The Effect of Saponaria officinalis Root Supplementation During the Dry Period on Blood Biochemical Parameters in Cows and Calves and the Biological Quality of Colostrum and Milk
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Animals, Diet, and Experimental Design
2.3. Sampling and Laboratory Analyses
2.3.1. Feed
2.3.2. Blood
2.3.3. Colostrum and Milk
2.4. Statistical Analysis
3. Results
3.1. Effects of Soapwort on Serum Protein and Albumin Levels
3.2. Impact of Soapwort on Hepatic Enzymes and Lipid Profiles
3.3. Impact on Kidney Function
3.4. Analysis of the Composition of Milk and Colostrum
3.5. Effects of Soapwort on the Fatty Acid Content in Milk and Colostrum
4. Discussion
4.1. Blood Parameters in Cows and Calves
4.2. Colostrum and Milk
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ehrhardt, R.A.; Foskolos, A.; Giesy, S.L.; Wesolowski, S.R.; Krumm, C.S.; Butler, W.R.; Quirk, S.M.; Waldron, M.R.; Boisclair, Y.R. Increased plasma leptin attenuates adaptive metabolism in early lactating dairy cows. J. Endocrinol. 2016, 229, 145–157. [Google Scholar] [CrossRef]
- Trevisi, E.; Cattaneo, L.; Piccioli-Cappelli, F.; Mezzetti, M.; Minuti, A. International Symposium on Ruminant Physiology: The immunometabolism of transition dairy cows from dry-off to early lactation-Lights and shadows. J. Dairy Sci. 2025, 108, 7662–7674. [Google Scholar] [CrossRef] [PubMed]
- Nowak, W.; Mikuła, R.; Kasprowicz-Potocka, M.; Ignatowicz, M.; Zachwieja, A.; Paczyńska, K.; Pecka, E. Effect of Cow Nutrition in the Far-off Period on Colostrum Quality and Immune Response of Calves. Bull. Vet. Inst. Pulawy 2012, 56, 241–246. [Google Scholar] [CrossRef]
- Zachwieja, A.; Pecka-Kiełb, E.; Humienna, K.; Zielak-Steciwko, A.; Króliczewska, B.; Kaszuba, J.; Adamski, M.; Tumanowicz, J.; Wilk, M. Dried distillers’ grains with solubles as a key feed ingredient in dairy cow diets: Implications for colostrum quality and calf immunity. Vet. J. 2025, 310, 106317. [Google Scholar] [CrossRef]
- Pecka-Kiełb, E.; Zachwieja, A.; Humienna, K.; Króliczewska, B.; Zielak-Steciwko, A.E.; Kaszuba, J.; Adamski, M. The impact of using Dried Distillers Grains with Solubles (DDGS) as a substitute for concentrate feeds during the dry period on the quality of bovine colostrum and the IgG levels in their calves’ serum. Pol. J. Vet. Sci. 2025, 28, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Holtshausen, L.; Chaves, A.V.; Beauchemin, K.A.; McGinn, S.M.; McAllister, T.A.; Odongo, N.E.; Cheeke, P.R.; Benchaar, C. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J. Dairy Sci. 2009, 92, 2809–2821. [Google Scholar] [CrossRef]
- Kholif, A.E. A Review of Effect of Saponins on Ruminal Fermentation, Health and Performance of Ruminants. Vet. Sci. 2023, 10, 450. [Google Scholar] [CrossRef] [PubMed]
- Carrazco, A.V.; Rocha, A.S.; Ross, E.G.; Zhao, Y.; Pan, Y.; Pandey, P.K.; Castillo, A.R.; DePeters, E.J.; Mitloehner, F.M. Effect of a tannin and saponin blend feed additive on greenhouse gas and ammonia emissions from lactating dairy cows. J. Dairy Sci. 2025, 108, 8582–8593. [Google Scholar] [CrossRef]
- Króliczewska, B.; Pecka-Kiełb, E.; Bujok, J. Strategies Used to Reduce Methane Emissions from Ruminants: Controversies and Issues. Agriculture 2023, 13, 602. [Google Scholar] [CrossRef]
- Abdelmawla, S. Impacts of natural saponin plant extract without or with fresh baker’s yeast in buffaloe heifers rations on nutrients digestibility, some ruminal fermentation and blood serum parameters. J. Anim. Poult. Prod. 2008, 33, 3303–3315. [Google Scholar] [CrossRef]
- Yanza, Y.R.; Irawan, A.; Jayanegara, A.; Ramadhani, F.; Respati, A.N.; Fitri, A.; Hidayat, C.; Niderkorn, V.; Cieslak, A.; Szumacher-Strabel, M.; et al. Saponin Extracts Utilization as Dietary Additive in Ruminant Nutrition: A Meta-Analysis of In Vivo Studies. Animals 2024, 14, 1231. [Google Scholar] [CrossRef]
- Silva, S.N.S.; Chabrillat, T.; Kerros, S.; Guillaume, S.; Gandra, J.R.; de Carvalho, G.G.P.; Silva, F.F.; Mesquita, L.G.; Gordiano, L.A.; Camargo, G.M.F.; et al. Effects of plant extract supplementations or monensin on nutrient intake, digestibility, ruminal fermentation and metabolism in dairy cows. Anim. Feed. Sci. Technol. 2021, 275, 114886. [Google Scholar] [CrossRef]
- Szczechowiak-Piglas, J.; Szumacher-Strabel, M.; El-Sherbiny, M.; Bryszak, M.; Stochmal, A.; Adam, C. Effect of dietary supplementation with Saponaria officinalis root on rumen and milk fatty acid proportion in dairy cattle. Anim. Sci. Pap. Rep. 2016, 34, 221–232. [Google Scholar]
- Dos Santos, T.L.; Mello, E.P.; Vitt, M.G.; Triantafyllou, M.G.; Silva, L.; Wagner, R.; Da Silva, A.S. Effects of Yucca schidigera Extract Inclusion in Holstein Calves’ Diets on Performance, Metabolism, and Rumen Volatile Fatty Acid Profile. Animals 2025, 15, 566. [Google Scholar] [CrossRef]
- Szczechowiak, J.; Szumacher-Strabel, M.; Stochmal, A.; Nadolna, M.; Pers-Kamczyc, E.; Nowak, A.; Kowalczyk, M.; Cieślak, A. Effect of Saponaria officinalis L. or Panax Ginseng C.A Meyer Triterpenoid Saponins on Ruminal Fermentation In Vitro. Ann. Anim. Sci. 2013, 13, 815–827. [Google Scholar] [CrossRef]
- Barve, K.H.; Laddha, K.S.; Jayakumar, B. Extraction of Saponins from Safed Musli. Pharmacogn. J. 2010, 2, 561–564. [Google Scholar] [CrossRef]
- Charalambous, D.; Christoforou, M.; Christou, K.; Christou, M.; Ververis, A.; Andreou, M.; Christodoulou, K.; Koutsoulidou, A.; Papachrysostomou, C.; Pantelidou, M. Saponin and Phenolic Composition and Assessment of Biological Activities of Saponaria officinalis L. Root Extracts. Plants 2024, 13, 1982. [Google Scholar] [CrossRef] [PubMed]
- Veda, P.G.; Mallikarjuna, R.T.; Ganga, R.B. Antibacterial activity of Saponaria officinalis and Zanthophyllum aramatum. Int. J. Pharmacol. Toxicol. 2016, 5, 1–4. [Google Scholar] [CrossRef]
- Nistor, M.; Rugina, D.; Diaconeasa, Z.; Socaciu, C.; Socaciu, M.A. Pentacyclic Triterpenoid Phytochemicals with Anticancer Activity: Updated Studies on Mechanisms and Targeted Delivery. Int. J. Mol. Sci. 2023, 24, 12923. [Google Scholar] [CrossRef] [PubMed]
- Verkhovna Rada of Ukraine. On the Protection of Animals from Brutal Treatment. Law of Ukraine; Verkhovna Rada of Ukraine: Kyiv, Ukraine, 2006.
- Yatsenko, I.; Zapara, S.; Zon, G.; Ivanovskaya, L.; Alona, K. Animal Rights and Protection against Cruelty in Ukraine. J. Environ. Manag. Tour. 2020, 11, 91–103. [Google Scholar] [CrossRef]
- Ministry of Education and Science. On the Procedure for Carrying Out Experiments and Experiments on Animals by Scientific Institutions; No. 249; Ministry of Education and Science: Kyiv, Ukraine, 2012; pp. 1–5.
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Sosa-Zuniga, V.; Brito, V.; Fuente, F.; Steinfort, U. Phenological growth stages of quinoa (Chenopodium quinoa) based on the BBCH scale. Ann. Appl. Biol. 2017, 171, 117–124. [Google Scholar] [CrossRef]
- Holst, D.O. Holst filtration apparatus for Van Soest detergent fiber analysis. J. AOAC 1973, 56, 1352–1356. [Google Scholar] [CrossRef]
- Christie, W.W. Lipid Analysis: Isolation, Separation, Identification, and Structural Analysis of Lipids; Pergamon Press: South Croydon, UK, 1982. [Google Scholar]
- Christopherson, S.W.; Glass, R.L. Preparation of Milk Fat Methyl Esters by Alcoholysis in an Essentially Nonalcoholic Solution1. J. Dairy Sci. 1969, 52, 1289–1290. [Google Scholar] [CrossRef]
- Carvalho, M.R.; Peñagaricano, F.; Santos, J.E.P.; DeVries, T.J.; McBride, B.W.; Ribeiro, E.S. Long-term effects of postpartum clinical disease on milk production, reproduction, and culling of dairy cows. J. Dairy Sci. 2019, 102, 11701–11717. [Google Scholar] [CrossRef]
- Mulligan, F.J.; Doherty, M.L. Production diseases of the transition cow. Vet. J. 2008, 176, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Tufarelli, V.; Puvača, N.; Glamočić, D.; Pugliese, G.; Colonna, M.A. The Most Important Metabolic Diseases in Dairy Cattle during the Transition Period. Animals 2024, 14, 816. [Google Scholar] [CrossRef]
- Piccione, G.; Messina, V.; Schembari, A.; Casella, S.; Giannetto, C.; Alberghina, D. Pattern of serum protein fractions in dairy cows during different stages of gestation and lactation. J. Dairy Sci. 2011, 78, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Immler, M.; Büttner, K.; Gärtner, T.; Wehrend, A.; Donat, K. Maternal Impact on Serum Immunoglobulin and Total Protein Concentration in Dairy Calves. Animals 2022, 12, 755. [Google Scholar] [CrossRef]
- Vogels, Z.; Chuck, G.M.; Morton, J.M. Failure of transfer of passive immunity and agammaglobulinaemia in calves in south-west Victorian dairy herds: Prevalence and risk factors. Aust. Vet. J. 2013, 91, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Perino, L.J.; Sutherland, R.L.; Woollen, N.E. Serum gamma-glutamyltransferase activity and protein concentration at birth and after suckling in calves with adequate and inadequate passive transfer of immunoglobulin G. Am. J. Vet. Res. 1993, 54, 56–59. [Google Scholar] [CrossRef]
- Hogan, I.; Doherty, M.; Fagan, J.; Kennedy, E.; Conneely, M.; Brady, P.; Ryan, C.; Lorenz, I. Comparison of rapid laboratory tests for failure of passive transfer in the bovine. Ir. Vet. J. 2015, 68, 18. [Google Scholar] [CrossRef]
- Beam, A.L.; Lombard, J.E.; Kopral, C.A.; Garber, L.P.; Winter, A.L.; Hicks, J.A.; Schlater, J.L. Prevalence of failure of passive transfer of immunity in newborn heifer calves and associated management practices on US dairy operations. J. Dairy Sci. 2009, 92, 3973–3980. [Google Scholar] [CrossRef]
- Klinkon, M.; Ježek, J. Values of Blood Variables in Calves. In A Bird’s-Eye View of Veterinary Medicine; Perez-Marin, C.C., Ed.; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar]
- Sammad, A.; Wang, Y.J.; Umer, S.; Lirong, H.; Khan, I.; Khan, A.; Ahmad, B.; Wang, Y. Nutritional Physiology and Biochemistry of Dairy Cattle under the Influence of Heat Stress: Consequences and Opportunities. Animals 2020, 10, 793. [Google Scholar] [CrossRef]
- Nagy, O.; Tóthová, C.; Kováč, G. Age-related changes in the concentrations of serum proteins in calves. J. Appl. Anim. Res. 2014, 42, 451–458. [Google Scholar] [CrossRef]
- Ježek, J.; Klopčič, M.; Klinkon, M. Influence of age on biochemical parameters in calves. Bull. Vet. Inst. Pulawy 2006, 50, 211–214. [Google Scholar]
- Hussain, I.; Cheeke, P.R. Effect of Yucca scidigera extract on rumen and blood profiles of steers fed concentrate- or roughage-based diets. Anim. Feed Sci. Technol. 1995, 51, 231–242. [Google Scholar] [CrossRef]
- Botura, M.B.; dos Santos, J.D.; da Silva, G.D.; de Lima, H.G.; de Oliveira, J.V.; de Almeida, M.A.; Batatinha, M.J.; Branco, A. In vitro ovicidal and larvicidal activity of Agave sisalana Perr. (sisal) on gastrointestinal nematodes of goats. Vet. Parasitol. 2013, 192, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Tu, Y.; Zhao, S.P.; Hao, Y.H.; Liu, J.X.; Liu, F.H.; Xiong, B.H.; Jiang, L.S. Effect of tea saponins on milk performance, milk fatty acids, and immune function in dairy cow. J. Dairy Sci. 2017, 100, 8043–8052. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Shao, D.; Yang, Z.; Wang, S.; Zhang, Y.; Peng, H.; Su, Z.; Zhang, Y. Efficacy of Pulsatilla saponin B4 for treatment dairy cows affected with clinical mastitis. PLoS ONE 2025, 2, e0331151. [Google Scholar] [CrossRef]
- Jiang, C.; Dong, Q.; Xin, X.; Degen, A.A.; Ding, L. Effect of Chinese Herbs on Serum Biochemical Parameters, Immunity Indices, Antioxidant Capacity and Metabolomics in Early Weaned Yak Calves. Animals 2022, 12, 2228. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, R.H.; Al-Galbi, H.A.J. Impact of Feeding Tea Leaves Saponins on Some Productive and Serum Biochemical Parameters of Awassi Lambs. Basrah J. Agric. Sci. 2020, 33, 17–25. [Google Scholar] [CrossRef]
- Campos-Gaona, R.; Correa-Orozco, A.; Salamanca-Carreño, A.; Vélez-Terranova, M. Index Development to Comprehensive Assess Liver Function during the Dairy Cows’ Transition Period in Low-Tropic Conditions. Animals 2024, 14, 2056. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, L.; Liu, J.; Chan, A.S.C.; Li, D. Saponins of Tomato Extract Improve Non-Alcoholic Fatty Liver Disease by Regulating Oxidative Stress and Lipid Homeostasis. Antioxidants 2023, 12, 1848. [Google Scholar] [CrossRef]
- Yang, F.; Yang, F.; Zhai, Z.H.; Wang, S.Q.; Zhao, L.; Zhang, B.L.; Chen, J.C.; Wang, Y.Q. Effects of alfalfa saponins on the production performance, serum biochemical factors, and immune factors in Small-Tailed Han sheep. Front. Vet. Sci. 2022, 9, 924373. [Google Scholar] [CrossRef]
- Tufarelli, V.; Colonna, M.A.; Losacco, C.; Puvača, N. Biological Health Markers Associated with Oxidative Stress in Dairy Cows during Lactation Period. Metabolites 2023, 13, 405. [Google Scholar] [CrossRef] [PubMed]
- Siachos, N.; Oikonomou, G.; Panousis, N.; Sampsonidis, I.; Kalogiannis, S.; Arsenos, G.; Valergakis, G.E. Reference Intervals of Selected Serum and Plasma Biochemical Analytes in Clinically Healthy Multiparous Holstein Cows During the Periparturient Period. Vet. Clin. Pathol. 2025, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.C.; Pauli, J.V. Colostral transfer of gamma glutamyl transpeptidase in calves. N. Z. Vet. J. 1981, 29, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Herosimczyk, A.; Lepczyński, A.; Ozgo, M.; Dratwa-Chałupnik, A.; Michałek, K.; Skrzypczak, W.F. Blood plasma protein and lipid profile changes in calves during the first week of life. Pol. J. Vet. Sci. 2013, 16, 425–434. [Google Scholar] [CrossRef]
- Pearson, E.G.; Dirksen, G.; Meyer, J.; Seitz, A.; Rowe, K.E. Evaluation of liver function tests in neonatal calves. J. Am. Vet. Med. Assoc. 1995, 1, 466–469. [Google Scholar] [CrossRef]
- Pikhtirova, A.; Pecka-Kiełb, E.; Zachwieja, A.; Bujok, J.; Zigo, F. Effects of non- aureus staphylococci on colostrum composition, properties and fatty acid profile in cow—A preliminary study. Pol. J. Vet. Sci. 2022, 25, 571–578. [Google Scholar] [CrossRef]
- Guo, R.; Dai, Y.; Hu, J. Research on the prediction model of mastitis in dairy cows based on time series characteristics. Front. Vet. Sci. 2025, 12, 1575525. [Google Scholar] [CrossRef]
- Hisira, V.; Zigo, F.; Kadaši, M.; Klein, R.; Farkašová, Z.; Vargová, M.; Mudroň, P. Comparative Analysis of Methods for Somatic Cell Counting in Cow’s Milk and Relationship Between Somatic Cell Count and Occurrence of Intramammary Bacteria. Vet. Sci. 2023, 10, 468. [Google Scholar] [CrossRef]
- Tančin, V.; Mikláš, Š.; Čobirka, M.; Uhrinčať, M.; Mačuhová, L. Factors affecting raw milk quality of dairy cows under practical conditions. Potravin. Slovak J. Food Sci. 2020, 14, 744–749. [Google Scholar] [CrossRef]
- Zigo, F.; Farkašová, Z.; Výrostková, J.; Regecová, I.; Ondrašovičová, S.; Vargová, M.; Sasáková, N.; Pecka-Kielb, E.; Bursová, Š.; Kiss, D.S. Udder Pathogens in Dairy Cows and the Occurrence of Virulence Factors in Staphylococci. Animals 2022, 12, 470. [Google Scholar] [CrossRef] [PubMed]
- Emmons, D.B.; Dubé, C.; Modler, H.W. Transfer of Protein from Milk to Cheese1. J. Dairy Sci. 2003, 86, 469–485. [Google Scholar] [CrossRef] [PubMed]
- Pecka-Kiełb, E.; Vasil, M.; Farkasóvá, Z.; Zachwieja, A.; Zawadzki, W.; Elečko, J.; Zigo, F.; Illek, J. An effect of mammary gland infection caused by Streptococcus uberis on composition and physicochemical changes of cows’ milk. Pol. J. Vet. Sci. 2016, 19, 49–55. [Google Scholar] [CrossRef]
- Liu, W.H.; La Teng Zhu La, A.; Evans, A.C.O.; Gao, S.T.; Yu, Z.T.; Ma, L.; Bu, D.P. Supplementation with Yucca schidigera improves antioxidant capability and immune function and decreases fecal score of dairy calves before weaning. J. Dairy Sci. 2021, 104, 4317–4325. [Google Scholar] [CrossRef] [PubMed]
- Durmuş, İ.; Aytekin, I.; Küçükkurt, İ.; Ince, S.; Eryavuz, A.; Gürler, Z. Effects of Yucca Schidigera To Diet of Dairy Cows on Blood Oxidant-Antioxidant Balance, Biochemical Parameters, and Milk Quality. Kocatepe Vet. J. 2016, 9, 339–347. [Google Scholar] [CrossRef]
- Nelson, C.; Barbano, D.M.; Drake, M. Interaction of fatty acid composition and temperature cycling on melting properties of milk fat. J. Dairy Sci. 2025, 108, 9129–9143. [Google Scholar] [CrossRef]
- Woolpert, M.E.; Dann, H.M.; Cotanch, K.W.; Melilli, C.; Chase, L.E.; Grant, R.J.; Barbano, D.M. Management, nutrition, and lactation performance are related to bulk tank milk de novo fatty acid concentration on northeastern US dairy farms. J. Dairy Sci. 2016, 99, 8486–8497. [Google Scholar] [CrossRef]
- Wilms, J.N.; Hare, K.S.; Fischer-Tlustos, A.J.; Vahmani, P.; Dugan, M.E.R.; Leal, L.N.; Steele, M.A. Fatty acid profile characterization in colostrum, transition milk, and mature milk of primi- and multiparous cows during the first week of lactation. J. Dairy Sci. 2022, 105, 2612–2630. [Google Scholar] [CrossRef]
- Fabjanowska, J.; Kowalczuk-Vasilev, E.; Klebaniuk, R.; Milewski, S.; Gümüş, H. N-3 Polyunsaturated Fatty Acids as a Nutritional Support of the Reproductive and Immune System of Cattle—A Review. Animals 2023, 13, 3589. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, H.; Zhang, W.; Zhang, Y.; Zhao, P.; Zhang, S.; Pang, X.; Vervoort, J.; Lu, J.; Lv, J. Triglyceride and fatty acid composition of ruminants milk, human milk, and infant formulae. J. Food Compos. Anal. 2022, 106, 104327. [Google Scholar] [CrossRef]
- Zou, Y.; Chen, Y.; Meng, Q.; Wang, Y.; Zhang, Y. Cow Milk Fatty Acid and Protein Composition in Different Breeds and Regions in China. Molecules 2024, 29, 5142. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K.; Saxena, J. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutr. Res. Rev. 2009, 22, 204–219. [Google Scholar] [CrossRef] [PubMed]
- Wink, M. (Ed.) Introduction. In Functions and Biotechnology of Plant Secondary Metabolites, 2nd ed.; Wiley-Blackwell: Chichester, UK, 2010; Volume 39, pp. 1–20. [Google Scholar]
- Mazid, M.; Khan, T.A.; Mohammad, F. Role of secondary metabolites in defense mechanisms of plants. Biol. Med. 2011, 3, 232–249. [Google Scholar]
Feed Ration Composition | |
---|---|
Corn silage | 573 |
Haylage | 231 |
Straw | 112 |
Barley ground | 25 |
Rapeseed meal | 25 |
Meadow hay | 27 |
Premix 1 | 7.0 |
Ammonium chloride 57 g/kg DM TMR | |
DCAD mEq/kg DM | −116 |
Energy UFL/kg DM | 0.79 |
Protein PDIN | 82 |
Protein PDIE | 79 |
Filling value (LFU/kg DM) | 0.8 |
Parameters | TMR | Soapwort Root |
---|---|---|
Dry matter (DM, % of fresh) | 49.00 | 92.65 |
Ash | 5.91 | 7.45 |
Crude protein (CP) | 11.13 | 9.55 |
Fibre | 31.56 | 8.77 |
Neutral detergent fibre (NDF) | 50.01 | 23.50 |
Acid detergent fibre (ADF) | 29.28 | 9.82 |
Ether extract | 2.73 | 3.40 |
Time | C | E1 | E2 | SEM | p-Value (Soapwort) | p-Value (Time) |
---|---|---|---|---|---|---|
Total protein [g/L] | ||||||
Cows | ||||||
21 d before calving | 68.00 Bb | 74.17 A | 76.58 a | 1.23 | 0.01 | <0.01 |
Calving | 58.17 B | 63.17 A | 62.83 A | 0.66 | <0.01 | |
Calves | ||||||
3 day | 43.33 | 47.17 | 47.33 | 0.80 | 0.07 | <0.01 |
2 week | 52.00 Ba | 57.67 Aa | 54.00 b | 0.75 | 0.01 | |
6 week | 61.50 | 60.17 | 60.33 | 0.41 | 0.36 | |
Albumin [g/L] | ||||||
Cows | ||||||
21 d before calving | 26.33 | 28.00 | 27.83 | 0.32 | 0.06 | 0.99 |
Calving | 27.83 | 27.00 | 27.33 | 0.32 | 0.58 | |
Calves | ||||||
3 day | 22.50 | 22.33 | 23.00 | 0.22 | 0.429 | <0.01 |
2 week | 24.33 | 25.00 | 24.67 | 0.19 | 0.36 | |
6 week | 26.67 a | 26.17 a | 24.83 b | 0.22 | <0.01 |
Time | C | E1 | E2 | SEM | p-Value (Soapwort) | p-Value (Time) |
---|---|---|---|---|---|---|
ALT [U/L] | ||||||
Cows | ||||||
21 d before calving | 26.17 | 22.17 b | 30.83 a | 1.15 | <0.01 | 0.92 |
calving | 21.17 B | 24.67 B | 32.83 A | 1.54 | <0.01 | |
Calves | ||||||
3 day | 17.83 | 22.67 | 30.83 | 2.74 | 0.15 | <0.01 |
2 week | 18.50 a | 15.33 b | 15.50 b | 0.50 | 0.01 | |
6 week | 9.00 a | 7.50 b | 7.83 b | 0.19 | <0.01 | |
AST [U/L] | ||||||
Cows | ||||||
21 d before calving | 53.17 b | 53.67 b | 61.50 a | 1.59 | 0.05 | 0.01 |
calving | 65.00 | 61.50 | 64.33 | 2.28 | 0.81 | |
Calves | ||||||
3 day | 62.83 a | 79.83 a | 56.00 b | 3.70 | 0.02 | <0.01 |
2 week | 41.00 | 42.33 | 48.33 | 2.91 | 0.56 | |
6 week | 25.33 Bb | 31.83 A | 28.00 Ba | 0.85 | <0.01 | |
ALP [U/L] | ||||||
Cows | ||||||
21 d before calving | 63.00 | 72.50 | 74.83 | 2.51 | 0.13 | <0.01 |
calving | 71.17 | 80.17 | 79.67 | 1.92 | <0.01 | |
Calves | ||||||
3 day | 263.25 Bb | 338.50 a | 381.67 A | 14.32 | <0.01 | <0.01 |
2 week | 173.17 Bb | 278.00 A | 225.33 a | 10.15 | <0.01 | |
6 week | 126.00 Bb | 206.33 A | 186.17 a | 9.48 | <0.01 | |
GGT [U/L] | ||||||
Cows | ||||||
21 d before calving | 22.83 | 22.83 | 24.83 | 0.86 | 0.56 | <0.01 |
calving | 26.83 | 28.33 | 30.17 | 1.62 | 0.71 | |
Calves | ||||||
3 day | 285.17 | 253.33 | 221.20 | 15.74 | 0.27 | <0.01 |
2 week | 139.67 | 139.33 | 117.00 | 8.24 | 0.44 | |
6 week | 50.33 a | 39.00 b | 48.67 a | 1.52 | <0.01 | |
Cholesterol [mmol/L] | ||||||
Cows | ||||||
21 d before calving | 2.80 | 2.61 | 2.87 | 0.07 | 0.28 | <0.01 |
calving | 2.07 | 1.83 | 1.88 | 0.05 | 0.12 | |
Calves | ||||||
3 day | 0.87 | 0.92 | 0.93 | 0.03 | 0.70 | <0.01 |
2 week | 1.99 | 1.90 | 1.94 | 0.02 | 0.25 | |
6 week | 2.39 | 2.53 A | 2.25 B | 0.03 | <0.01 | |
LDL [mmol/L] | ||||||
Cows | ||||||
21 d before calving | 0.78 a | 0.72 | 0.65 b | 0.02 | 0.04 | <0.01 |
calving | 0.81 Aa | 0.62 b | 0.44 B | 0.04 | <0.00 | |
Calves | ||||||
3 day | 0.22 | 0.23 | 0.22 | 0.01 | 0.78 | <0.01 |
2 week | 0.31 | 0.32 | 0.33 | 0.01 | 0.19 | |
6 week | 0.41 A | 0.40 | 0.39 B | 0.00 | 0.01 | |
HDL [mmol/L] | ||||||
Cows | ||||||
21 d before calving | 0.95 | 0.90 | 0.79 | 0.03 | 0.09 | <0.01 |
calving | 0.68 | 0.70 | 0.69 | 0.01 | 0.60 | |
Calves | ||||||
3 day | 0.37 | 1.30 | 1.57 | 0.02 | 0.09 | 0.80 |
2 week | 0.35 | 1.39 | 1.55 | 0.02 | 0.07 | |
6 week | 0.43 | 1.31 | 1.51 | 0.02 | 0.18 | |
VLDL [mmol/L] | ||||||
Cows | ||||||
21 d before calving | 0.73 | 0.78 | 0.90 | 0.06 | 0.47 | 0.01 |
calving | 0.67 | 0.69 | 0.48 | 0.04 | 0.02 | |
Calves | ||||||
3 day | 0.21 B | 0.28 b | 0.36 Aa | 0.02 | <0.01 | <0.01 |
2 week | 0.31 B | 0.33 | 0.35 A | 0.01 | <0.01 | |
6 week | 0.53 A | 0.47 A | 0.40 Bb | 0.02 | <0.01 | |
Triglycerides [mmol/L] | ||||||
Cows | ||||||
21 d before calving | 0.28 b | 0.35 a | 0.39 a | 1.25 | 0.01 | 0.17 |
calving | 0.30 B | 0.39 A | 0.40 A | 0.646 | <0.01 | |
Calves | ||||||
3 day | 0.40 | 0.57 | 0.55 | 0.80 | 0.07 | <0.01 |
2 week | 0.37 | 0.33 | 0.42 | 0.75 | 0.07 | |
6 week | 0.68 | 0.66 | 0.71 | 0.41 | 0.36 |
Time | C | E1 | E2 | SEM | p-Value (Soapwort) | p-Value (Time) |
---|---|---|---|---|---|---|
Total bilirubin [µmol/L] | ||||||
Cows | ||||||
21 d before calving | 1.58 | 1.66 | 1.77 | 0.07 | 0.54 | <0.01 |
Calving | 6.73 | 3.20 | 6.70 | 0.51 | 0.30 | |
Calves | ||||||
3 day | 21.97 | 23.37 | 23.33 | 0.72 | 0.67 | <0.01 |
2 week | 2.89 b | 3.53 a | 3.60 a | 0.11 | 0.01 | |
6 week | 2.80 B | 3.90 B | 4.10 A | 0.12 | <0.01 | |
Urea [mmol/L] | ||||||
Cows | ||||||
21 d before calving | 2.29 | 1.95 | 2.42 | 0.11 | 0.20 | <0.01 |
Calving | 3.80 | 2.67 | 3.87 | 0.19 | 0.11 | |
Calves | ||||||
3 day | 4.25 A | 2.74 Bb | 3.54 a | 0.17 | <0.01 | 0.02 |
2 week | 3.42 B | 3.83 | 4.54 A | 0.16 | 0.02 | |
6 week | 3.26 | 3.49 | 3.32 | 0.04 | 0.06 | |
Uric acid [µmol/L] | ||||||
Cows | ||||||
21 d before calving | 48.00 | 53.17 | 49.17 | 2.33 | 0.65 | 0.39 |
Calving | 49.00 | 52.17 | 48.83 | 1.86 | 0.72 | |
Calves | ||||||
3 day | 58.67 B | 95.00 A | 63.17 B | 0.99 | <0.01 | 0.02 |
2 week | 54.33 B | 95.50 A | 58.83 B | 1.20 | <0.01 | |
6 week | 62.50 B | 100.83 A | 72.17 B | 1.69 | <0.01 | |
Creatinine [µmol/L] | ||||||
Cows | ||||||
21 d before calving | 111.33 | 119.33 | 109.00 | 2.21 | 0.13 | 0.34 |
Calving | 116.33 | 113.00 | 118.17 | 2.39 | 0.68 | |
Calves | ||||||
3 day | 147.33 | 159.17 | 142.50 | 4.64 | 0.33 | <0.01 |
2 week | 109.67 | 108.67 | 104.50 | 1.40 | 0.29 | |
6 week | 85.17 | 83.67 | 88.33 | 0.96 | 0.13 |
Parameter | C | E1 | E2 | SEM | p-Value |
---|---|---|---|---|---|
Colostrum | |||||
SCC × 1000/mL | 1816.69 b | 2118.5 | 3224.8 a | 307.75 | 0.05 |
Fat [%] | 5.06 B | 8.31 A | 4.79 B | 0.50 | <0.01 |
Protein [%] | 12.03 | 13 | 11.22 | 0.54 | 0.41 |
Lactose [%] | 2.72 | 2.3 | 2.95 | 0.13 | 0.12 |
Dry matter [%] | 20.52 | 24.3 | 19.65 | 0.84 | 0.06 |
Milk | |||||
SCC × 1000/mL | 348.0 A | 242.0 B | 36.0 B | 62.62 | <0.01 |
Fat [%] | 1.64 | 1.77 | 1.61 | 0.08 | 0.65 |
Protein [%] | 3.29 A | 3.08 B | 3.00 B | 0.04 | <0.01 |
Lactose [%] | 4.76 b | 4.82 a | 4.78 a | 0.04 | 0.02 |
Dry matter [%] | 9.9 | 10.08 | 9.79 | 0.10 | 0.43 |
Parameter | C | E1 | E2 | SEM | p-Value |
---|---|---|---|---|---|
Colostrum | |||||
C4:0 | 0.45 a | 0.40 b | 0.32 b | 0.02 | 0.02 |
C6:0 | 0.50 | 0.50 | 0.43 | 0.02 | 0.08 |
C8:0 | 0.37 | 0.38 | 0.34 | 0.01 | 0.23 |
C10:0 | 1.02 B | 1.16 A | 0.95 B | 0.02 | <0.01 |
C12:0 | 1.90 B | 2.24 A | 1.80 B | 0.04 | <0.01 |
C14:0 | 11.90 B | 13.11 A | 11.17 B | 0.22 | <0.01 |
C15:0 | 0.58 B | 0.82 Aa | 0.65 b | 0.02 | <0.01 |
C16:0 | 40.60 B | 44.55 A | 38.05 B | 0.68 | <0.01 |
C17:0 | 0.50 | 0.52 | 0.60 | 0.02 | 0.02 |
C18:0 | 8.12 A | 6.38 Bb | 7.42 a | 0.22 | <0.01 |
ΣSFA | 65.94 C | 70.11 A | 61.73 B | 0.75 | <0.01 |
Milk | |||||
C4:0 | 0.38 B | 0.41 b | 0.48 Aa | 0.01 | <0.01 |
C6:0 | 0.71 B | 0.71 B | 0.80 A | 0.01 | 0.01 |
C8:0 | 0.70 | 0.76 | 0.72 | 0.02 | 0.24 |
C10:0 | 2.12 | 2.23 | 2.09 | 0.05 | 0.36 |
C12:0 | 2.94 | 3.15 | 2.79 | 0.07 | 0.07 |
C14:0 | 11.17 | 11.27 | 10.87 | 0.16 | 0.55 |
C15:0 | 1.58 b | 1.51 Bb | 1.64 Aa | 0.02 | <0.01 |
C16:0 | 30.57 | 29.63 | 29.62 | 0.50 | 0.70 |
C17:0 | 0.90 | 0.91 | 0.91 | 0.01 | 0.97 |
C18:0 | 10.12 | 10.75 | 10.34 | 0.30 | 0.69 |
ΣSFA | 61.44 | 61.46 | 60.51 | 0.46 | 0.64 |
Parameter | C | E1 | E2 | SEM | p-Value |
---|---|---|---|---|---|
Colostrum | |||||
C14:1 | 0.74 B | 1.26 A | 0.78 B | 0.04 | <0.01 |
C15:1 | 0.09 B | 0.09 B | 0.12 A | <0.01 | <0.01 |
C16:1 | 3.06 | 3.27 | 3.44 | 0.07 | 0.06 |
C17:1 | 0.31 B | 0.28 B | 0.38 A | 0.01 | <0.01 |
C18:1n9c | 22.84 b | 17.83 B | 23.65 Aa | 0.62 | <0.01 |
C18:1n9t | 0.23 A | 0.16 B | 0.18 B | 0.01 | <0.01 |
C18:1n7t | 0.55 | 0.54 | 0.53 | 0.02 | 0.97 |
C18:2n6c | 0.12 B | 0.13 B | 0.20 A | 0.01 | <0.01 |
C18:2n6t 1 | 3.41 A | 3.38 A | 2.44 B | 0.08 | <0.01 |
CLA | 0.26 B | 0.29 | 0.33 A | 0.01 | <0.01 |
C18:3n6 | 0.18 B | 0.20 B | 0.28 A | 0.01 | <0.01 |
C18:3n3 | 0.11 | 0.10 | 0.11 | 0.01 | 0.68 |
C20:4n6 | 0.38 | 0.39 | 0.37 | 0.01 | 0.79 |
C22:6n3 | 0.11 B | 0.12 B | 0.16 A | 0.01 | <0.01 |
ΣUFA | 32.87 b | 28.43 Ba | 33.49 Aa | 0.61 | <0.01 |
Milk | |||||
C14:1 | 1.45 | 1.44 | 1.49 | 0.02 | 0.71 |
C15:1 | 0.33 | 0.36 | 0.35 | 0.01 | 0.27 |
C16:1 | 3.63 A | 2.96 B | 2.81 B | 0.10 | <0.01 |
C17:1 | 0.41 | 0.41 | 0.41 | 0.01 | 0.01 |
C18:1n9c | 23.16 | 23.01 | 23.44 | 0.36 | 0.88 |
C18:1n9t | 0.18 | 0.21 | 0.22 | 0.01 | 0.13 |
C18:1n7t | 1.46 | 1.61 | 1.65 | 0.04 | 0.10 |
C18:2n6c | 0.32 | 0.30 | 0.33 | 0.01 | 0.21 |
C18:2n6t | 2.58 | 2.46 B | 2.74 A | 0.04 | <0.01 |
CLA | 0.69 | 0.70 | 0.78 | 0.02 | 0.17 |
C18:3n6 | 1.01 A | 0.85 B | 0.99 | 0.02 | <0.01 |
C18:3n3 | 0.16 | 0.16 | 0.17 | 0.01 | 0.81 |
C20:4n6 | 0.17 | 0.17 | 0.14 | 0.01 | 0.10 |
C22:6n3 | 0.10 | 0.09 | 0.11 | <0.01 | 0.23 |
ΣUFA | 36.32 | 35.45 | 36.39 | 0.42 | 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pecka-Kiełb, E.; Pikhtirova, A.; Zachwieja, A.; Kaszuba, J.; Króliczewski, J.; Shkromada, O.; Króliczewska, B. The Effect of Saponaria officinalis Root Supplementation During the Dry Period on Blood Biochemical Parameters in Cows and Calves and the Biological Quality of Colostrum and Milk. Agriculture 2025, 15, 2123. https://doi.org/10.3390/agriculture15202123
Pecka-Kiełb E, Pikhtirova A, Zachwieja A, Kaszuba J, Króliczewski J, Shkromada O, Króliczewska B. The Effect of Saponaria officinalis Root Supplementation During the Dry Period on Blood Biochemical Parameters in Cows and Calves and the Biological Quality of Colostrum and Milk. Agriculture. 2025; 15(20):2123. https://doi.org/10.3390/agriculture15202123
Chicago/Turabian StylePecka-Kiełb, Ewa, Alina Pikhtirova, Andrzej Zachwieja, Jowita Kaszuba, Jarosław Króliczewski, Oksana Shkromada, and Bożena Króliczewska. 2025. "The Effect of Saponaria officinalis Root Supplementation During the Dry Period on Blood Biochemical Parameters in Cows and Calves and the Biological Quality of Colostrum and Milk" Agriculture 15, no. 20: 2123. https://doi.org/10.3390/agriculture15202123
APA StylePecka-Kiełb, E., Pikhtirova, A., Zachwieja, A., Kaszuba, J., Króliczewski, J., Shkromada, O., & Króliczewska, B. (2025). The Effect of Saponaria officinalis Root Supplementation During the Dry Period on Blood Biochemical Parameters in Cows and Calves and the Biological Quality of Colostrum and Milk. Agriculture, 15(20), 2123. https://doi.org/10.3390/agriculture15202123