Effect of Organic Amendments and Biostimulants on Zucchini Yield and Fruit Quality Under Alkaline Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Location
2.2. Soil, Soil Amendments, and Biofertilizer Analysis
2.3. Treatments and Experimental Setup
- unamended soil, for which each pot was filled with 13 kg of air-dried soil.
- soil amended with Humisoil 65 g pot−1 (6.1 t ha−1, equal to a rate of 0.50% w/w), assuming a depth of 15.24 cm and a soil bulk density of 0.80 g cm−3.
- soil amended with 6.1 t ha−1 Humisoil and biochar 15 g pot−1 (soil equivalent at a rate to 1.4 t ha−1, equal to a rate of 0.12% w/w).
- soil amended with wood vinegar, at a dose of 1% (v/v).
- soil amended with EnSoil Algae, at a dose of 5 mL 3.785 L−1 well water.
- soil amended with 6.1 t ha−1 Humisoil, 1.4 t ha−1 biochar, and air-dried BRD 15 g pot−1 (soil equivalent at a rate to 1.4 t ha−1, equal to a rate of 0.12% w/w).
2.4. Determination of Plant Nutrient Analysis
2.5. Yield and Fruit Quality Analysis
2.6. Manufactured Soil Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effect of Treatments on Zucchini Growth and Fruit Quality
3.2. Effect of Treatments on Fruit Yield Parameters
3.3. Plant Nutrient Concentration
3.4. Soil Health
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BRD | Basaltic rock dust |
DAT | Days after transplanting |
EC | Electrical conductivity |
HSHT | Haney Soil Health Test |
MAC | Microbial activity carbon |
M | Marketable yield |
NM | Non-marketable yield |
OM | Organic matter |
SWHC | Soil water holding capacity |
TSSs | Total soluble solids |
T | Total yield |
References
- Davis, A.G.; Huggins, D.R.; Reganold, J.P. Linking Soil Health and Ecological Resilience to Achieve Agricultural Sustainability. Front. Ecol. Environ. 2023, 21, 131–139. [Google Scholar] [CrossRef]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Antonious, G.F.; Dawood, M.H.; Turley, E.T.; Trivette, T.G.; Antonious, G.F.; Dawood, M.H.; Turley, E.T.; Trivette, T.G. Soil Amendments Enhanced Summer Squash Yield, Fruit Composition, Quality, and Soil Enzymes Activity. Agric. Sci. 2022, 13, 684–701. [Google Scholar] [CrossRef]
- Guo, M. Soil Health Assessment and Management: Recent Development in Science and Practices. Soil Syst. 2021, 5, 61. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, Q.; de Vries, W.; Ros, G.H.; Chen, X.; Muneer, M.A.; Zhang, F.; Wu, L. Effects of Soil Amendments on Soil Acidity and Crop Yields in Acidic Soils: A World-Wide Meta-Analysis. J. Environ. Manag. 2023, 345, 118531. [Google Scholar] [CrossRef]
- Mikajlo, I.; Lerch, T.Z.; Louvel, B.; Hynšt, J.; Záhora, J.; Pourrut, B. Composted Biochar versus Compost with Biochar: Effects on Soil Properties and Plant Growth. Biochar 2024, 6, 1–17. [Google Scholar] [CrossRef]
- Pandian, K.; Vijayakumar, S.; Mustaffa, M.R.A.F.; Subramanian, P.; Chitraputhirapillai, S. Biochar—A Sustainable Soil Conditioner for Improving Soil Health, Crop Production and Environment under Changing Climate: A Review. Front. Soil Sci. 2024, 4, 1376159. [Google Scholar] [CrossRef]
- Shyam, S.; Ahmed, S.; Joshi, S.J.; Sarma, H. Biochar as a Soil Amendment: Implications for Soil Health, Carbon Sequestration, and Climate Resilience. Discov. Soil 2025, 2, 1–22. [Google Scholar] [CrossRef]
- Hajnal-Jafari, T.; Seman, V.; Stamenov, D.; Uric, S. Effect of Chlorella Vulgaris on Growth and Photosynthetic Pigment Content in Swiss Chard (Beta vulgaris L. Subsp. Cicla). Pol. J. Microbiol. 2020, 69, 235. [Google Scholar] [CrossRef]
- Garbowski, T.; Bar-Michalczyk, D.; Charazińska, S.; Grabowska-Polanowska, B.; Kowalczyk, A.; Lochyński, P. An Overview of Natural Soil Amendments in Agriculture. Soil Tillage Res. 2023, 225, 105462. [Google Scholar] [CrossRef]
- Conceição, L.T.; Silva, G.N.; Holsback, H.M.S.; Oliveira, C.d.F.; Marcante, N.C.; Martins, É.d.S.; Santos, F.L.d.S.; Santos, E.F. Potential of Basalt Dust to Improve Soil Fertility and Crop Nutrition. J. Agric. Food Res. 2022, 10, 100443. [Google Scholar] [CrossRef]
- Thapa, R.B.; Thapa, V.R.; Richardson, J.B. Basalt Rock Dust Amendment on Soil Health Properties and Inorganic Nutrients—Laboratory and Field Study at Two Organic Farm Soils in New England, USA. Agriculture 2024, 15, 52. [Google Scholar] [CrossRef]
- Skov, K.; Wardman, J.; Healey, M.; McBride, A.; Bierowiec, T.; Cooper, J.; Edeh, I.; George, D.; Kelland, M.E.; Mann, J.; et al. Initial Agronomic Benefits of Enhanced Weathering Using Basalt: A Study of Spring Oat in a Temperate Climate. PLoS ONE 2024, 19, e0295031. [Google Scholar] [CrossRef] [PubMed]
- Khor, H.T.; Teoh, G.K.H. Agriculture and Food Circularity in Malaysia. In An Introduction to Circular Economy; Liu, L., Ramakrishna, S., Eds.; Springer: Singapore, 2020; pp. 107–130. ISBN 9789811585104. [Google Scholar]
- Luo, X.; Wang, Z.; Meki, K.; Wang, X.; Liu, B.; Zheng, H.; You, X.; Li, F. Effect of Co-Application of Wood Vinegar and Biochar on Seed Germination and Seedling Growth. J. Soils Sediments 2019, 19, 3934–3944. [Google Scholar] [CrossRef]
- Yang, S.; Xu, Y.; Tang, Z.; Jin, S.; Yang, S. The Impact of Alkaline Stress on Plant Growth and Its Alkaline Resistance Mechanisms. Int. J. Mol. Sci. 2024, 25, 13719. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Huang, S.; Ma, Y.; Danish, S.; Hareem, M.; Syed, A.; Elgorban, A.M.; Eswaramoorthy, R.; Wong, L.S. Alleviation of Salinity Stress by EDTA Chelated-Biochar and Arbuscular Mycorrhizal Fungi on Maize via Modulation of Antioxidants Activity and Biochemical Attributes. BMC Plant Biol. 2024, 24, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Kekeli, M.A.; Jiang, Y.; Rui, Y. Progress and Prospect of Saline-Alkaline Soil Management Technology: A Review. Appl. Sci. 2025, 15, 4567. [Google Scholar] [CrossRef]
- FAOSTAT Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 28 August 2025).
- Esteves, E.; Locatelli, G.; Bou, N.A.; Ferrarezi, R.S. Sap Analysis: A Powerful Tool for Monitoring Plant Nutrition. Horticulturae 2021, 7, 426. [Google Scholar] [CrossRef]
- Vaughan, E.G.; Crutcher, J.M.; Weir Labatt, T., III; McMahan, L.H.; Bradford, B.R., Jr.; Cluck, M. Climate of Texas. In 2012 State Water Plan; Texas Water Development Board: Austin, TX, USA, 2012; pp. 145–155. [Google Scholar]
- Liyanage, D.K.; Chathuranga, I.; Mori, B.A.; Thilakarathna, M.S. A Simple, Semi-Automated, Gravimetric Method to Simulate Drought Stress on Plants. Agronomy 2022, 12, 349. [Google Scholar] [CrossRef]
- Cardelli, R.; Becagli, M.; Marchini, F.; Saviozzi, A. Soil Biochemical Activities after the Application of Pyroligneous Acid to Soil. Soil Res. 2020, 58, 461–467. [Google Scholar] [CrossRef]
- Riggs, K. Fruit and Vegetable Guide Series: Zucchini. Create Better Health Utah State Extension Employees. 2022, pp. 1–3. Available online: https://extension.usu.edu/nutrition/research/zucchini.pdf (accessed on 1 April 2025).
- Cardarelli, M.; Rouphael, Y.; Rea, E.; Colla, G. Mitigation of Alkaline Stress by Arbuscular Mycorrhiza in Zucchini Plants Grown under Mineral and Organic Fertilization. J. Plant Nutr. Soil Sci. 2010, 173, 778–787. [Google Scholar] [CrossRef]
- Bello, S.K.; AL-Solaimani, S.G.; Abo-Elyousr, K.A.M. The Effect of Bio-Organic Amendments on the Fruit Weight and Quality of Summer Squash Under Arid Land Conditions. Gesunde Pflanz. 2023, 75, 1221–1235. [Google Scholar] [CrossRef]
- De Bruin, W.; Rossouw, W.; Korsten, L. Comparison of Safe Alternative Dipping Treatments to Maintain Quality of Zucchini. J. Food Qual. 2016, 39, 109–115. [Google Scholar] [CrossRef]
- Perla, D.E.; Hayden, Z.D.; Hausbeck, M.K. Commercial Hard Squash Cultivars Exhibit Differences in Susceptibility to Phytophthora Crown Rot. Plant Health Prog. 2023, 24, 429–434. [Google Scholar] [CrossRef]
- Singh, S.; Walker, F.; Jagadamma, S.; Yoder, D.; Yin, X. A Weighted Soil Heath Index Approach for Refined Assessment of Soil Health in Cropping Systems. Front. Soil Sci. 2023, 3, 1118526. [Google Scholar] [CrossRef]
- Román Román, L.; Molina Cárdenas, L.; Tirado Ramírez, M.A.; Rojas Pérez, H.; Zazueta Torres, N.D.; López Cuén, P.I.; Payán Arzapalo, M.A.; Cázarez Flores, L.L. Effect of Vermicompost and Phyto-Regulator on Zucchini Fruits (Cucurbita Pepo L.) Grown in Shade Houses. Agro Product. 2024, 17, 169–175. [Google Scholar] [CrossRef]
- Martínez-Valdivieso, D.; Gómez, P.; Font, R.; Alonso-Moraga, Á.; Del Río-Celestino, M. Physical and Chemical Characterization in Fruit from 22 Summer Squash (Cucurbita Pepo L.) Cultivars. LWT Food Sci. Technol. 2015, 64, 1225–1233. [Google Scholar] [CrossRef]
- Sawas, D.; Karapanos, I.; Tagaris, A.; Passam, H.C. Effects of NaCl and Silicon on the Quality and Storage Ability of Zucchini Squash Fruit. J. Hortic Sci. Biotechnol. 2009, 84, 381–386. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Rea, E.; Battistelli, A.; Colla, G. Comparison of the Subirrigation and Drip-Irrigation Systems for Greenhouse Zucchini Squash Production Using Saline and Non-Saline Nutrient Solutions. Agric. Water Manag. 2006, 82, 99–117. [Google Scholar] [CrossRef]
- Rouphael, Y.; De Micco, V.; Arena, C.; Raimondi, G.; Colla, G.; De Pascale, S. Effect of Ecklonia Maxima Seaweed Extract on Yield, Mineral Composition, Gas Exchange, and Leaf Anatomy of Zucchini Squash Grown under Saline Conditions. J. Appl. Phycol. 2017, 29, 459–470. [Google Scholar] [CrossRef]
- Youssef, M.A.; Al-Huqail, A.A.; Ali, E.F.; Majrashi, A. Organic Amendment and Mulching Enhanced the Growth and Fruit Quality of Squash Plants (Cucurbita pepo L.) Grown on Silty Loam Soils. Horticulturae 2021, 7, 269. [Google Scholar] [CrossRef]
- Rekaby, S.A.; Ghoneim, A.M.; Gebreel, M.; Ali, W.; Yousef, A.F. Compost and Vermicompost Enhances the Growth, Uptake and Quality of Zucchini Plants (Cucurbita pepo L.) Grown on Sandy Soils (Preprint). Res. Sq. 2023; preprint. [Google Scholar] [CrossRef]
- Bumgarner, N.R.; Kleinhenz, N.R. Using °Brix as an Indicator of Vegetable Quality: Linking Measured Values to Crop Management. Ohio State University Extension: Columbus, OH, USA, 2013. Available online: https://ohioline.osu.edu/factsheet/HYG-1651 (accessed on 1 June 2025).
- Montemurro, F.; Fiore, A.; Campanelli, G.; Tittarelli, F.; Ledda, L.; Canali, S. Organic Fertilization, Green Manure, and Vetch Mulch to Improve Organic Zucchini Yield and Quality. HortScience 2013, 48, 1027–1033. [Google Scholar] [CrossRef]
- Rekaby, S.A.; Ghoneim, A.M.; Gebreel, M.; Ali, W.M.; Yousef, A.F.; Mahmoud, E.; Rekaby, S.A.; Ghoneim, A.M.; Gebreel, M.; Ali, W.M.; et al. Impact of Some Organic Fertilizers on Nutrients Uptake, Yield of Zucchini (Cucurbita pepo L.) and Soil Fertility Properties. Technol. Agron. 2024, 4, e030. [Google Scholar] [CrossRef]
- Francois, L.E. Salinity Effects on Germination, Growth, and Yield of Two Squash Cultivars. HortScience 1985, 20, 1102–1104. [Google Scholar] [CrossRef]
- Minaoui, F.; Hakkoum, Z.; Chabili, A.; Douma, M.; Mouhri, K.; Loudiki, M. Biostimulant Effect of Green Soil Microalgae Chlorella Vulgaris Suspensions on Germination and Growth of Wheat (Triticum Aestivum Var. Achtar) and Soil Fertility. Algal Res. 2024, 82, 1–14. [Google Scholar] [CrossRef]
- Black, E. The Citizen Science Soil Health Project: User-Friendly Haney and PLFA Results Form. Sustainable Agriculture Research and Education Projects. Available online: https://projects.sare.org/sare_project/fw19-341/ (accessed on 29 May 2025).
- Horneck, D.A.; Sullivan, D.M.; Owen, J.; Hart, J.M. Soil Test Interpretation Guide. Or. State Univ. Ext. Serv. 2023, EC 1478, 1–18. [Google Scholar]
- Timmermans, J.; van de Ven, M. Plant Sap Analysis Increase Plant Vigor with a Closer Look at Nutrients. Acres USA Voice Eco-Agric. 2014, 41, 1–4. [Google Scholar]
- Farm Water Quality and Treatment, 1st ed.; NSW Department of Primary Industries: New South Wales, Australia, 2014; pp. 1–41.
- Ward Laboratories, Inc. Haney Test Interpretation Guide v1.0. Available online: www.wardlab.com (accessed on 18 January 2025).
- Haney, R.L.; Haney, E.B.; Smith, D.R.; Harmel, R.D.; White, M.J. The Soil Health Tool—Theory and Initial Broad-Scale Application. Appl. Soil Ecol. 2018, 125, 162–168. [Google Scholar] [CrossRef]
- Presley, D.; Field, K.; Presley, D. Effects of Flue Gas Desulfurization Gypsum on Crop Yield and Soil Properties in Kansas. Kans. Agric. Exp. Stn. Res. Rep. 2016, 2, 3. [Google Scholar] [CrossRef]
- Moore, A.; Satterwhite, M.; Lehrsch, G.A.; McGeehan, S. Dairy Manure Applications and Soil Health Implications. In Proceedings of the Idaho Nutrient Management Conference, Jerome, ID, USA, 10 March 2016; Volume 8, pp. 11–15. [Google Scholar]
- Chu, M.; Singh, S.; Walker, F.R.; Eash, N.S.; Buschermohle, M.J.; Duncan, L.A.; Jagadamma, S. Soil Health and Soil Fertility Assessment by the Haney Soil Health Test in an Agricultural Soil in West Tennessee. Commun. Soil Sci. Plant Anal. 2019, 50, 1123–1131. [Google Scholar] [CrossRef]
- Hargreaves, S.K.; DeJong, P.; Laing, K.; McQuail, T.; Van Eerd, L.L.; Hargreaves, S.; DeJong, P.; Laing, K.; McQuail, T.; Van Eerd, L. Management Sensitivity, Repeatability, and Consistency of Interpretation of Soil Health Indicators on Organic Farms in Southwestern Ontario. Can. J. Soil. Sci. 2019, 99, 508–519. [Google Scholar] [CrossRef]
Parameters | Soil a | Well Water | Humisoil | Biochar |
---|---|---|---|---|
pH | 7.4 | 7.5 | 6.5 | 6.65 |
EC (mmho/cm) | 3.61 | 0.73 | 0.23 | 0.014 |
Chloride (ppm) | 238.5 | 135 | n.d. | brl |
Bicarbonate (ppm) | n.d. | 182 | n.d. | n.d. |
Nitrate (ppm) | 197 | 1.3 | n.d. | 1.1 |
NH4 (ppm) | 1.2 | n.d. | n.d. | 6.4 |
Sulfur (ppm) | 543.34 | n.d. | 1142 | n.d. |
Total Phosphorus (ppm) | 68.8 | <0.02 | 2700 | 23 |
Calcium (ppm) | 3388 | 114.4 | 12,900 | n.d. |
Magnesium (ppm) | 240 | 24.9 | 800 | n.d. |
Potassium (ppm) | 850 | 1.3 | 1000 | n.d. |
Sodium (ppm) | 170 | 0.12 | 1100 | brl |
Boron (ppm) | n.d. | 0.06 | 40.93 | brl |
Iron (ppm) | 11 | <0.1 | 11,425 | 97.9 |
Manganese (ppm) | 2.2 | n.d. | 112.86 | 15.9 |
Copper (ppm) | 0.23 | n.d. | 20.25 | 0.37 |
Zinc (ppm) | 0.19 | n.d. | 60.89 | 3.8 |
Aluminum (ppm) | 7 | n.d. | n.d. | n.d. |
Treatments | Fresh Shoot Biomass | TSS | pH |
---|---|---|---|
g Plant−1 | °Brix | ||
T1 | 303.70 ns | 5.02 | 6.69 ns |
T2 | 391.80 | 4.26 * | 6.79 |
T3 | 376.00 | 4.52 | 6.67 |
T4 | 332.50 | 4.50 | 6.86 |
T5 | 375.50 | 4.43 | 6.72 |
T6 | 359.50 | 4.36 • | 6.74 |
Treatment | Yield (g Plant−1) | Fruit Mean Weight (g Fuit−1) | Fruit (No. Plant−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
T | M | NM | T | M | NM | T | M | NM | |
T1 | 447.60 | 211.00 ns | 384.30 | 73.16 | 127.83 ns | 34.81 | 11.50 | 1.67 ns | 11.00 |
T2 | 895.90 *** | 244.60 | 651.30 * | 207.49 *** | 163.30 | 44.19 | 16.30 ** | 1.50 | 14.80 • |
T3 | 734.70 * | 214.29 | 584.70 | 144.30 * | 144.00 | 43.50 | 14.70 | 1.43 | 13.70 |
T4 | 518.40 | 155.33 | 471.80 | 67.27 | 112.17 | 33.62 | 13.40 | 1.00 | 13.10 |
T5 | 899.50 *** | 287.50 | 669.50 * | 152.05 * | 131.39 | 46.94 • | 15.80 * | 2.13 | 14.10 |
T6 | 997.40 *** | 333.40 | 664.00 * | 214.67 *** | 165.87 | 48.81 * | 15.70 * | 2.10 | 13.60 |
Treatments | T1 | T2 | T3 | T4 | T5 | T6 | T1 | T2 | T3 | T4 | T5 | T6 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Young Leaf | Old Leaf | |||||||||||
Sugars | 0.76 ns | 1.07 | 1.27 | 1.03 | 1.17 | 1.13 | 0.77 ns | 0.97 | 0.67 | 0.87 | 0.70 | 0.97 |
pH | 7.27 ns | 7.10 | 7.07 | 7.17 | 7.07 | 7.03 | 7.47 ns | 7.53 | 7.47 | 7.43 | 7.43 | 7.47 |
EC | 16.23 ns | 13.90 | 13.97 | 15.60 | 14.30 | 14.33 | 19.30 ns | 17.07 | 19.03 | 18.53 | 19.17 | 18.33 |
K | 5742.67 ns | 5551.33 | 5374.33 | 5348.00 | 5760.33 | 5376.00 | 5949.33 ns | 5484.67 | 5534.00 | 5573.00 | 5610.33 | 5473.33 |
Ca | 1392.00 ns | 1224.67 | 1203.00 | 1753.67 | 1273.00 | 1247.33 | 1916.67 ns | 1931.67 | 2008.67 | 2082.00 | 1975.33 | 2107.33 |
K/Ca ratio | 4.32 ns | 4.64 | 4.80 | 3.39 | 4.60 | 4.43 | 3.18 ns | 2.84 | 2.76 | 2.69 | 2.86 | 2.63 |
Mg | 898.00 ns | 717.33 | 664.67 | 1157.00 | 739.00 | 630.67 | 1290.67 ns | 1518.00 | 1339.00 | 1356.33 | 1316.33 | 1349.33 |
Na | 22.00 | 9.67 | 10.00 | 19.67 | 11.67 | 9.00 * | 35.67 | 13.33 • | 23.00 | 29.00 | 29.00 | 17.67 • |
NH4 | 72.33 ns | 85.33 | 77.00 | 58.00 | 69.33 | 97.33 | 62.67 ns | 64.67 | 58.33 | 67.00 | 52.00 | 81.33 |
NO3 | 939.67 ns | 721.33 | 821.67 | 597.00 | 513.33 | 1132.00 | 1259.00 ns | 823.67 | 2047.33 | 1752.33 | 1289.00 | 1879.00 |
N-NO3 | 212.00 ns | 163.00 | 185.67 | 134.67 | 116.00 | 255.33 | 284.00 ns | 186.00 | 462.00 | 395.67 | 291.00 | 424.33 |
N-TN | 1255.00 ns | 1337.33 | 1632.33 | 1222.33 | 1364.00 | 1615.33 | 1350.67 ns | 1223.33 | 1432.33 | 1447.67 | 1095.67 | 1355.67 |
Cl | 2887.00 ns | 1603.00 | 1955.00 | 2819.00 | 1769.67 | 2005.67 | 4784.33 | 3372.00 ** | 4030.33 | 4033.67 • | 4695.00 | 3637.00 ** |
S | 324.67 ns | 301.67 | 315.67 | 454.00 | 320.33 | 286.00 | 464.00 ns | 521.00 | 565.33 | 534.33 | 431.00 | 425.33 |
P | 131.67 ns | 179.00 | 178.33 | 124.67 | 183.33 | 166.33 | 68.00 ns | 71.67 | 54.00 | 63.67 | 54.33 | 60.33 |
Si | 64.70 ns | 64.20 | 54.63 | 58.57 | 60.47 | 58.97 | 60.23 ns | 64.63 | 66.97 | 57.13 | 64.30 | 61.67 |
Fe | 1.18 ns | 1.75 | 1.51 | 1.86 | 2.26 | 1.48 | 1.41 ns | 1.88 | 1.57 | 1.63 | 1.39 | 1.51 |
Mn | 1.01 ns | 0.98 | 0.90 | 1.37 | 1.05 | 0.93 | 1.28 ns | 1.59 | 1.46 | 1.50 | 1.34 | 1.50 |
Zn | 8.53 ns | 8.47 | 9.03 | 9.83 | 8.98 | 7.87 | 8.39 ns | 8.50 | 6.94 | 8.32 | 5.74 | 7.80 |
B | 5.13 ns | 5.52 | 4.71 | 7.66 | 4.72 | 3.67 | 6.90 ns | 10.6 | 7.26 | 8.42 | 6.91 | 7.58 |
Cu | 1.52 ns | 1.54 | 1.70 | 1.68 | 1.80 | 1.66 | 1.35 ns | 1.44 | 1.34 | 1.35 | 1.18 | 1.24 |
Mo | 0.37 ns | 0.28 | 0.31 | 0.54 | 0.31 | 0.24 | 0.59 ns | 0.74 | 0.61 | 0.61 | 0.52 | 0.56 |
Al | 0.13 ns | 0.09 | 0.18 | 0.17 | 0.21 | 0.10 | 0.16 ns | 0.17 | 0.16 | 0.15 | 0.17 | 0.17 |
Co | 0.26 ns | 0.12 | 0.16 | 0.36 | 0.08 | 0.08 | 0.40 ns | 0.48 | 0.46 | 0.42 | 0.41 | 0.44 |
Treatments | T1 | T2 | T3 | T4 | T5 | T6 | T1 | T2 | T3 | T4 | T5 | T6 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sampling | At Start | At End | ||||||||||
OM | 6.40 | 5.40 | 6.40 | 6.30 | 5.40 | 6.10 | 6.90 | 6.80 | 6.60 | 6.70 | 6.40 | 7.10 |
CO2-C | 78.06 | 82.16 | 67.31 | 54.01 | 72.53 | 45.74 | 53.75 | 47.10 | 66.33 | 51.30 | 46.07 | 62.22 |
Total N a | 330.48 | 219.60 | 313.86 | 393.53 | 363.93 | 310.10 | 143.14 | 87.64 | 130.86 | 136.75 | 100.26 | 96.28 |
Organic N a | 151.58 | 49.43 | 138.06 | 183.33 | 170.23 | 128.10 | 91.69 | 76.67 | 86.69 | 82.59 | 75.10 | 63.17 |
Total Organic C a | 1414.51 | 582.58 | 1120.51 | 1186.46 | 1354.84 | 1113.6 | 876.32 | 772.67 | 821.09 | 703.22 | 708.40 | 622.43 |
NO3 b | 169.00 | 164.00 | 167.00 | 199.00 | 185.00 | 173.00 | 49.60 | 9.04 | 42.40 | 52.20 | 23.40 | 31.20 |
NH4 b | 11.90 | 7.37 | 10.70 | 17.50 | 10.50 | 10.70 | 2.71 | 2.82 | 2.50 | 2.55 | 2.75 | 2.56 |
Inorganic N b | 180.90 | 171.37 | 177.70 | 216.50 | 195.50 | 183.70 | 52.31 | 11.86 | 44.9 | 54.75 | 26.15 | 33.76 |
Total P b | 51.66 | 53.44 | 59.58 | 50.78 | 57.83 | 58.9 | 45.01 | 48.51 | 51.15 | 41.44 | 44.69 | 51.27 |
Inorganic P b | 45.90 | 48.90 | 51.40 | 46.30 | 50.60 | 51.60 | 41.50 | 44.50 | 46.60 | 38.50 | 42.1 | 45.7 |
Organic P b | 5.76 | 4.54 | 8.18 | 4.48 | 7.23 | 7.30 | 3.51 | 4.01 | 4.55 | 2.94 | 2.59 | 5.57 |
K b | 1196.35 | 930.26 | 1083.72 | 1158.36 | 1210.67 | 1009.22 | 861.49 | 506.12 | 714.31 | 681.09 | 587.14 | 614.53 |
Ca b | 3756.69 | 3514.63 | 3739.86 | 3870.81 | 3969.93 | 3661.99 | 3339.62 | 3189.17 | 3451.29 | 3127.76 | 3201.33 | 3256.26 |
S b | 956.74 | 873.18 | 825.40 | 939.00 | 990.00 | 795.91 | 713.76 | 547.85 | 835.66 | 456.42 | 568.86 | 706.71 |
Na b | 257.87 | 183.91 | 212.78 | 259.59 | 258.01 | 204.15 | 280.87 | 190.69 | 280.64 | 223.5 | 207.08 | 215.47 |
Mn b | 2.74 | 2.40 | 2.54 | 2.98 | 2.81 | 2.50 | 2.02 | 2.09 | 2.00 | 2.07 | 2.11 | 2.04 |
% MAC | 5.52 | 14.10 | 6.01 | 4.55 | 5.35 | 4.11 | 6.13 | 6.10 | 8.08 | 7.30 | 6.50 | 10.00 |
Organic C: N a | 9.33 | 11.79 | 8.12 | 6.47 | 7.96 | 8.69 | 9.56 | 10.08 | 9.47 | 8.51 | 9.43 | 9.85 |
Organic N: Inorganic N a | 0.85 | 0.29 | 0.79 | 0.87 | 0.88 | 0.70 | 1.78 | 6.99 | 1.96 | 1.52 | 2.98 | 1.91 |
Soil health score | 51.25 | 24.81 | 42.95 | 47.46 | 51.37 | 39.66 | 32.07 | 27.83 | 31.72 | 27.45 | 26.29 | 24.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islas-Valdez, S.; Sproull, R.; Sumners, T.; Wagner, N. Effect of Organic Amendments and Biostimulants on Zucchini Yield and Fruit Quality Under Alkaline Conditions. Agriculture 2025, 15, 2078. https://doi.org/10.3390/agriculture15192078
Islas-Valdez S, Sproull R, Sumners T, Wagner N. Effect of Organic Amendments and Biostimulants on Zucchini Yield and Fruit Quality Under Alkaline Conditions. Agriculture. 2025; 15(19):2078. https://doi.org/10.3390/agriculture15192078
Chicago/Turabian StyleIslas-Valdez, Samira, Reagan Sproull, Ty Sumners, and Nicole Wagner. 2025. "Effect of Organic Amendments and Biostimulants on Zucchini Yield and Fruit Quality Under Alkaline Conditions" Agriculture 15, no. 19: 2078. https://doi.org/10.3390/agriculture15192078
APA StyleIslas-Valdez, S., Sproull, R., Sumners, T., & Wagner, N. (2025). Effect of Organic Amendments and Biostimulants on Zucchini Yield and Fruit Quality Under Alkaline Conditions. Agriculture, 15(19), 2078. https://doi.org/10.3390/agriculture15192078