Optimising Rice Straw Bale Quality Through Vibration-Assisted Compression
Abstract
1. Introduction
2. Materials and Methods
2.1. Overall Structure and Working Principle
2.1.1. Structural Configuration of the Multi-Point Vibration-Assisted Straw Compression Test Rig
2.1.2. Working Principle of the Multi-Point Vibration-Assisted Straw Compression Test Rig
2.2. Structural Design of Key Components in the Multi-Point Vibration-Assisted Straw Compression Test Rig
2.2.1. Kinematic Analysis of Vibration Units
2.2.2. Vibration Unit Arrangement Design
2.2.3. Force Analysis of the Vibration Unit
2.3. Numerical Simulation Study of the Multi-Point Vibration-Assisted Straw Compression Test Rig
2.3.1. Determination of Compression Chamber Cross-Sectional Dimensions
2.3.2. Numerical Simulation of Rice Straw Compression Assisted by Multi-Point Variable-Amplitude Frequency-Modulation Vibration
2.4. Bench Verification Test
3. Results and Discussion
3.1. Analysis of Optimisation Design Results for Optimal Interface Types in Simulation Test
3.2. Analysis of Single-Factor Simulation Results for Rice Straw Compression Assisted by Multi-Point Variable-Amplitude Frequency-Modulation Vibration
3.2.1. Effect of the Number of Vibration Points on Compression Quality
3.2.2. Effect of Vibration Frequency on Compression Quality
3.2.3. Effect of Vibration Amplitude on Compression Quality
3.3. Multifactor Simulation Analysis of Rice Straw Compression Under Multi-Point Variable-Amplitude Frequency-Modulation Vibration Assistance
3.3.1. Orthogonal Simulation Test Results and Analysis of the Effects of Different Test Factors on Dimensional Stability Coefficient
3.3.2. Orthogonal Simulation Test Results and Analysis of Different Test Factors on Pressure Transmission Rate
3.4. Analysis of Bench Verification Test Results
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, S.; Yan, Y.; He, C.L.; Li, Z.; Tang, X.; Sperry, J.; Sun, Y.; Lin, L.; Zeng, X.H. Production of biomass-based composite from reed pretreated by ball-milling combined with p-toluenesulfonic acid. Ind. Crop Prod. 2022, 180, 114712. [Google Scholar] [CrossRef]
- Sonu; Rani, G.M.; Pathania, D.; Abhimanyu; Umapathi, R.; Rustagi, S.; Huh, Y.S.; Gupta, V.K.; Kaushik, A.; Chaudhary, V. Agro-waste to sustainable energy: A green strategy of converting agricultural waste to nano-enabled energy applications. Sci. Total Environ. 2023, 875, 162667. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xue, Z.; Liang, F.; Miao, B.B.; Wang, T.; Huang, D.; Yuan, H.; Jiang, Y. Enhancement of the wheat straw pretreatment in pulping: The microbial intelligent response. Ind. Crop Prod. 2025, 223, 120109. [Google Scholar] [CrossRef]
- He, G.J.; Liu, T.; Zhou, M.G. Straw burning, PM, and death: Evidence from China. J. Dev. Econ. 2020, 145, 102468. [Google Scholar] [CrossRef]
- Zheng, W.L.; Luo, B.L. Understanding pollution behavior among farmers: Exploring the influence of social networks and political identity on reducing straw burning in China. Energy Res. Soc. Sci. 2022, 90, 102553. [Google Scholar] [CrossRef]
- Chen, L.J.; Liao, N.; Xing, L.; Han, L.J. Description of Wheat Straw Relaxation Behavior Based on a Fractional-Order Constitutive Model. Agron. J. 2013, 105, 134–142. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Y.; Zhao, L.; Wei, Z.; Song, C.; Pang, C.; Pang, X. Strategies for efficient degradation of lignocellulose from straw: Synergistic effects of acid-base pretreatment and functional microbial agents in composting. Chem. Eng. J. 2025, 508, 1611048. [Google Scholar] [CrossRef]
- Li, P.F.; Zhang, A.F.; Huang, S.W.; Han, J.L.; Jin, X.L.; Shen, X.G.; Hussain, Q.; Wang, X.D.; Zhou, J.B.; Chen, Z.J. Optimizing Management Practices under Straw Regimes for Global Sustainable Agricultural Production. Agronomy 2023, 13, 710. [Google Scholar] [CrossRef]
- Maraldi, M.; Molari, L.; Regazzi, N.; Molari, G. Analysis of the parameters affecting the mechanical behaviour of straw bales under compression. Biosyst. Eng. 2017, 160, 179–193. [Google Scholar] [CrossRef]
- Turner, A.P.; Sama, M.P.; Bryson, L.S.; Montross, M.D. Effect of stem crushing on the uniaxial bulk compression behaviour of switchgrass and miscanthus. Biosyst. Eng. 2018, 175, 52–62. [Google Scholar] [CrossRef]
- Jia, X.; Zheng, X.; Chen, L.; Liu, C.; Song, J.; Zhu, C.; Xu, J.; Hao, S. Discrete element flexible modeling and experimental verification of rice blanket seedling root blanket. Comput. Electron. Agr. 2025, 233, 110155. [Google Scholar] [CrossRef]
- Nath, B.; Chen, G.N.; Bowtell, L.; Mahmood, R.A. Assessment of densified fuel quality parameters: A case study for wheat straw pellet. J. Bioresour. Bioprod. 2023, 8, 45–58. [Google Scholar] [CrossRef]
- Nona, K.; Kayacan, E.; Saeys, W. Compression modeling in the large square baler. Technik AgEng 2013, 2193, 387–392. [Google Scholar]
- Du, X.X.; Wang, C.G.; Guo, W.B.; Wang, H.B.; Jin, M.; Liu, X.D.; Li, J. Stress Relaxation Characteristics and Influencing Factors of Sweet Sorghum: Experimental Study. Bioresources 2018, 13, 8761–8774. [Google Scholar] [CrossRef]
- Wang, Q.; Bai, Z.; Li, Z.; Xie, D.; Chen, L.; Wang, H. Straw/Spring Teeth Interaction Analysis of Baler Picker in Smart Agriculture via an ADAMS-DEM Coupled Simulation Method. Machines 2021, 9, 296. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, B.; Guo, L.; Kong, L.Z.; Zhao, C.; Yu, X.Z.; Luo, W.J.; Kan, Z. Performance test and process parameter optimization of 9FF type square bale straw crusher. Int. J. Agr. Biol. Eng. 2021, 14, 232–240. [Google Scholar] [CrossRef]
- Zhao, Z.; Huang, H.D.; Yin, J.J.; Yang, S.X. Dynamic analysis and reliability design of round baler feeding device for rice straw harvest. Biosyst. Eng. 2018, 174, 10–19. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Mei, F.W.; Xiao, P.J.; Zhao, W.; Zhu, X.H. Discrete element modelling and simulation parameters calibration for the compacted straw cube. Biosyst. Eng. 2023, 230, 301–312. [Google Scholar] [CrossRef]
- Mei, F.W.; Li, B.H.; Xu, Z.G.; Li, X.D.; Zhu, X.H. Discrete element modeling of straw bale: An innovative approach to simulate the compression mechanics of fiber-based materials. Comput. Electron. Agr. 2025, 231, 110002. [Google Scholar] [CrossRef]
- Xie, D.; He, J.; Liu, T.; Liu, C.; Zhao, G.; Chen, L. Establishment and validation the DEM-MBD coupling model of flexible straw-Shajiang black soil-walking mechanism interactions. Comput. Electron. Agr. 2024, 224, 109203. [Google Scholar] [CrossRef]
- Tang, H.; Xu, W.L.; Zhao, J.L.; Xu, C.S.; Wang, J.W. Comparison of rice straw compression characteristics in vibration mode based on discrete element method. Biosyst. Eng. 2023, 230, 191–204. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.T.; Yang, Y.; Zhao, H.M.; Yang, C.H.; He, Y.; Wang, K.; Liu, D.; Xu, H.B. Discrete element modelling of citrus fruit stalks and its verification. Biosyst. Eng. 2020, 200, 400–414. [Google Scholar] [CrossRef]
- Tang, H.; Xu, W.L.; Zhu, G.X.; Xu, C.S.; Wang, J.W. Study on force chain evolution of rice straw with different length during vibrational compression. Particuology 2024, 85, 310–322. [Google Scholar] [CrossRef]
- Thakur, S.C.; Morrissey, J.P.; Sun, J.; Chen, J.F.; Ooi, J.Y. Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto-plastic contact model. Granul. Matter. 2014, 16, 383–400. [Google Scholar] [CrossRef]
- Zeng, Z.W.; Chen, Y. Simulation of straw movement by discrete element modelling of straw-sweep-soil interaction. Biosyst. Eng. 2019, 180, 25–35. [Google Scholar] [CrossRef]
- Wang, Q.R.; Mao, H.P.; Li, Q.L. Modelling and simulation of the grain threshing process based on the discrete element method. Comput. Electron. Agr. 2020, 178, 105790. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Wang, X.W.; Zhang, C.A.; Jiang, Y.; Wen, J.F.; Zhang, X.C.; Gong, J.M. Revealing the influences of strain amplitudes on hybrid stress-strain controlled creep-fatigue interaction responses for 9% Cr steel. Eng. Fract. Mech. 2023, 289, 109415. [Google Scholar] [CrossRef]
- Jia, H.L.; Chen, T.Y.; Zhang, S.W.; Sun, X.M.; Yuan, H.F. Effects of Pressure Maintenance and Strain Maintenance during Compression on Subsequent Dimensional Stability and Density after Relaxation of Blocks of Chopped Corn Straw. Bioresources 2020, 15, 3717–3736. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, B.; Liu, X.; Ren, H.; Li, X.Y.; Li, Y.M. Structural model and bundling capacity of crawler picking and baling machine for straw wasted in field. Comput. Electron. Agr. 2020, 175, 105622. [Google Scholar] [CrossRef]
- Shi, Y.Y.; Sun, X.; Wang, X.C.; Hu, Z.C.; Newman, D.; Ding, W.M. Numerical simulation and field tests of minimum-tillage planter with straw smashing and strip laying based on EDEM software. Comput. Electron. Agr. 2019, 166, 105021. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, W.; Li, Q.; Zhuang, X.; Zhao, Z. Deformation behavior and microstructure evolution of Al-Zn-Mg-Cu alloy under low-frequency vibration-assisted compression: Considering the relative amplitude. J. Mater. Process. Technol. 2024, 330, 1184487. [Google Scholar] [CrossRef]
- Chen, T.; Jia, H.; Li, M.; Zhao, J.; Deng, J.; Fu, J.; Yuan, H. Mechanism of restraining maize stalk block springback under pressure maintenance/strain maintenance. Trans. Chin. Soc. Agric. Eng. 2021, 37, 51–58. [Google Scholar] [CrossRef]
- He, H.; Wang, Y.; Sun, Y.; Sun, W.; Wu, K. From raw material powder to solid fuel pellet: A state-of-the-art review of biomass densification. Biomass Bioenergy 2024, 186, 107271. [Google Scholar] [CrossRef]
- Beig, B.; Riaz, M.; Naqvi, S.R.; Hassan, M.; Zheng, Z.F.; Karimi, K.; Pugazhendhi, A.; Atabani, A.E.; Chi, N.T.L. Current challenges and innovative developments in pretreatment of lignocellulosic residues for biofuel production: A review. Fuel 2021, 287, 119670. [Google Scholar] [CrossRef]
Basic Parameters | Value | Unit |
---|---|---|
Motor rated speed | 1300 | r/min |
Motor rated power | 0.25 | kW |
Maximum stroke of hydraulic cylinder | 500 | mm |
Maximum pressure of hydraulic cylinder | 20,000 | N |
Maximum power of hydraulic power unit | 0.75 | kW |
Parameters | Values | Reference |
---|---|---|
Normal stiffness per unit area (N m−3) | 4.1551 × 109 | [23,24] |
Shear stiffness per unit area (N m−3) | 8.0749 × 108 | |
Normal strength (Pa) | 1.0 × 107 | |
Shear strength (Pa) | 1.3 × 106 | |
Bonded disc scale | 1.0 |
Parameters | Values | Reference |
---|---|---|
Discrete Element Contact Model Between Compressed Straw Particle | Edinburgh Elasto-Plastic Adhesion (EEPA) | [25] |
Contact Model Between Compressed Particles and the Mould | Hertz-Mindlin (no slip) | |
Rice straw density/(kg/m3) | 241 | [26] |
Poisson’s ratio of rice straw | 0.5 | |
Elastic modulus of rice straw/(Mpa) | 312 | |
Static friction coefficient between rice straw and rice straw | 0.445 | |
Dynamic friction coefficient between rice straw and rice straw | 0.07 | |
Collision Coefficient of Restitution between rice straw and rice straw | 0.357 | |
Static friction coefficient between rice straw and steel plate | 0.317 | [18,27] |
Dynamic friction coefficient between rice straw and steel plate | 0.028 | |
Collision Coefficient of Restitution between rice straw and steel Plate | 0.407 |
Level | Test Factors | ||
---|---|---|---|
Number of Vibration Points x1 | Vibration Frequency x2/(Cycles/min) | Vibration Amplitude x3/(mm) | |
1 | 0 | 100 | 1 |
2 | 1 | 200 | 1.5 |
3 | 4 | 300 | 2 |
4 | 9 | 400 | 2.5 |
5 | 16 | 500 | 3 |
Level Coding | Test Factors | ||
---|---|---|---|
Number of Vibration Points A | Vibration Frequency B/(Cycles/min) | Vibration Amplitude C/(mm) | |
1 | 1 | 200 | 1 |
2 | 4 | 250 | 1.5 |
3 | 9 | 300 | 2 |
Basic Parameters | Values | Unit |
---|---|---|
Rotational speed of the motor | 300 | rpm |
Stroke of the hydraulic cylinder | 300 | mm |
Length of a single straw | 200 | mm |
Moisture content of straw | 30.61 | % |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Xu, W.; Xu, C.; Wang, J.; Tang, H. Optimising Rice Straw Bale Quality Through Vibration-Assisted Compression. Agriculture 2025, 15, 2094. https://doi.org/10.3390/agriculture15192094
Xu F, Xu W, Xu C, Wang J, Tang H. Optimising Rice Straw Bale Quality Through Vibration-Assisted Compression. Agriculture. 2025; 15(19):2094. https://doi.org/10.3390/agriculture15192094
Chicago/Turabian StyleXu, Fudong, Wenlong Xu, Changsu Xu, Jinwu Wang, and Han Tang. 2025. "Optimising Rice Straw Bale Quality Through Vibration-Assisted Compression" Agriculture 15, no. 19: 2094. https://doi.org/10.3390/agriculture15192094
APA StyleXu, F., Xu, W., Xu, C., Wang, J., & Tang, H. (2025). Optimising Rice Straw Bale Quality Through Vibration-Assisted Compression. Agriculture, 15(19), 2094. https://doi.org/10.3390/agriculture15192094