenone in different poultry species. J. Agric. Food Chem. 2015, 63, 5092–5098. [Google Scholar] [CrossRef]
- Malekinejad, H.; Maas-Bakker, R.; Fink-Gremmels, J. Species differences in the hepatic biotransformation of zearalenone. Vet. J. 2006, 172, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, H.; Sun, F.; De Ruyck, K.; Zhang, J.; Jin, Y.; Li, Y.; Wang, Z.; Zhang, S.; De Saeger, S. Metabolic profile of zearalenone in liver microsomes from different species and its in vivo metabolism in rats and chickens using ultra high-pressure liquid chromatography-quadrupole/time-of-flight mass spectrometry. J. Agric. Food Chem. 2017, 65, 11292–11303. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Contaminants in the Food Chain. Scientific opinion on the risks for public health related to the presence of zearalenone in food. EFSA J. 2011, 9, 2197. [Google Scholar] [CrossRef]
- European Commission. Commission recommendation (eu) 2016/1319 of 29 July 2016 amending recommendation 2006/576/ec as regards deoxynivalenol, zearalenone and ochratoxin a in pet food. Off. J. Eur. Union 2016, L208, 58–60. [Google Scholar]
- Wang, L.; Deng, Z.; Huang, J.; Li, T.; Jiang, J.; Wang, W.; Sun, Y.; Deng, Y. Zearalenone-induced hepatointestinal toxicity in laying hens: Unveiling the role of gut microbiota and fecal metabolites. Poult. Sci. 2024, 103, 104221. [Google Scholar] [CrossRef]
- Yuan, T.; Li, J.; Wang, Y.; Li, M.; Yang, A.; Ren, C.; Qi, D.; Zhang, N. Effects of zearalenone on production performance, egg quality, ovarian function and gut microbiota of laying hens. Toxins 2022, 14, 653. [Google Scholar] [CrossRef]
- GB13078-2017; Hygienic Standard for Feed. (In English from via USDA Foreign Agricultural Services GAIN Report Number CH18020). China’s Administration for Quality Supervision: Beijing, China, 2017. Available online: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Hygienic%20Standard%20for%20Feeds_Beijing_China%20-%20Peoples%20Republic%20of_10-24-2017.pdf (accessed on 16 October 2025).
- U.S. Food & Drug Administration (FDA). Chemical Contaminants. Available online: https://www.fda.gov/animal-veterinary/biological-chemical-and-physical-contaminants-animal-food/chemical-contaminants (accessed on 16 October 2025).
- Jard, G.; Liboz, T.; Mathieu, F.; Guyonvarc’h, A.; Lebrihi, A. Review of mycotoxin reduction in food and feed: From prevention in the field to detoxification by adsorption or transformation. Food Addit. Contam. Part A 2011, 28, 1590–1609. [Google Scholar] [CrossRef] [PubMed]
- Bryden, W.L. Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Anim. Feed Sci. Technol. 2012, 173, 134–158. [Google Scholar] [CrossRef]
- Rogowska, A.; Pomastowski, P.; Sagandykova, G.; Buszewski, B. Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods. Toxicon 2019, 162, 46–56. [Google Scholar] [CrossRef]
- Fruhauf, S.; Schwartz, H.; Ottner, F.; Krska, R.; Vekiru, E. Yeast cell based feed additives: Studies on aflatoxin b1 and zearalenone. Food Addit. Contam. Part A 2012, 29, 217–231. [Google Scholar] [CrossRef]
- Di Gregorio, M.C.; Neeff, D.V.d.; Jager, A.V.; Corassin, C.H.; Carão, Á.C.d.P.; Albuquerque, R.; Azevedo, A.; Oliveira, C.A.F. Mineral adsorbents for prevention of mycotoxins in animal feeds. Toxin Rev. 2014, 33, 125–135. [Google Scholar] [CrossRef]
- Fruhauf, S.; Novak, B.; Nagl, V.; Hackl, M.; Hartinger, D.; Rainer, V.; Labudová, S.; Adam, G.; Aleschko, M.; Moll, W.-D. Biotransformation of the mycotoxin zearalenone to its metabolites hydrolyzed zearalenone (HZEN) and decarboxylated hydrolyzed zearalenone (DHZEN) diminishes its estrogenicity in vitro and in vivo. Toxins 2019, 11, 481. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Aleschko, M.; Höbartner-Gußl, A.; Fruhauf, S.; Thamhesl, M.; Doupovec, B.; Schatzmayr, D.; Moll, W.-D.; Pender, C. Recent advances in enzyme technologies for mitigating mycotoxin contamination in poultry feed. J. Appl. Poult. Res. 2025, 34, 100544. [Google Scholar] [CrossRef]
- Fruhauf, S.; Puhringer, D.; Thamhesl, M.; Fajtl, P.; Kunz-Vekiru, E.; Hobartner-Gussl, A.; Schatzmayr, G.; Adam, G.; Damborsky, J.; Djinovic-Carugo, K. Bacterial lactonases ZenA with noncanonical structural features hydrolyze the mycotoxin zearalenone. ACS Catal. 2024, 14, 3392–3410. [Google Scholar] [CrossRef] [PubMed]
- Kakeya, H.; Takahashi-Ando, N.; Kimura, M.; Onose, R.; Yamaguchi, I.; Osada, H. Biotransformation of the mycotoxin, zearalenone, to a non-estrogenic compound by a fungal strain of Clonostachys sp. Biosci. Biotechnol. Biochem. 2002, 66, 2723–2726. [Google Scholar] [CrossRef]
- Pierron, A.; Kleber, A.; Mayer, E.; Gerner, W. Effect of don and zen and their metabolites dom-1 and hzen on b cell proliferation and antibody production. Front. Immunol. 2024, 15, 1338937. [Google Scholar] [CrossRef]
- Tassis, P.D.; Tsakmakidis, I.A.; Nagl, V.; Reisinger, N.; Tzika, E.; Gruber-Dorninger, C.; Michos, I.; Mittas, N.; Basioura, A.; Schatzmayr, D. Individual and combined in vitro effects of deoxynivalenol and zearalenone on boar semen. Toxins 2020, 12, 495. [Google Scholar] [CrossRef] [PubMed]
- Gruber-Dorninger, C.; Faas, J.; Doupovec, B.; Aleschko, M.; Stoiber, C.; Höbartner-Gußl, A.; Schöndorfer, K.; Killinger, M.; Zebeli, Q.; Schatzmayr, D. Metabolism of zearalenone in the rumen of dairy cows with and without application of a zearalenone-degrading enzyme. Toxins 2021, 13, 84. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Killinger, M.; Höbartner-Gußl, A.; Rosen, R.; Doupovec, B.; Aleschko, M.; Schwartz-Zimmermann, H.; Greitbauer, O.; Marković, Z.; Stanković, M. Enzymatic degradation of zearalenone in the gastrointestinal tract of pigs, chickens, and rainbow trout. Toxins 2023, 15, 48. [Google Scholar] [CrossRef]
- Dänicke, S.; Carlson, L.; Heymann, A.-K.; Grümpel-Schlüter, A.; Doupovec, B.; Schatzmayr, D.; Streit, B.; Kersten, S.; Kluess, J. Inactivation of zearalenone (ZEN) and deoxynivalenol (DON) in complete feed for weaned piglets: Efficacy of zen hydrolase ZenA and of sodium metabisulfite (SBS) as feed additives. Mycotoxin Res. 2023, 39, 201–218. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Müller, A.; Rosen, R. Multi-mycotoxin contamination of aquaculture feed: A global survey. Toxins 2025, 17, 116. [Google Scholar] [CrossRef] [PubMed]
- Streit, B.; Czabany, T.; Weingart, G.; Marchetti-Deschmann, M.; Prasad, S. Toolbox for the extraction and quantification of ochratoxin a and ochratoxin alpha applicable for different pig and poultry matrices. Toxins 2022, 14, 432. [Google Scholar] [CrossRef]
- Allen, N.K.; Mirocha, C.; Weaver, G.; Aakhus-allen, S.; Bates, F. Effects of dietary zearalenone on finishing broiler chickens and young turkey poults. Poult. Sci. 1981, 60, 124–131. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, Y.; Wen, C.; Wang, W.; Kang, Y.; Wang, A.; Zhou, Y. The protective effects of modified palygorskite on the broilers fed a purified zearalenone-contaminated diet. Poult. Sci. 2019, 98, 3802–3810. [Google Scholar] [CrossRef]
- Santos, R.R.; Oosterveer-van der Doelen, M.A.; Tersteeg-Zijderveld, M.H.; Molist, F.; Mézes, M.; Gehring, R. Susceptibility of broiler chickens to deoxynivalenol exposure via artificial or natural dietary contamination. Animals 2021, 11, 989. [Google Scholar] [CrossRef]
- Kolawole, O.; Graham, A.; Donaldson, C.; Owens, B.; Abia, W.A.; Meneely, J.; Alcorn, M.J.; Connolly, L.; Elliott, C.T. Low doses of mycotoxin mixtures below EU regulatory limits can negatively affect the performance of broiler chickens: A longitudinal study. Toxins 2020, 12, 433. [Google Scholar] [CrossRef]
- Buranatragool, K.; Poapolathep, S.; Isariyodom, S.; Imsilp, K.; Klangkaew, N.; Poapolathep, A. Dispositions and tissue residue of zearalenone and its metabolites α-zearalenol and β-zearalenol in broilers. Toxicol. Rep. 2015, 2, 351–356. [Google Scholar] [CrossRef]
- Osselaere, A.; Devreese, M.; Goossens, J.; Vandenbroucke, V.; De Baere, S.; De Backer, P.; Croubels, S. Toxicokinetic study and absolute oral bioavailability of deoxynivalenol, t-2 toxin and zearalenone in broiler chickens. Food Chem. Toxicol. 2013, 51, 350–355. [Google Scholar] [CrossRef]
- Muñoz-Solano, B.; González-Peñas, E. Biomonitoring of 19 mycotoxins in plasma from food-producing animals (cattle, poultry, pigs, and sheep). Toxins 2023, 15, 295. [Google Scholar] [CrossRef] [PubMed]
- Yunus, A.W.; Ghareeb, K.; Twaruzek, M.; Grajewski, J.; Böhm, J. Deoxynivalenol as a contaminant of broiler feed: Effects on bird performance and response to common vaccines. Poult. Sci. 2012, 91, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Döll, S.; Dänicke, S.; Ueberschär, K.-H.; Valenta, H.; Schnurrbusch, U.; Ganter, M.; Klobasa, F.; Flachowsky, G. Effects of graded levels of fusarium toxin contaminated maize in diets for female weaned piglets. Arch. Anim. Nutr. 2003, 57, 311–334. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain; Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L. Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA J. 2017, 15, e04851. [Google Scholar] [CrossRef] [PubMed]
- Lauwers, M.; Croubels, S.; Letor, B.; Gougoulias, C.; Devreese, M. Biomarkers for exposure as a tool for efficacy testing of a mycotoxin detoxifier in broiler chickens and pigs. Toxins 2019, 11, 187. [Google Scholar] [CrossRef] [PubMed]
- Benthem de Grave, X.; Saltzmann, J.; Laurain, J.; Rodriguez, M.A.; Molist, F.; Dänicke, S.; Santos, R.R. The ability of an algoclay-based mycotoxin decontaminant to decrease the serum levels of zearalenone and its metabolites in lactating sows. Front. Vet. Sci. 2021, 8, 704796. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Y.; Tao, H.; Liu, J.; Zhao, P.; Yang, F.; Lv, Z.; Wang, J. Effects of Bacillus subtilis zj-2019-1 on zearalenone toxicosis in female gilts. Toxins 2021, 13, 788. [Google Scholar] [CrossRef]
- Lauwers, M.; De Baere, S.; Letor, B.; Rychlik, M.; Croubels, S.; Devreese, M. Multi LC-MS/MS and LC-HRMS methods for determination of 24 mycotoxins including major phase i and ii biomarker metabolites in biological matrices from pigs and broiler chickens. Toxins 2019, 11, 171. [Google Scholar] [CrossRef]
- Zielonka, Ł.; Gajęcka, M.; Lisieska-Żołnierczyk, S.; Dąbrowski, M.; Gajęcki, M.T. The effect of different doses of zearalenone in feed on the bioavailability of zearalenone and alpha-zearalenol, and the concentrations of estradiol and testosterone in the peripheral blood of pre-pubertal gilts. Toxins 2020, 12, 144. [Google Scholar] [CrossRef]
- De Baere, S.; Osselaere, A.; Devreese, M.; Vanhaecke, L.; De Backer, P.; Croubels, S. Development of a liquid–chromatography tandem mass spectrometry and ultra-high-performance liquid chromatography high-resolution mass spectrometry method for the quantitative determination of zearalenone and its major metabolites in chicken and pig plasma. Anal. Chim. Acta 2012, 756, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Brezina, U.; Valenta, H.; Rempe, I.; Kersten, S.; Humpf, H.-U.; Dänicke, S. Development of a liquid chromatography tandem mass spectrometry method for the simultaneous determination of zearalenone, deoxynivalenol and their metabolites in pig serum. Mycotoxin Res. 2014, 30, 171–186. [Google Scholar] [CrossRef]
- Devreese, M.; De Baere, S.; De Backer, P.; Croubels, S. Quantitative determination of several toxicological important mycotoxins in pig plasma using multi-mycotoxin and analyte-specific high performance liquid chromatography–tandem mass spectrometric methods. J. Chromatogr. A 2012, 1257, 74–80. [Google Scholar] [CrossRef]
- Catteuw, A.; Broekaert, N.; De Baere, S.; Lauwers, M.; Gasthuys, E.; Huybrechts, B.; Callebaut, A.; Ivanova, L.; Uhlig, S.; De Boevre, M. Insights into in vivo absolute oral bioavailability, biotransformation, and toxicokinetics of zearalenone, α-zearalenol, β-zearalenol, zearalenone-14-glucoside, and zearalenone-14-sulfate in pigs. J. Agric. Food Chem. 2019, 67, 3448–3458. [Google Scholar] [CrossRef]
- Tkaczyk, A.; Jedziniak, P.; Zielonka, Ł.; Dąbrowski, M.; Ochodzki, P.; Rudawska, A. Biomarkers of deoxynivalenol, citrinin, ochratoxin a and zearalenone in pigs after exposure to naturally contaminated feed close to guidance values. Toxins 2021, 13, 750. [Google Scholar] [CrossRef] [PubMed]
- Benthem de Grave, X.; Saltzmann, J.; Laurain, J.; Rodriguez, M.A.; Molist, F.; Dänicke, S.; Santos, R.R. Transmission of zearalenone, deoxynivalenol, and their derivatives from sows to piglets during lactation. Toxins 2021, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Catteuw, A.; Devreese, M.; De Baere, S.; Antonissen, G.; Huybrechts, B.; Ivanova, L.; Uhlig, S.; Martens, A.; De Saeger, S.; De Boevre, M. Toxicokinetic studies in piglets reveal age-related differences in systemic exposure to zearalenone, zearalenone-14-glucoside, and zearalenone-14-sulfate. J. Agric. Food Chem. 2020, 68, 7757–7764. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, L. Sample normalization methods in quantitative metabolomics. J. Chromatogr. A 2016, 1430, 80–95. [Google Scholar] [CrossRef]
- Tkaczyk, A.; Jedziniak, P. Dilute-and-shoot hplc-uv method for determination of urinary creatinine as a normalization tool in mycotoxin biomonitoring in pigs. Molecules 2020, 25, 2445. [Google Scholar] [CrossRef]
- Winkler, J.; Kersten, S.; Valenta, H.; Hüther, L.; Meyer, U.; Engelhardt, U.; Dänicke, S. Simultaneous determination of zearalenone, deoxynivalenol and their metabolites in bovine urine as biomarkers of exposure. World Mycotoxin J. 2015, 8, 63–74. [Google Scholar] [CrossRef]
- Bi, H.; Guo, Z.; Jia, X.; Liu, H.; Ma, L.; Xue, L. The key points in the pre-analytical procedures of blood and urine samples in metabolomics studies. Metabolomics 2020, 16, 68. [Google Scholar] [CrossRef]
- Warrack, B.M.; Hnatyshyn, S.; Ott, K.-H.; Reily, M.D.; Sanders, M.; Zhang, H.; Drexler, D.M. Normalization strategies for metabonomic analysis of urine samples. J. Chromatogr. B 2009, 877, 547–552. [Google Scholar] [CrossRef]
- Brezina, U.; Rempe, I.; Kersten, S.; Valenta, H.; Humpf, H.-U.; Dänicke, S. Diagnosis of intoxications of piglets fed with fusarium toxin-contaminated maize by the analysis of mycotoxin residues in serum, liquor and urine with LC-MS/MS. Arch. Anim. Nutr. 2014, 68, 425–447. [Google Scholar] [CrossRef]
- Loi, M.; Fanelli, F.; Liuzzi, V.C.; Logrieco, A.F.; Mulè, G. Mycotoxin biotransformation by native and commercial enzymes: Present and future perspectives. Toxins 2017, 9, 111. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Chen, X.; You, X.; Huang, J.; Xue, D. Zearalenone degrading enzyme evolution to increase the hydrolysis efficiency under acidic conditions by the rational design. Food Chem. 2024, 456, 140088. [Google Scholar] [CrossRef] [PubMed]
- Tso, K.-H.; Ju, J.-C.; Fan, Y.-K.; Chiang, H.-I. Enzyme degradation reagents effectively remove mycotoxins deoxynivalenol and zearalenone from pig and poultry artificial digestive juices. Toxins 2019, 11, 599. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Guidance on the assessment of the efficacy of feed additives. EFSA J. 2018, 16, e05274. [Google Scholar] [CrossRef] [PubMed]
- Dänicke, S.; Ueberschär, K.H.; Halle, I.; Valenta, H.; Flachowsky, G. Excretion kinetics and metabolism of zearalenone in broilers in dependence on a detoxifying agent. Arch. Anim. Nutr. 2001, 55, 299–313. [Google Scholar] [CrossRef]
- Bruinenberg, P.G.; Castex, M. Evaluation of a yeast hydrolysate from a novel strain of saccharomyces cerevisiae for mycotoxin mitigation using in vitro and in vivo models. Toxins 2021, 14, 7. [Google Scholar] [CrossRef]
- Bünger, M.; Dippel, M.; Ruczizka, U.; Nagl, V.; Grenier, B.; Ladinig, A. Mykotoxine und ihr Einfluss auf die Schweinegesundheit. Tieraerztliche Umsch. Pferd Nutztier 2020, 3, 22–28. [Google Scholar]



| Analyte | Measured Form | Precursor Ion (m/z) | Quantifier Ion Qualifier Ion (m/z) | Declustering Potential (V) | Collision Energy (V) | Collision Cell Exit Potential (V) | Entrance Potential (V) | Retention Time (min) |
|---|---|---|---|---|---|---|---|---|
| ZEN | [M-H]− | 317 | 131 175 | −100 | −42 −34 | −9 −7 | −10 | 5.43 |
| ZELs | [M-H]− | 319 | 160 275 | −105 | −42 −30 | −9 −7 | −10 | 4.19 (β-ZEL) 4.76 (α-ZEL) |
| HZEN | [M-H]− | 335 | 149 161 | −80 | −34 | −1 −9 | −10 | 3.85 |
| DHZEN | [M-H]− | 291 | 123 161 41 | −110 −80 −110 | −18 −25 −112 | −7 −8 −7 | −10 | 3.22 |
| 13C ZEN | [M-H]− | 335 | 184 140 | −5 | −34 −40 | −21 −11 | −10 | 5.43 |
| D5 ZELs | [M-H]− | 324 | 280 160 | −175 | −28 −40 | −17 −19 | −10 | 4.19 (β-ZEL) 4.76 (α-ZEL) |
| 13C DHZEN | [M-H]− | 308 | 158 171 | −35 | −26 | −11 −9 | −10 | 3.22 |
| 13C HZEN | [M-H]− | 353 | 158 171 | −165 | −34 −30 | −13 −7 | −10 | 3.85 |
| ZEN | α-ZEL | β-ZEL | HZEN | DHZEN | ||
|---|---|---|---|---|---|---|
| Linear range (ng/mL) | 0.125–100 | 0.125–100 | 0.125–100 | 0.125–100 | 0.125–100 | |
| Concentration in plasma (ng/mL) | 0.05–10 | 0.1–10 | 0.1–10 | 0.1–10 | 0.1–10 | |
| LOQ in plasma (ng/mL) | 0.05 | 0.1 | 0.1 | 0.1 | 0.1 | |
| Accuracy (%) | Low 0.05 ppb | 82–114 | NA | NA | NA | NA |
| Low 0.1 ppb | 91–116 | 85–116 | 87–117 | 83–117 | 93–119 | |
| Middle 1 ppb | 91–110 | 84–116 | 85–116 | 88–103 | 92–114 | |
| High 10 ppb | 88–108 | 80–106 | 82–115 | 88–102 | 90–112 | |
| Precision (interday, %) | Low 0.05 ppb | 12.1 | NA | NA | NA | NA |
| Low 0.1 ppb | 8.9 | 9.8 | 10.0 | 10.0 | 8.5 | |
| Middle 1 ppb | 6.1 | 10.6 | 13.5 | 4.9 | 6.1 | |
| High 10 ppb | 6.1 | 11.1 | 14.3 | 3.7 | 6.4 | |
| Precision (intraday, %) | Low 0.05 ppb | 6.8 | NA | NA | NA | NA |
| Low 0.1 ppb | 5.0 | 1.3 | 5.2 | 3.5 | 3.7 | |
| Middle 1 ppb | 4.5 | 2.3 | 1.7 | 2.7 | 4.9 | |
| High 10 ppb | 4.8 | 5.0 | 3.6 | 4.3 | 6.4 |
| ZEN | α-ZEL | β-ZEL | HZEN | DHZEN | ||
|---|---|---|---|---|---|---|
| Linear range (ng/mL) | 0.05–10 | 0.05–10 | 0.05–10 | 0.05–10 | 0.05–10 | |
| Concentration in urine at 0.5 mM Crea (ng/mL) | 0.05–10 | 0.1–10 | 0.1–10 | 0.1–10 | 1–10 | |
| LOQ in urine at 0.5 mM Crea (ng/mL) | 0.05 | 0.1 | 0.1 | 0.1 | 1 | |
| Accuracy (%) | Low 0.05 ppb | 99–123 | NA | NA | NA | NA |
| Low 0.1 ppb | 86–123 | 85−116 | 87–113 | 82–119 | NA | |
| Middle 1 ppb | 106–130 | 78–100 | 83–121 | 100–119 | 98–125 | |
| High 10 ppb | 102–117 | 77–98 | 90–123 | 101–128 | 103–115 | |
| Precision (interday, %) | Low 0.05 ppb | 7.8 | NA | NA | NA | NA |
| Low 0.1 ppb | 13.9 | 10.0 | 9.8 | 12.9 | NA | |
| Middle 1 ppb | 7.7 | 7.8 | 13.3 | 6.5 | 7.5 | |
| High 10 ppb | 3.9 | 8.2 | 10.2 | 8.2 | 5.1 | |
| Precision (intraday, %) | Low 0.05 ppb | 6.6 | NA | NA | NA | NA |
| Low 0.1 ppb | 8.4 | 5.4 | 10.2 | 8.4 | NA | |
| Middle 1 ppb | 3.0 | 2.0 | 2.0 | 2.4 | 6.9 | |
| High 10 ppb | 1.4 | 4.0 | 4.7 | 1.2 | 3.1 |
| Matrix | Day | ZEN | ZEN + ZenA | Reduction (%) |
|---|---|---|---|---|
| Plasma | 7 | 1.76 ± 0.75 a | 0.98 ± 0.15 b | 44.3 |
| 13 | 1.77 ± 0.71 a | 1.10 ± 0.36 b | 37.9 | |
| 26 | 1.19 ± 0.21 a | 1.02 ± 0.26 b | 14.3 | |
| 42 | 1.37 ± 0.20 a | 1.04 ± 0.19 b | 24.1 | |
| Urine | 7 | 63.39 ± 34.26 a | 22.27 ± 4.99 b | 64.9 |
| 13 | 79.29 ± 36.57 a | 37.58 ± 13.81 b | 52.6 | |
| 26 | 45.22 ± 13.74 a | 32.86 ± 7.24 b | 27.3 | |
| 42 | 62.35 ± 19.20 a | 42.90 ± 11.37 b | 31.2 | |
| Feces | 7 | 1147.26 ± 307.24 a | 528.68 ± 65.93 b | 53.9 |
| 13 | 1432.93 ± 638.93 a | 637.50 ± 140.26 b | 55.5 | |
| 26 | 759.48 ± 284.27 a | 443.21 ± 120.00 b | 42.6 | |
| 42 | 837.78 ± 175.27 a | 571.41 ± 126.66 b | 31.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Streit, B.; Schöndorfer, K.; Killinger, M.; Höbartner-Gussl, A.; Nagl, V.; Doupovec, B. Biomarker-Based Evaluation of a Zearalenone-Degrading Enzyme in Broilers and Piglets Across Multiple Biological Matrices. Agriculture 2025, 15, 2217. https://doi.org/10.3390/agriculture15212217
Streit B, Schöndorfer K, Killinger M, Höbartner-Gussl A, Nagl V, Doupovec B. Biomarker-Based Evaluation of a Zearalenone-Degrading Enzyme in Broilers and Piglets Across Multiple Biological Matrices. Agriculture. 2025; 15(21):2217. https://doi.org/10.3390/agriculture15212217
Chicago/Turabian StyleStreit, Barbara, Karin Schöndorfer, Manuela Killinger, Andreas Höbartner-Gussl, Veronika Nagl, and Barbara Doupovec. 2025. "Biomarker-Based Evaluation of a Zearalenone-Degrading Enzyme in Broilers and Piglets Across Multiple Biological Matrices" Agriculture 15, no. 21: 2217. https://doi.org/10.3390/agriculture15212217
APA StyleStreit, B., Schöndorfer, K., Killinger, M., Höbartner-Gussl, A., Nagl, V., & Doupovec, B. (2025). Biomarker-Based Evaluation of a Zearalenone-Degrading Enzyme in Broilers and Piglets Across Multiple Biological Matrices. Agriculture, 15(21), 2217. https://doi.org/10.3390/agriculture15212217

