Bio-Regulatory Mechanisms of Straw Incorporation in Haplic Phaeozem Region: Soil Ecosystem Responses Driven by Multi-Factor Interactions
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Test Design
2.3. Sample Collection
2.4. Indicator Determination
2.4.1. Soil Nutrient Determination
2.4.2. Soil Enzyme Activity Determination
2.4.3. Soil Carbon Pool Determination
2.4.4. Soil Microbial Community Determination
2.4.5. Straw Decomposition Rate Calculation
2.5. Data Analysis
2.5.1. Path Analysis Model
2.5.2. Factor Analysis Model
3. Results
3.1. Response of Soil Ecosystem After Straw Return
3.2. Impact of Straw Returning Factors on Soil Ecosystems
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| POC | Particulate organic carbon |
| WDOC | Water-soluble organic carbon |
| ROC | Easily oxidizable organic carbon |
| TOC | Total organic carbon |
| MBC | Microbial biomass carbon |
References
- Jiang, M.D.; Yang, N.P.; Zhao, J.S.; Shaaban, M.; Hu, R.G. Crop straw incorporation mediates the impacts of soil aggregate size on greenhouse gas emissions. Geoderma 2021, 401, 115342. [Google Scholar] [CrossRef]
- Liu, R.Z.; Borjigin, Q.; Gao, J.L.; Yu, X.F.; Hu, S.P.; Li, R.P. Effects of different straw return methods on soil properties and yield potential of maize. Sci. Rep. 2025, 14, 28682. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.H.; Ma, F.Y.; Hu, T.X.; Zhao, K.G.; Gao, T.P.; Zhao, H.X.; Ning, T.Y. Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices. Agric. Water Manag. 2020, 229, 105933. [Google Scholar] [CrossRef]
- Ul Islam, M.; Guo, Z.C.; Jiang, F.H.; Peng, X.H. Does straw return increase crop yield in the wheat-maize cropping system in China? A meta-analysis. Field Crops Res. 2022, 279, 108447. [Google Scholar] [CrossRef]
- Ma, L.J.; Kong, F.X.; Lü, X.B.; Wang, Z.; Zhou, Z.G.; Meng, Y.L. Responses of greenhouse gas emissions to different straw management methods with the same amount of carbon input in cotton field. Soil Tillage Res. 2021, 213, 105126. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, F.H.; Yang, L. Continuous straw returning enhances the carbon sequestration potential of soil aggregates by altering the quality and stability of organic carbon. J. Environ. Manag. 2024, 358, 120903. [Google Scholar] [CrossRef]
- Li, Y.M.; Duan, Y.; Wang, G.L.; Wang, A.Q.; Shao, G.Z.; Meng, X.H.; Hu, H.Y.; Zhang, D.M. Straw alters the soil organic carbon composition and microbial community under different tillage practices in a meadow soil in Northeast China. Soil Tillage Res. 2021, 208, 104879. [Google Scholar] [CrossRef]
- Ul Islam, M.; Jiang, F.H.; Halder, M.; Barman, A.; Liu, S.; Peng, X.H. Quantitative assessment of different straw management practices on soil organic carbon and crop yield in the Chinese upland soils: A data-driven approach based on simulation and prediction model. Eur. J. Agron. 2024, 154, 127092. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Zhang, Z.Y.; Lu, P.R.; Feng, G.X.; Qi, W. Soil water-salt dynamics and maize growth as affected by cutting length of topsoil incorporation straw under brackish water irrigation. Agronomy 2020, 10, 246. [Google Scholar] [CrossRef]
- Deng, Y.P.; Sun, C.T.; Zhang, J.P.; Sun, J.S.; Mao, W.B.; Sun, Y.X.; Ping, W.C.; Li, B. Simulation of the effects of straw mulching on the micro-climate and soil evaporation of coastal saline soil. Agric. Res. Arid Areas 2021, 39, 202–210. [Google Scholar] [CrossRef]
- Zou, W.X.; Han, X.Z.; Yan, J.; Chen, X.; Lu, X.C.; Qiu, C.; Hao, X.X. Effects of incorporation depth of tillage and straw returning on soil physical properties of black soil in Northeast China. Trans. Chin. Soc. Agric. Eng. 2020, 36, 9–18. [Google Scholar] [CrossRef]
- Liu, S.J.; Feng, Q.P.; Wang, C.Y.; Sun, J.L.; Yao, J.H.; Wang, Y.H.; Liu, S.X. Effects of different straw returning methods on soil moisture characteristics. J. Jilin Agric. Univ. 2022, 47, 323–331. [Google Scholar] [CrossRef]
- Yang, B.; Li, P. Research on the Construction of Agricultural Machinery Operation Management Information System in Heilongjiang Reclamation Area. Mod. Agric. 2018, 1, 65–66. [Google Scholar]
- Li, Y.S. Research and Development of Multi-Index Agricultural Machinery Operation Efficiency Evaluation Methods and Application System for Deep Loosening Operations. Chin. Acad. Agric. Mech. Sci. 2025, 3, 2–14. [Google Scholar] [CrossRef]
- Li, R.R.; Wang, C.; Li, H.W.; He, J.; Lu, C.Y.; Su, X.T.; Hu, P. Research Progress on Straw Return Technology and Equipment. J. China Agric. Univ. 2025, 30, 103–120. [Google Scholar] [CrossRef]
- Sheng, C.; Da, H.; Li, Z.; Guo, X.P.; Zhang, S.X.; Cao, X.C. Research progress on the effects of returning straw to the field on soil physicochemical properties and water-fertilizer conditions. J. Irrig. Drain. 2022, 41, 1–11. [Google Scholar]
- He, P.; Li, L.J.; Dai, S.S.; Guo, X.L.; Nie, M.; Yang, X.C.; Kuzyakov, Y. Straw addition and low soil moisture decreased temperature sensitivity and activation energy of soil organic matter. Geoderma 2024, 442, 116802. [Google Scholar] [CrossRef]
- Li, S.; Guo, M.L.; Fan, H.M.; Jia, Y.F.; Ma, R.M. Dynamics of Soil Temperature Under Different Methods of StrawRestoration in Black Soil During Seasonal Freeze-Thaw Period. J. Soil Water Conserv. 2024, 38, 288–299. [Google Scholar]
- Huang, T.; Wen, S.; Zhang, M.; Pan, Y.Y.; Chen, X.P.; Pu, X.; Zhang, M.M.; Dang, P.F.; Meng, M.; Wang, W.; et al. Effect on greenhouse gas emissions (CH4 and N2O) of straw mulching or its incorporation in farmland ecosystems in China. Sustain. Prod. Consum. 2024, 46, 223–232. [Google Scholar] [CrossRef]
- Che, W.K.; Piao, J.L.; Gao, Q.; Li, X.B.; Li, X.; Feng, J. Response of soil physicochemical properties, soil nutrients, enzyme activity and rice yield to rice straw returning in highly saline-alkali paddy soils. J. Soil Sci. Plant Nutr. 2023, 23, 4396–4411. [Google Scholar] [CrossRef]
- Chen, L.M.; Sun, S.L.; Yao, B.; Peng, Y.T.; Gao, C.F.; Qin, T.; Zhou, Y.Y.; Sun, C.R.; Quan, W. Effects of straw return and straw biochar on soil properties and crop growth: A review. Front. Plant Sci. 2022, 13, 986763. [Google Scholar] [CrossRef]
- Guan, Y.P.; Wu, M.K.; Che, S.H.; Yuan, S.; Yang, X.; Li, S.Y.; Tian, P.; Wu, L.; Yang, M.Y.; Wu, Z.H. Effects of continuous straw returning on soil functional microorganisms and microbial communities. J. Microbiol. 2023, 61, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Xia, H.; Jiang, C.C.; Riaz, M.; Yang, L.; Chen, Y.F.; Fan, X.P.; Xia, X.G. 14 year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice-wheat rotation of middle China. Sci. Total Environ. 2022, 841, 156608. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.C.; Jin, C.M.; Zhou, H.R.; Wang, E.Z.; Huang, X.M.; Zhou, D.X. Screening indices for cadmium-contaminated soil using earthworm as bioindicator. Environ. Sci. Pollut. Res. 2018, 25, 32358–32372. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.X.; Ning, Y.C.; Jin, C.M.; Liu, L.Y.; Pan, X.L.; Cao, X. Correlation of the oxidative stress indices and Cd exposure using a mathematical model in the earthworm, Eisenia fetida. Chemosphere 2019, 216, 157–167. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, Z.Z.; Tian, Y.; Cui, Y.T.; Liang, Y.; Wang, H.Y. Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain. Sci. Total Environ. 2020, 722, 137428. [Google Scholar] [CrossRef]
- Rong, G.H.; Ning, Y.C.; Cao, X.; Su, Y.; Li, J.; Li, L.; Liu, L.Y.; Zhou, D.X. Evaluation of optimal straw incorporation characteristics based on quadratic orthogonal rotation combination design. J. Agric. Sci. 2018, 156, 367–377. [Google Scholar] [CrossRef]
- Zhou, D.X.; Su, Y.; Ning, Y.C.; Rong, G.H.; Wang, G.D.; Liu, D.; Liu, L.Y. Estimation of the effects of maize straw return on soil carbon and nutrients using response surface methodology. Pedosphere 2018, 28, 411–421. [Google Scholar] [CrossRef]
- Ning, Y.C.; Wang, X.; Yang, Y.N.; Cao, X.; Wu, Y.L.; Zou, D.T.; Zhou, D.X. Studying the effect of straw returning on the interspecific symbiosis of soil microbes based on carbon source utilization. Agriculture 2022, 12, 1053. [Google Scholar] [CrossRef]
- Zhou, X.Q.; Chen, R.C.; Wu, H.W.; Xu, Z.H. Dynamics of soil extractable carbon and nitrogen under different cover crop residues. J. Soils Sediments 2012, 12, 844–853. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analysis; China Agricultural Press: Beijing, China, 2000; pp. 20–125. [Google Scholar]
- Li, Z.G.; Luo, Y.M.; Teng, Y. Soil and Environmental Microbial Research Method; Science Press: Beijing, China, 2008; pp. 28–231. [Google Scholar]
- Guan, S.Y. Soil Enzymes and Their Research Methods; Agricultural Press: Beijing, China, 1986; pp. 248–339. [Google Scholar]
- Ouedraogo, E.; Mando, A.; Stroosnijder, L. Effects of tillage, organic resources and nitrogen fertilizer on soil carbon dynamics and crop nitrogen uptake in semi-arid West Africa. Soil Tillage Res. 2006, 91, 57–67. [Google Scholar] [CrossRef]
- Jiang, P.K.; Xu, Q.F.; Xu, Z.H.; Cao, Z.H. Seasonal changes in soil labile organic carbon pools within a Phyllostachys praecox stand under high rate fertilization and winter mulch in subtropical China. For. Ecol. Manag. 2006, 236, 30–36. [Google Scholar] [CrossRef]
- Weil, R.R.; Islam, K.R.; Stine, M.A.; Gruver, J.B.; Samon-Liebig, S.E. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. Am. J. Altern. Agric. 2009, 18, 3–17. [Google Scholar] [CrossRef]
- Zhou, D.X.; Liang, X.Y.; Wang, J.H.; Wang, S.B.; Li, X.; Ning, Y.C. Study on the regulatory mechanism of the earthworm microbial community in vitro and in vivo under cadmium stress. Environ. Pollut. 2021, 279, 116891. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.X.; Wang, S.B.; Liang, X.Y.; Wang, J.H.; Zhu, X.; Ning, Y.C. The relationship between the oxidative stress reaction and the microbial community by a combinative method of PA and CCA. Sci. Total Environ. 2021, 763, 143042. [Google Scholar] [CrossRef]
- Zhou, D.X.; Ning, Y.C.; Wang, B.; Wang, G.D.; Su, Y.; Li, L.; Wang, Y. Study on the influential factors of Cd2+ on the earthworm Eisenia fetida in oxidative stress based on factor analysis approach. Chemosphere 2016, 157, 181–189. [Google Scholar] [CrossRef]
- Zhao, S.C.; Qiu, S.J.; Xu, X.P.; Ciampitti, I.A.; Zhang, S.Q.; He, P. Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils. Appl. Soil Ecol. 2019, 138, 123–133. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, P.; Kumar, S. Responses of soil carbon pools, enzymatic activity, and crop yields to nitrogen and straw incorporation in a rice-wheat cropping system in north-western India. Front. Sustain. Food Syst. 2020, 4, 532704. [Google Scholar] [CrossRef]
- Zhu, D.D.; Zhang, L.; Wang, Z.; Muhammad, R.K.; Lu, J.W.; Li, X.K. Soil available potassium affected by rice straw incorporation and potassium fertilizer application under a rice–oilseed rape rotation system. Soil Use Manag. 2019, 35, 503–510. [Google Scholar] [CrossRef]
- Shu, X.W.; Wang, S.S.; Fu, T.; Ding, Z.Y.; Yang, Y.; Wang, Z.H.; Zhao, S.R.; Xu, J.J.; Zhou, J.; Ju, J.; et al. Response difference and its cause reasons for simplified panicle fertilization in different rice varieties after wheat straw return. Sci. Agric. Sin. 2024, 57, 1961–1978. [Google Scholar] [CrossRef]
- Guo, L.J.; Zhang, L.; Liu, L.; Sheng, F.; Cao, C.G.; Li, C.F. Effects of long-term no tillage and straw return on greenhouse gas emissions and crop yields from a rice-wheat system in central China. Agric. Ecosyst. Environ. 2021, 322, 107650. [Google Scholar] [CrossRef]
- Kuypers, M.; Marchant, H.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef]
- Larsen, S.U.; Thomsen, I.K.; Thers, H.; Eriksen, J.; Hansen, E.M. Nitrate leaching from silage maize is more related to biomass N concentration at harvest time than inclusion of undersown cover crops. Nutr. Cycl. Agroecosyst. 2025, 131, 307–328. [Google Scholar] [CrossRef]
- Nepal, J.; Xin, X.P.; Maltais-Landry, G.; Ahmad, W.; Wright, A.L.; Ogram, A.; Stoffella, P.J.; He, Z.L. Comparing carbon nanomaterial and biochar as soil amendment in field: Influences on soil biochemical properties in coarse-textured soils. Nutr. Cycl. Agroecosyst. 2025, 130, 233–253. [Google Scholar] [CrossRef]
- Huang, R.X.; Zhou, J.H.; Tian, S.N.; Yuan, Y.H.; Cheng, K.; Tang, J.J.; Wu, X.Y.; Fan, H.B. Effects of caenorhabditis elegans on soil microbial activities and petroleum degradation in petroleum contaminated soil. Acta Sci. Circumstantiae 2017, 37, 4322–4328. [Google Scholar] [CrossRef]
- Chen, J.Y.; Luo, C.Y.; Qiu, H.Z.; Deng, D.L.; Zhang, C.H.; Guo, Y.J.; Zhang, J.B. Effects of application of different nitrogen levels on decomposition characteristics and nutrient release of returning straw. Agric. Res. Arid Areas 2020, 38, 101–106. [Google Scholar]
- Wang, S.C.; Lu, C.G.; Huai, S.C.; Yan, Z.H.; Wang, J.Y.; Sun, J.Y.; Sajjad, R. Straw burial depth and manure application affect the straw-C and Nsequestration: Evidence from 13C & 15N-tracing. Soil Tillage Res. 2021, 208, 104884. [Google Scholar] [CrossRef]
- Riggs, C.E. Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils. Soil Biol. Biochem. 2016, 99, 54–65. [Google Scholar] [CrossRef]
- Zang, H.; Wang, J.; Kuzyakov, Y. N fertilization decreases soil organic matter decomposition in the rhizosphere. Appl. Soil Ecol. 2016, 108, 47–53. [Google Scholar] [CrossRef]
- Dick, W.A.; Cheng, L.; Wang, P. Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biol. Biochem. 2000, 32, 1915–1919. [Google Scholar] [CrossRef]
- Yu, Y.J.; Li, L.Z.; Yu, L.H.; Lin, B.G.; Chen, X.C.; Li, H.; Han, Q.; Ge, Q.Z.; Li, H.Y. Effect of exposure to decabromodiphenyl ether and tetrabromobisphenol A in combination with lead and cadmium on soil enzyme activity. Int. Biodeterior. Biodegrad. 2017, 117, 45–51. [Google Scholar] [CrossRef]
- Nabi, F.; Chen, H.; Sajid, S.; Yang, G.T.; Kkung, Y.; Shah, S.M.M.; Wang, X.C.; Hu, Y.G. Degradation of agricultural waste is dependent on chemical fertilizers in long-term paddy-dry rotation field. J. Environ. Manag. 2024, 355, 120460. [Google Scholar] [CrossRef]
- Hu, Y.J.; Xia, Y.H.; Sun, Q.; Liu, K.P.; Chen, X.B.; Ge, T.D.; Zhu, B.L.; Zhu, Z.K.; Zhang, Z.H.; Su, Y.R. Effects of long-term fertilization on phoD-harboring bacterial community in Karst soils. Sci. Total Environ. 2018, 628–629, 53–63. [Google Scholar] [CrossRef]
- Long, X.E.; Yao, H.Y.; Huang, Y.; Wei, W.X.; Zhu, Y.G. Phosphate levels influence the utilisation of rice rhizodeposition carbon and the phosphate-solubilising microbial community in a paddy soil. Soil Biol. Biochem. 2018, 118, 103–114. [Google Scholar] [CrossRef]
- Spohn, M.; Kuzyakov, Y. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biol. Biochem. 2013, 61, 69–75. [Google Scholar] [CrossRef]
- Chen, J.P.; Huang, S.J.; Chen, T.; Fang, X.P.; Ma, X.P.; Guo, W.T.; Huang, C.Y. Effects of different mulching patterns on soil active organic carbon components and related enzyme activities in cherry orchard. Southwest China J. Agric. Sci. 2021, 34, 2465–2472. [Google Scholar] [CrossRef]
- Huang, Y.L.; Chen, L.D.; Fu, B.J.; Huang, Z.L.; Gong, J. The wheat yields and water use efficiency in the Loess Plateau:straw mulch and irrigation effects. Agric. Water Manag. 2005, 72, 209–222. [Google Scholar] [CrossRef]
- Hua, L.; Yang, Z.; Li, W.; Zhao, Y.; Xia, J.; Dong, W.; Chen, B. Effects of Different Straw Return Modes on Soil Carbon, Nitrogen, and Greenhouse Gas Emissions in the Semiarid Maize Field. Plants 2024, 13, 2503. [Google Scholar] [CrossRef] [PubMed]
- Lian, Y.C.; Zhao, Y.X.; Xu, W.W.; Zhao, Y.Q.; Zhao, Y. Maize stalk mulching significantly influences the cyanobacterial communities and alpha diversity in artificial cyanobacterial crusts in arid sandy areas. Appl. Soil Ecol. 2025, 211, 106093. [Google Scholar] [CrossRef]
- Gao, W.Z.; Li, T.Q. Research progress on the impact and mechanisms of different passivators on soil organic carbon transformation. Chin. J. Appl. Ecol. 2024, 35, 2291–2300. [Google Scholar] [CrossRef]
- Mao, X.R.; Shen, Y.Y.; Chu, J.Z.; Xu, G.Z.; Wang, Z.H.; Cao, Y.; Chen, Y.S.; Zhang, D.N.; Sun, Y.J.; Huang, K.C. Effects of simulated nitrogen deposition on soil organic carbon fractions and carbon pool management indicators in mid-subtropical eucalyptus plantations. Environ. Sci. 2024, 46, 1032–1045. [Google Scholar] [CrossRef]
- Lemke, R.L.; VandenBygaat, A.J.; Camphell, C.A.; Lafond, G.P.; Grant, B. Crop residue removal and fertilizer N: Effects on soil organic carbon in a long-term crop rotation experiment on a Udic Boroll. Agric. Ecosyst. Environ. 2010, 135, 42–51. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Jin, M.C.; Ma, C.; Guang, M.; Gao, M.; Gao, H.J. Impacts of exogenous nitrogen and effective microorganism on the decomposition of wheat straw residues. Ecol. Environ. Sci. 2019, 28, 612–619. [Google Scholar]
- Wang, X.S.; Mi, X.T.; Sun, L.Q.; He, G.; Wang, Z.H. Straw return cannot prevent soil potassium depletion in wheat fields of drylands. Eur. J. Agron. 2023, 143, 126728. [Google Scholar] [CrossRef]
- Yang, W.H.; Luo, H.C.; Dong, E.W.; Wang, J.S.; Wang, Y.; Liu, Q.X.; Huang, X.L.; Jiao, X.Y. Effects of long-term fertilization and deep plough on crop potassium utilization and soil potassium forms in maize-sorghum rotation system. Sci. Agric. Sin. 2024, 57, 2390–2403. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Liu, D.B.; Wu, M.Q.; Xia, Y.; Zhang, F.L.; Fan, X.P. Long-term straw returning improve soil K balance and potassium supplying ability under rice and wheat cultivation. Sci. Rep. 2021, 11, 22260. [Google Scholar] [CrossRef]
- Xi, K.P.; Yang, S.L.; Xi, J.L.; Li, Y.S.; Zhang, J.C.; Wu, X.P. Effects of long-term cotton straw incorporation and manure application on soil characters and cotton yield. Soil Fertil. Sci. China 2022, 7, 82–90. [Google Scholar] [CrossRef]




| Type | Total N g/kg | Total P g/kg | Available K mg/kg | Total K g/kg | Total C g/kg | pH |
|---|---|---|---|---|---|---|
| Soil | 2.13 ± 0.10 | 2.79 ± 0.06 | 180.20 ± 0.14 | 23.12 ± 0.18 | 6.27 ± 0.08 | |
| Straw | 13.23 ± 0.12 | 4.63 ± 0.03 | 15.76 ± 0.09 | 481.0 ± 0.53 |
| Treatment Number | Code Value | Actual Value | ||||
|---|---|---|---|---|---|---|
| Test Factor A | Test Factor B | Test Factor C | Straw Length cm | Straw Amount kg/hm2 | Straw Buried Depth cm | |
| 1 | 1 | 1 | 1 | 20 | 6800 | 20 |
| 2 | 1 | 1 | −1 | 20 | 6800 | 10 |
| 3 | 1 | −1 | 1 | 20 | 2800 | 20 |
| 4 | 1 | −1 | −1 | 20 | 2800 | 10 |
| 5 | −1 | 1 | 1 | 10 | 6800 | 20 |
| 6 | −1 | 1 | −1 | 10 | 6800 | 10 |
| 7 | −1 | −1 | 1 | 10 | 2800 | 20 |
| 8 | −1 | −1 | −1 | 10 | 2800 | 10 |
| 9 | 1.682 | 0 | 0 | 25 | 4800 | 15 |
| 10 | −1.682 | 0 | 0 | 5 | 4800 | 15 |
| 11 | 0 | 1.682 | 0 | 15 | 8000 | 15 |
| 12 | 0 | −1.682 | 0 | 15 | 1600 | 15 |
| 13 | 0 | 0 | 1.682 | 15 | 4800 | 25 |
| 14 | 0 | 0 | −1.682 | 15 | 4800 | 5 |
| 15 | 0 | 0 | 0 | 15 | 4800 | 15 |
| 16 | 0 | 0 | 0 | 15 | 4800 | 15 |
| 17 | 0 | 0 | 0 | 15 | 4800 | 15 |
| 18 | 0 | 0 | 0 | 15 | 4800 | 15 |
| 19 | 0 | 0 | 0 | 15 | 4800 | 15 |
| 20 | 0 | 0 | 0 | 15 | 4800 | 15 |
| Straw Returning Time (Day) | Polynomial | Regression Equation | Variance Analysis | ||||
|---|---|---|---|---|---|---|---|
| Coefficients | Type | Sum of Squares | df | F Value | p Value | ||
| 30 | A | −3.51 | Cubic Model | 168.09 | 1 | 0.25 | 0.6284 |
| B | 4.29 | 103.88 | 1 | 0.15 | 0.7030 | ||
| C | −9.94 | 1348.80 | 1 | 1.99 | 0.1861 | ||
| BC | −11.36 | 1031.98 | 1 | 1.52 | 0.2431 | ||
| A2 | 13.10 | 2499.61 | 1 | 3.69 | 0.0812 | ||
| C2 | −11.99 | 2093.04 | 1 | 3.09 | 0.1067 | ||
| ABC | 27.16 | 5900.25 | 1 | 8.70 | 0.0132 | ||
| A2B | 13.12 | 570.10 | 1 | 0.84 | 0.3789 | ||
| Constant | 525.47 | ||||||
| Model | 16,022.64 | 8 | 2.95 | 0.0497 | |||
| Lack of Fit | 4190.61 | 6 | 1.07 | 0.4812 | |||
| 45 | A | 11.00 | Quadratic Model | 1653.20 | 1 | 2.83 | 0.1206 |
| B | 11.83 | 1912.06 | 1 | 3.28 | 0.0977 | ||
| C | −14.49 | 2867.58 | 1 | 4.91 | 0.0487 | ||
| AB | 16.75 | 2244.67 | 1 | 3.84 | 0.0757 | ||
| BC | 13.27 | 1409.28 | 1 | 2.41 | 0.1485 | ||
| A2 | 14.82 | 3166.21 | 1 | 5.42 | 0.0400 | ||
| B2 | 12.42 | 2223.73 | 1 | 3.81 | 0.0769 | ||
| C2 | 6.74 | 654.19 | 1 | 1.12 | 0.3125 | ||
| Constant | 367.98 | ||||||
| Model | 15,266.61 | 8 | 3.27 | 0.0363 | |||
| Lack of Fit | 5128.64 | 6 | 3.30 | 0.1053 | |||
| 60 | A | −27.12 | Quadratic Model | 10,042.46 | 1 | 12.16 | 0.0059 |
| B | 0.72 | 7.14 | 1 | 0.00 | 0.9278 | ||
| C | −16.98 | 3938.61 | 1 | 4.77 | 0.0539 | ||
| AB | −7.61 | 462.95 | 1 | 0.56 | 0.4713 | ||
| AC | 12.78 | 1305.98 | 1 | 1.58 | 0.2372 | ||
| BC | 3.30 | 87.33 | 1 | 0.11 | 0.7518 | ||
| A2 | −22.46 | 7270.07 | 1 | 8.80 | 0.0141 | ||
| B2 | −18.60 | 4987.37 | 1 | 6.04 | 0.0338 | ||
| C2 | −16.58 | 3959.81 | 1 | 4.79 | 0.0534 | ||
| Constant | 390.34 | ||||||
| Model | 29,445.81 | 9 | 3.96 | 0.0214 | |||
| Lack of Fit | 6450.34 | 5 | 3.56 | 0.0948 | |||
| 75 | A | −3.58 | Quadratic Model | 174.93 | 1 | 0.40 | 0.5397 |
| B | −5.24 | 375.04 | 1 | 0.86 | 0.3744 | ||
| C | −10.83 | 1601.80 | 1 | 3.69 | 0.0836 | ||
| AB | 9.18 | 674.50 | 1 | 1.55 | 0.2409 | ||
| AC | 5.43 | 236.16 | 1 | 0.54 | 0.4776 | ||
| BC | −15.30 | 1871.96 | 1 | 4.31 | 0.0645 | ||
| A2 | −13.75 | 2726.36 | 1 | 6.28 | 0.0311 | ||
| B2 | −18.37 | 4860.69 | 1 | 11.20 | 0.0074 | ||
| C2 | −1.60 | 36.99 | 1 | 0.09 | 0.7763 | ||
| Constant | 462.39 | ||||||
| Model | 11,891.64 | 9 | 3.05 | 0.0488 | |||
| Lack of Fit | 1796.97 | 5 | 0.71 | 0.6435 | |||
| 90 | A | −35.36 | Cubic Model | 7071.86 | 1 | 12.23 | 0.0129 |
| B | 0.94 | 5.05 | 1 | 0.00 | 0.9286 | ||
| C | 36.50 | 7538.23 | 1 | 13.04 | 0.0112 | ||
| AB | 1.01 | 8.19 | 1 | 0.01 | 0.9091 | ||
| AC | 23.61 | 4458.34 | 1 | 7.71 | 0.0321 | ||
| BC | −10.67 | 910.72 | 1 | 1.57 | 0.2562 | ||
| A2 | −16.61 | 3976.47 | 1 | 6.88 | 0.0395 | ||
| B2 | −13.21 | 2514.22 | 1 | 4.35 | 0.0821 | ||
| C2 | 17.91 | 4623.66 | 1 | 8.00 | 0.0300 | ||
| ABC | 21.83 | 3813.21 | 1 | 6.59 | 0.0425 | ||
| A2B | 10.95 | 397.50 | 1 | 0.69 | 0.4388 | ||
| A2C | −58.02 | 11,154.31 | 1 | 19.29 | 0.0046 | ||
| AB2 | 48.90 | 7923.15 | 1 | 13.70 | 0.0101 | ||
| Constant | 429.64 | ||||||
| Model | 42,259.12 | 13 | 5.62 | 0.0219 | |||
| Lack of Fit | 1277.19 | 1 | 2.91 | 0.1486 | |||
| 105 | A | 27.34 | Quadratic Model | 10,211.47 | 1 | 16.10 | 0.0025 |
| B | 14.87 | 3018.61 | 1 | 4.76 | 0.0541 | ||
| C | −15.05 | 3093.54 | 1 | 4.88 | 0.0517 | ||
| AB | 15.98 | 2042.84 | 1 | 3.22 | 0.1029 | ||
| AC | −6.49 | 337.48 | 1 | 0.53 | 0.4825 | ||
| BC | −44.84 | 16,082.44 | 1 | 25.36 | 0.0005 | ||
| A2 | −3.12 | 140.15 | 1 | 0.22 | 0.6484 | ||
| B2 | 4.25 | 259.82 | 1 | 0.41 | 0.5365 | ||
| C2 | 17.44 | 4381.65 | 1 | 6.91 | 0.0252 | ||
| Constant | 431.46 | ||||||
| Model | 39,638.32 | 9 | 6.94 | 0.0028 | |||
| Lack of Fit | 4133.34 | 5 | 1.87 | 0.2541 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, Y.; Chen, Z.; Xu, R.; Yang, Y.; Wang, S.; Zhou, D. Bio-Regulatory Mechanisms of Straw Incorporation in Haplic Phaeozem Region: Soil Ecosystem Responses Driven by Multi-Factor Interactions. Agriculture 2025, 15, 2195. https://doi.org/10.3390/agriculture15212195
Ning Y, Chen Z, Xu R, Yang Y, Wang S, Zhou D. Bio-Regulatory Mechanisms of Straw Incorporation in Haplic Phaeozem Region: Soil Ecosystem Responses Driven by Multi-Factor Interactions. Agriculture. 2025; 15(21):2195. https://doi.org/10.3390/agriculture15212195
Chicago/Turabian StyleNing, Yucui, Zhipeng Chen, Rui Xu, Yu Yang, Shuo Wang, and Dongxing Zhou. 2025. "Bio-Regulatory Mechanisms of Straw Incorporation in Haplic Phaeozem Region: Soil Ecosystem Responses Driven by Multi-Factor Interactions" Agriculture 15, no. 21: 2195. https://doi.org/10.3390/agriculture15212195
APA StyleNing, Y., Chen, Z., Xu, R., Yang, Y., Wang, S., & Zhou, D. (2025). Bio-Regulatory Mechanisms of Straw Incorporation in Haplic Phaeozem Region: Soil Ecosystem Responses Driven by Multi-Factor Interactions. Agriculture, 15(21), 2195. https://doi.org/10.3390/agriculture15212195

