Integrated Effects of Tillage Intensity, Genotype, and Weather Variability on Growth, Yield, and Grain Quality of Winter Wheat in Maize–Wheat Rotation
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Site and Design
2.2. Soil and Weather Conditions
2.3. Yield Assessment
2.4. Morphophysiological Measurements
2.5. Wheat Quality Parameters
2.6. Statistical Analysis
3. Results and Discussion
3.1. Grain Yield
3.2. Leaf Area Index (LAI)
3.3. Soil–Plant Analysis Development (SPAD)
3.4. Gas Exchange
3.5. Selected Chemical and Physical Parameters of Wheat Grain
3.6. Correlation Among Variables
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shewry, P.R.; Hey, S. Do ‘ancient’ wheat species differ from modern bread wheat in their contents of bioactive components? J. Cereal Sci. 2015, 65, 236–243. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/ (accessed on 29 May 2025).
- Guo, X.; Zhang, P.; Yue, Y. Prediction of global wheat cultivation distribution under climate change and socioeconomic development. Sci. Total Environ. 2024, 919, 170481. [Google Scholar] [CrossRef]
- Grausgruber, H.; Atzgersdorfer, K.; Bohmdorefr, S. Purple and blue wheat-health-promoting grains with increased antioxidant activity. Cereal Foods World 2018, 63, 217–220. [Google Scholar] [CrossRef]
- Smagacz, J.; Kozieł, M.; Martyniuk, S. Soil properties and yields of winter wheat after long-term growing of this crop in two contrasting rotations. Plant Soil Environ. 2016, 62, 566–570. [Google Scholar] [CrossRef]
- Babulicová, M. Enhancing of winter wheat productivity by the introduction of field pea into crop rotation. Agriculture 2016, 62, 101–110. [Google Scholar] [CrossRef]
- Woźniak, A. Effect of crop rotation and cereal monoculture on the yield and quality of winter wheat grain and on crop infestation with weeds and soil properties. Int. J. Plant Prod. 2019, 13, 177–182. [Google Scholar] [CrossRef]
- Groeneveld, M.; Grunwald, D.; Piepho, H.P.; Koch, H.J. Crop rotation and sowing date effects on yield of winter wheat. J. Agric. Sci. 2024, 162, 139–149. [Google Scholar] [CrossRef]
- Darguza, M.; Gaile, Z. The effect of crop rotation and soil tillage on winter wheat yield. Res. Rural. Dev. 2020, 35, 14–21. [Google Scholar] [CrossRef]
- Biernat, L.; Taube, F.; Vogeler, I.; Reinsch, T.; Kluß, C.; Loges, R. Is organic agriculture in line with the EU-Nitrate directive? On-farm nitrate leaching from organic and conventional arable crop rotations. Agric. Ecosyst. Environ. 2020, 298, 106964. [Google Scholar] [CrossRef]
- Rose, M.; Pahlmann, I.; Kage, H. Modified crop rotations for a sustainable intensification? A case study in a high-yielding environment with recurrent nitrogen surplus. Eur. J. Agron. 2023, 142, 126644. [Google Scholar] [CrossRef]
- Jaskulska, I.; Jaskulski, D.; Różniak, M.; Radziemska, M.; Gałęzewski, L. Zonal tillage as innovative element of the technology of growing winter wheat: A field experiment under low rainfall conditions. Agriculture 2020, 10, 105. [Google Scholar] [CrossRef]
- Jaskulska, I.; Jaskulski, D.; Kotwica, K.; Wasilewski, P.; Gałęzewski, L. Effect of tillage simplifications on yield and grain quality of winter wheat after different previous crops. Acta Sci. Pol. Agric. 2013, 12, 37–44. [Google Scholar]
- Weber, R. The effect of previous crop stubble height and tillage system on yielding of some winter wheat cultivars. Probl. Inż. Rol. 2011, 1, 31–39. (In Polish) [Google Scholar]
- Lampurlanes, J.; Plaza-Bonilla, D.; Alvaro-Fuentes, J.; Cantero-Martinez, C. Long-term analysis of soil water conservation and crop yield under different tillage systems in Mediterranean rainfed conditions. Field Crops Res. 2016, 198, 59–67. [Google Scholar] [CrossRef]
- Šíp, V.; Vavera, R.; Chrpová, J.; Kusá, H.; Růžek, P. Winter wheat yield and quality related to tillage practice, input level and environmental conditions. Soil Tillage Res. 2013, 132, 77–85. [Google Scholar] [CrossRef]
- Gandía, L.M.; Del Monte, P.J.; Tenorio, L.J.; Santín-Montanyá, I.M. The influence of rainfall and tillage on wheat yield parameters and weed population in monoculture versus rotation systems. Sci. Rep. 2021, 11, 22138. [Google Scholar] [CrossRef]
- Różewicz, M.; Grabiński, J.; Wyzińska, M. Effect of strip-till and cultivar on photosynthetic parameters and grain yield of winter wheat. Int. Agrophys. 2024, 38, 279–291. [Google Scholar] [CrossRef]
- Begna, T.; Gichile, H.; Yali, W. Genetic diversity and its impact in enhancement. Glob. J. Agric. Res. 2022, 10, 13–25. Available online: https://www.eajournals.org/wp-content/uploads/Genetic-Diversity-and-Its-Impact-in-Enhancement-of-Crop-Plants.pdf (accessed on 17 May 2025). [CrossRef]
- Anjum, M.M.; Arif, M.; Riaz, M.; Akhtar, K.; Zhang, S.Q.; Zhao, C.P. Performance of hybrid wheat cultivars facing deficit irrigation under semi-arid climate in Pakistan. Agronomy 2021, 11, 1976. [Google Scholar] [CrossRef]
- Zhao, Y.; Zeng, J.; Fernando, R.; Reif, J.C. Genomic prediction of hybrid wheat performance. Crop Sci. 2013, 53, 802–810. [Google Scholar] [CrossRef]
- Whitford, R.; Fleury, D.; Reif, J.C.; Garcia, M.; Okada, T.; Korzun, V.; Langridge, P. Hybrid breeding in wheat: Technologies to improve hybrid wheat seed production. J. Exp. Bot. 2013, 64, 5411–5428. [Google Scholar] [CrossRef]
- Motzo, R.; Giunta, F. Awnedness a ects grain yield and kernel weight in near-isogenic lines of durum wheat. Aust. J. Agric. Res. 2002, 53, 1285–1293. [Google Scholar] [CrossRef]
- Bruening, W.P. Effects of awns on wheat yield and agronomic characteristics evaluated in variety trials. J. Crop Var. Test. 2019, 2, 6–15. [Google Scholar]
- Li, Y.; Li, Y.; Li, D.; Wang, S.; Zhang, S. Photosynthetic response of tetraploid and hexaploid wheat to water stress. Photosynthetica 2017, 55, 454–466. [Google Scholar] [CrossRef]
- Maydup, M.L.; Antonietta, M.; Graciano, C.; Guiamet, J.J.; Tambussi, E.A. The contribution of the awns of bread wheat (Triticum aestivum L.) to grain filling: Responses to water deficit and the effects of awns on ear temperature and hydraulic conductance. Field Crops Res. 2014, 167, 102–111. [Google Scholar] [CrossRef]
- CCA. Common Catalogue of Varieties of Agricultural Plant Species. Consolidated Version 27.01. 2023. Available online: https://food.ec.europa.eu/plants/plant-reproductive-material/plant-variety-catalogues-databases-information-systems_en (accessed on 14 May 2025).
- COBORU. Research Center for Cultivar Testing, Słupia Wielka, Poland. 2025. Available online: https://www.coboru.gov.pl (accessed on 16 May 2025).
- IOR-PIB. Institute of Plant Protection-National Research Institute, Poznań, Poland, Recommendations Protection of Plants 2016. Agric. Plants 2016, 2, 305. Available online: https://www.ior.poznan.pl (accessed on 13 April 2025).
- Meier, U. Growth Stages of Mono-and Dicotyledonous Plants: BBCH Monograph; Open Agrar Repositorium: Quedlinburg, Germany, 2018; Volume 204. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. International soil classification system for naming soils and creating legends for soil maps. In Word Reference Base for Soil Resources 2014, Update 2015; Word Soil Resources Reports No. 106; IUSS Working Group WRB: Rome, Italy, 2015. [Google Scholar]
- Šimanský, V.; Bajcan, D.; Ducsay, L. The effect of organic matter on aggregation under different soil management practices in a vineyard in an extremely humid year. Catena 2013, 101, 108–113. [Google Scholar] [CrossRef]
- Van Erp, P.J.; Houba, Y.J.G.; Van Beusichem, M.L. One hundredth molar calcium chloride extraction procedure. Part I: A review of soil chemical, analytical, and plant nutritional aspects. Commun. Soil Sci. Plant Anal. 1998, 29, 1603–1623. [Google Scholar] [CrossRef]
- Egner, H.; Riehm, H.; Domingo, R.W. Investigations on the chemical soil analysis as a basis for assessing the nutrient condition of the soil, II: Chemical extraction methods for phosphorus and potassium determination. K. Lantbr. Ann. 1960, 26, 199–215. [Google Scholar]
- Schachtschabel, P. The plant-available magnesium in the soil and its determination. Z. Pflanzenernahr. Dung. Bodenkd. 1954, 67, 9–23. [Google Scholar] [CrossRef]
- Rinkis, G.J. Micronutrients in Agriculture and Medicine; Naukova Dumka: Kijev, Ukraine, 1963. [Google Scholar]
- Skowera, B. Changes of hydrothermal conditions in the Polish area (1971–2010). Fragm. Agron. 2014, 31, 74–87. (In Polish) [Google Scholar]
- Hicks, S.; Lascano, R. Estimation of leaf area index for cotton canopies using the Li-Cor LAI 2000 plant canopy analyser. Agron. J. 1995, 87, 458–464. [Google Scholar] [CrossRef]
- Blackmer, T.M.; Schepers, J.S. Techniques for monitoring crop nitrogen status in corn. Commun. Soil Sci. Plant Anal. 1994, 25, 1791–1800. [Google Scholar] [CrossRef]
- Nobel, P.S. Physicochemical and Environmental Plant Physiology; Academic Press: Oxford, UK, 2009. [Google Scholar] [CrossRef]
- AACC. Method 08-01.01: Total ash., Method 46-11.02: Crude Protein—Improved Kjeldahl Method, Method 38-12.02: Wet gluten and Gluten Index. Method 56-81.03: Determination of Falling Number. In Official Methods of the American Association of Cereal Chemists, 11th ed.; AACC: St. Paul, MN, USA, 2010. [Google Scholar]
- ISO 7971-3:2019; Cereals. Determination of Bulk Density, Called Mass per Hectolitre–Part 3: Routine Method. International Organization for Standardization (ISO): Geneva, Switzerland, 2019.
- PN-68/R-74017; Cereals and Pulses–Determination of the Mass 1000 Grains. Polish Committee for Standardization: Warszawa, Poland, 1968.
- PN-R-74110:1998; Cereal Grain. Grain Uniformity by Weight Method. Polish Committee for Standardization: Warszawa, Poland, 1998.
- PN-70/R-74008; Cereal Grain. Determination of Vitreous Grains. Polish Committee for Standardization: Warszawa, Poland, 1970.
- Kulig, B.; Lepiarczyk, A.; Oleksy, A.; Kołodziejczyk, M. The effect of tillage system and forecrop on the yield and values of LAI and SPAD indices of spring wheat. Eur. J. Agron. 2010, 33, 43–51. [Google Scholar] [CrossRef]
- Haliniarz, M.; Gawęda, D.; Bujak, K.; Frant Kwiatkowski, M.C. Yield of winter wheat depending on the tillage system and level of mineral fertilization. Acta Sci. Pol. Agric. 2013, 12, 59–72. [Google Scholar]
- Mitura, K.; Cacak-Pietrzak, G.; Feledyn-Szewczyk, B.; Szablewski, T.; Studnicki, M. Yield and grain quality of common wheat (Triticum aestivum L.) depending on the different farming systems (Organic vs. Integrated vs. Conventional). Plants 2023, 12, 1022. [Google Scholar] [CrossRef]
- Weber, R.; Biskupski, A.; Sekutowski, T. Variability of winter wheat cultivars yield depending on tillage systems and management method of stubble of preceding crop. Acta Sci. Pol. Agric. 2012, 11, 65–72. [Google Scholar]
- Joshi, A.K.; Chand, B.; Arun, R.; Singh, R.P.; Ortiz, R. Breeding crops for reduced—Tillage management in the intensive, rice-wheat systems of South Asia. Euphytica 2007, 153, 135–151. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, G.; Kang, J.; Wu, D.; Li, Z.; Chen, W.; Gao, M.; Yang, Y.; Tang, A.; Meng, Y.; et al. Estimation of winter wheat yield by assimilating MODIS LAI and VIC optimized soil moisture into the WOFOST model. Eur. J. Agron. 2025, 164, 127497. [Google Scholar] [CrossRef]
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Nelson, S.G. Relationship between remotely sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors 2008, 8, 2136–2160. [Google Scholar] [CrossRef]
- Lepiarczyk, A.; Kulig, B.; Stępnik, K. The influence of simplified soil cultivation and forecrop on the development LAI of selected cultivars of winter wheat in cereal crop rotation. Fragm. Agron. 2005, 2, 98–105. (In Polish) [Google Scholar]
- Petcu, V.; Toncea, I.; Lazăr, C. Effect of climatic conditions on some physiological indicators of winter wheat cultivated in organic farming system. Rev. Lucr. Ştiinţifice Agron. 2021, 64, 113–118. [Google Scholar]
- Barbosa, L.A.P.; Leue, M.; Wehrhan, M.; Sommer, M. Impact of wheat cultivar development on biomass production and carbon input in tillage-eroded soils. Egusphere 2025, 2, 1–18. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Sun, H.; Wang, Y.; Shao, L. Water use efficiency and associated traits in winter wheat cultivars in the North China Plain. Agric. Water Manag. 2010, 97, 1010, 1117–1125. [Google Scholar] [CrossRef]
- Hury, G.; Stankowski, S.; Jaroszewska, A.; Michalska, B.; Gibczyńska, M. The effect of tillage system and nitrogen fertilization on yield and yield components of winter spelt cultivars (Triticum aestivum ssp. spelta L.). Pol. J. Agron. 2020, 41, 11–19. [Google Scholar] [CrossRef]
- Barutçular, C.; Yıldırım, M.; Koç, M.; Akinci, C.; Toptas, I.; Albayrak, O.; Tanrikulu, A.; El Sabagh, A. Evaluation of Spad chlorophyll in spring wheat genotypes under different environments. Fresenius Environ. Bull. 2016, 25, 1258–1266. [Google Scholar]
- Xiong, D.; Chen, J.; Yu, T.; Gao, W.; Ling, X.; Li, Y.; Peng, S.; Huang, J. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Sci. Rep. 2015, 5, 13389. [Google Scholar] [CrossRef]
- Hou, X.; Li, R.; Jia, Z.; Han, Q. Rotational tillage improves photosynthesis of winter wheat during reproductive growth stages in a semiarid region. Agron. J. 2013, 105, 215–221. [Google Scholar] [CrossRef]
- Sharifi, P.; Mohammadkhani, N. Effects of drought stress on photosynthesis factors in wheat genotypes during anthesis. Cereal Res. Commun. 2016, 44, 229–239. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Wang, R.; He, F.; Jiang, G.; Xu, J. Improvement of the photosynthetic characteristics and yield of wheat by regulating the proportion of nitrogen fertilizer base and topdressing. Agronomy 2025, 15, 899. [Google Scholar] [CrossRef]
- Noor, H.; Yan, Z.; Sun, P.; Zhang, L.; Ding, P.; Li, L.; Ren, A.; Sun, M.; Gao, G. Effects of nitrogen on photosynthetic productivity and yield quality of wheat (Triticum aestivum L.). Agronomy 2023, 13, 1448. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, Q.; Pei, X.; Xing, G.; Ou, X.; Li, H. Comparative analysis of the photosynthetic physiology and transcriptome of a high-yielding wheat variety and its parents. Crop J. 2020, 8, 1037–1048. [Google Scholar] [CrossRef]
- Wasaya, A.; Manzoor, S.; Yasir, T.A.; Sarwar, N.; Mubeen, K.; Ismail, I.A.; Raza, A.; Rehman, A.; Hossain, A.; EL Sabagh, A. Evaluation of fourteen bread wheat (Triticum aestivum L.) genotypes by observing gas exchange parameters, relative water and chlorophyll content and yield attributes under drought stress. Sustainability 2021, 13, 4799. [Google Scholar] [CrossRef]
- Yin, W.; Fan, Z.; Hu, F.; Fan, H.; He, W.; Sun, Y.; Wang, F.; Zhao, C.; Yu, A.; Chai, Q. No-tillage with straw mulching boosts wheat grain yield by improving the eco-physiological characteristics in arid regions. J. Integr. Agric. 2023, 22, 3416–3429. [Google Scholar] [CrossRef]
- Yang, Y.; Ding, J.; Zhang, Y.; Wu, J.; Zhang, J.; Pan, X.; Gao, C.; Wang, Y.; He, F. Effects of tillage and mulching measures on soil moisture and temperature, photosynthetic characteristics and yield of winter wheat. Agric. Water Manag. 2018, 201, 299–308. [Google Scholar] [CrossRef]
- Cacak-Pietrzak, G. The use of wheat in various branches of the food industry-technological requirements. Prz. Zboż. Młyn. 2008, 52, 11–13. (In Polish) [Google Scholar]
- Cacak-Pietrzak, G. Studies on the Effect of Ecological and Conventional System of Plant Production on the Technological Value of Selected Varieties of Winter Wheat. Treatises and Monographs; Publications of Warsaw University of Life Sciences (SGGW): Warsaw, Poland, 2011; pp. 1–83. (In Polish) [Google Scholar]
- Woźniak, A.; Rachoń, L. Effect of tillage systems on the yield and quality of winter wheat grain and soil properties. Agriculture 2020, 10, 405. [Google Scholar] [CrossRef]
- Jaskulska, I.; Jaskulski, D.; Gałęzewski, L.; Knapowski, T.; Kozera, W.; Wacławowicz, R. Mineral composition and baking value of the winter wheat grain under varied environmental and agronomic conditions. J. Chem. 2018, 1, 1–7. [Google Scholar] [CrossRef]
- López-Bellido, L.; López-Bellido, R.J.; Castillo, J.E.; López-Bellido, F.J. Effects of long-term tillage, crop rotation and nitrogen fertilization on bread-making quality of hard red spring wheat. Field Crops Res. 2001, 72, 197–210. [Google Scholar] [CrossRef]
- De Vita, P.; Di Paolo, E.; Fecondo, G.; Di Fonzo, N.; Pisante, M. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tillage Res. 2007, 1, 69–78. [Google Scholar] [CrossRef]
- Różewicz, M.; Grabiński, J.; Wyzińska, M. Growth parameters, yield and grain quality of different winter wheat cultivars using strip tillage in relation to the intensity of post-harvest soil cultivation. Agriculture 2024, 14, 2345. [Google Scholar] [CrossRef]
- Siwek, H.; Sobolewska, M.; Hury, G.; Gibczyńska, M. The effect of fertilization with ash from biomass and lime on the characteristics of grain, flour and dough from winter wheat varieties RGT Kilimanjaro (Triticum aestivum var. Kilimanjaro). Agron. Sci. 2017, 72, 2–9. [Google Scholar] [CrossRef]
- Buczek, J.; Migut, D.; Jańczak-Pieniążek, M. Effect of soil tillage practice on photosynthesis, grain yield and quality of hybrid winter wheat. Agriculture 2021, 11, 479. [Google Scholar] [CrossRef]
- Ahmadi, H.; Mirseyed Hosseini, H.; Moshiri, F.; Alikhani, A.H.; Etesami, H. Impact of varied tillage practices and phosphorus fertilization regimes on wheat yield and grain quality parameters in a five-year corn-wheat rotation system. Sci. Rep. 2024, 14, 14717. [Google Scholar] [CrossRef]
- Hofmeijer, J.A.M.; Krauss, M.; Berner, A.; Peigné, J.; Mäder, P.; Armengot, L. Effects of reduced tillage on weed pressure, nitrogen availability and winter wheat yields under organic management. Agronomy 2019, 9, 180. [Google Scholar] [CrossRef]
- Oručević-Žuljević, S.; Džafić, A.; Akagić, A.; Spaho, N.; Vranac, A. Relationship between selected quality parameters in spelt wheat grain. Int. J. Agric. Innov. Res. 2016, 5, 54–58. [Google Scholar]
- Hu, X.; Shang, Y. A new testing method for vital gluten swelling index. J. Sci. Food Agric. 2007, 87, 1778–1782. [Google Scholar] [CrossRef]
- Hernández-Espinosa, N.; Mondal, S.; Autrique, E.; Gonzalez-Santoyo, H.; Crossa, J.; Huerta-Espino, J.; Singh, R.P.; Guzmán, C. Milling, processing and end-use quality traits of CIMMYT spring bread wheat germplasm under drought and heat stress. Field Crop. Res. 2018, 215, 104–112. [Google Scholar] [CrossRef]
- Maali, S.H.; Agenbag, G.A. Effect of soil tillage, crop rotation and nitrogen application rates on bread-baking quality of spring wheat (Triticum aestivum L.) in the Swartland wheat producing area of South Africa. S. Afr. J. Plant Soil 2006, 23, 163–168. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, X.; Luo, B.; Bai, W.; Kang, K.; Hou, P.; Zhang, H. Identification of wheat seed endosperm texture using hyperspectral imaging combined with an ensemble learning model. J. Food Compos. Anal. 2023, 121, 105398. [Google Scholar] [CrossRef]
- Jańczak-Pieniążek, M.; Buczek, J.; Kaszuba, J.; Szpunar-Krok, E.; Bobrecka-Jamro, D.; Jaworska, G. A comparative assessment of the baking quality of hybrid and population wheat cultivars. Appl. Sci. 2020, 10, 7104. [Google Scholar] [CrossRef]
- Dziki, D.; Cacak-Pietrzak, G.; Miś, A.; Jończyk, K.; Gawlik-Dziki, U. Influence of wheat kernel physical properties on the pulverizing process. J. Food Sci. Technol. 2014, 54, 2648–2655. [Google Scholar] [CrossRef]
- Cosentino, S.L.; Sanzone, E.; Testa, G.; Patanè, C.; Anastasi, U.; Scordia, D. Does post-anthesis heat stress affect plant phenology, physiology, grain yield and protein content of durum wheat in a semi-arid Mediterranean environment? J. Agron. Crop Sci. 2019, 205, 309–323. [Google Scholar] [CrossRef]
- Djouadi, K.; Mekliche, A.; Dahmani, S.; Ladjiar, N.I.; Abid, Y.; Silarbi, Z.; Hamadache, A.; Pisante, M. Durum wheat yield and grain quality in early transition from conventional to conservation tillage in semi-arid Mediterranean conditions. Agriculture 2021, 11, 711. [Google Scholar] [CrossRef]
- Woźniak, A.; Stępniowska, A. 2017. Yield and quality of durum wheat grain in different tillage systems. J. Elem. 2017, 22, 817–829. [Google Scholar] [CrossRef]
- Tshikunde, M.N.; Odindo, A.; Shimelis, H.; Mashilo, J. Leaf gas exchange and water-use efficiency of dry-land wheat genotypes under water stressed and non-stressed conditions. Acta Agric. Scand. B Soil Plant Sci. 2018, 68, 738–748. [Google Scholar] [CrossRef]
- Chen, X.; Hao, D.M. Low contribution of photosynthesis and water-use efficiency to improvement of grain yield in Chinese wheat. Potosynthetica 2015, 53, 519–526. [Google Scholar] [CrossRef]
- Xue, Q.; Soundararajan, M.; Weiss, A.; Arkebauer, J.T.; Baenziger, S.P. Genotypic variation of gas exchange parameters and carbon isotope discrimination in winter wheat. J. Plant Physiol. 2002, 159, 891–898. [Google Scholar] [CrossRef]
- Ali, S.; Tedone, L.; Verdini, L.; Cazzato, E.; De Mastro, G. Wheat response to No-tillage and nitrogen fertilization in a long-term faba bean-based rotation. Agronomy 2019, 9, 50. [Google Scholar] [CrossRef]
- Oyeyinka, A.S.; Ini-Abasy, V.B. Composition, functionality, and baking quality of flour from four brands of wheat flour. J. Culin. Sci. Technol. 2025, 23, 87–107. [Google Scholar] [CrossRef]
- Ghafoor, A.Z.; Ceglińska, A.; Karim, H.; Wijata, M.; Sobczyński, G.; Derejko, A.; Studnicki, M.; Rozbicki, J.; Cacak-Pietrzak, G. Influence of genotype, environment, and crop management on the yield and bread-making quality in spring wheat cultivars. Agriculture 2024, 14, 2131. [Google Scholar] [CrossRef]
Tillage System (TS) | Cultivation Treatments |
---|---|
Conventional | Mulching straw, disking (12 cm depth), presowing plowing (20 cm depth) |
Reduced | Mulching straw, disking (15 cm depth), stubble cultivator (20 cm depth) |
No-tillage | Mulching straw, sowing directly into the stubble with (seeder with double disk coulters) |
Cultivars (C) | Quality Class | Thousand Grain Weight (g) | Plant Height (cm) | Ear | Breeding/Country |
---|---|---|---|---|---|
Kilimanjaro | A | 46.7 | 85 | Awnless | RAGT Semences GmbH, Torun, Poland |
Hymalaya | A | 42.2 | 78 | Awnless | Saaten-Union GmbH, Estrées-Saint-Denis, France |
Ostroga | A | 48.1 | 87 | Awned | DANKO GmbH, Wielkopolskie, Poland |
Active Ingredients (Product) | Dose (L ha−1)/* Development Phase |
---|---|
mecoprop, MCPA, dicamba (Herbicide) iodosulfuron-methyl-sodium, 2,4-D (Herbicide) | 2.0/24–25 1.0/24–25 |
protioconazole, spiroksamin, tebuconazole (Fungicide) propiconazole, cyproconazole (Fungicide) | 1.0/32–33 0.5/54–56 |
lambda-cyhalothrin (Insecticide) | 0.35/54–56 |
trinexapac-ethyl (Growth regulator) | 0.35/54–56 |
Specification | Growing Seasons | ||
---|---|---|---|
2018/2019 | 2019/2020 | 2020/2021 | |
pH (KCl) | 6.85 | 6.15 | 7.06 |
Organic Carbon (%) | 1.11 | 1.25 | 1.35 |
Nmin (kg ha−1) | 57.0 | 60.1 | 58.1 |
Nutrients (mg kg−1) | |||
Phosphorus | 215.0 | 128.1 | 72.0 |
Potassium | 265.1 | 170.1 | 248.1 |
Magnesium | 123.0 | 135.5 | 220.6 |
Iron | 1889.0 | 2713.0 | 2332.4 |
Zinc | 13.9 | 6.3 | 12.4 |
Manganese | 219.4 | 159.1 | 175.8 |
Copper | 7.0 | 8.6 | 9.1 |
Specification | Growing Seasons | Long-term 1980–2017 | ||
---|---|---|---|---|
Month | 2018/2019 | 2019/2020 | 2020/2021 | |
April | excessive moisture | semi-drought | excessive moisture | excessive moisture |
May | excessive moisture | optimal | optimal | optimal |
June | drought | semi-drought | optimal | optimal |
July | semi-drought | optimal | semi-drought | excessive moisture |
Mean | excessive moisture | semi-drought | optimal | optimal |
Factor | Grain Yield (t ha−1) | Leaf Area Index | Soil–Plant Analysis Development | |
---|---|---|---|---|
Tillage System (TS) | Cultivar (C) | |||
Conventional | 8.25 ± 0.60 a | 5.41 ± 0.96 a | 37.9 ± 5.7 a | |
Reduced | 8.02 ± 0.52 a | 5.26 ± 0.86 a | 36.5 ± 6.5 ab | |
No-tillage | 7.66 ± 0.62 b | 4.39 ± 0.69 b | 35.2 ± 7.7 b | |
Kilimanjaro | 7.54 ± 0.45 c | 4.85 ± 0.96 b | 35.2 ± 8.8 c | |
Hymalaya | 8.45 ± 0.62 a | 5.22 ± 0.75 a | 38.0 ± 4.5 a | |
Ostroga | 7.94 ± 0.45 b | 4.97 ± 0.69 b | 36.4 ± 5.7 b | |
Year (Y) | 2018/2019 | 7.51 ± 0.69 c | 4.86 ± 0.71 b | 34.5 ± 9.1 c |
2019/2020 | 7.87 ± 0.61 b | 5.01 ± 0.63 a | 36.7 ± 5.7 b | |
2020/2021 | 8.55 ± 0.59 a | 5.18 ± 0.87 a | 38.5 ± 6.4 a | |
Mean | 7.98 | 5.02 | 36.5 | |
TS | *** | *** | *** | |
C | *** | * | *** | |
Y | *** | * | *** | |
TS × C | ** | ** | ** | |
TS × Y | * | * | * | |
C × Y | * | ** | ns | |
TS × C × Y | ns | ns | ns |
Factor | Photosynthetic Rate (mmol (CO2) m−2 s−1) | Stomatal Conductance (mol (H2O) m−2 s−1) | Transpiration Rate (mmol (H2O) m−2 s−1) | Intracellular CO2 Concentration (μmol (CO2) m−2 s−1) | Water Use Efficiency (mmol mol−1) | |
---|---|---|---|---|---|---|
Tillage System (TS) | Cultivar (C) | |||||
Conventional | 15.0 ± 0.8 a | 0.530 ± 0.332 a | 3.74 ± 0.72 a | 326 ± 45 a | 4.01 ± 0.74 b | |
Reduced | 14.1 ± 1.2 b | 0.515 ± 0.025 a | 3.28 ± 0.68 b | 314 ± 39 b | 4.29 ± 0.80 a | |
No-tillage | 13.9 ± 0.6 b | 0.428 ± 0.367 b | 3.21 ± 0.92 b | 303 ± 74 c | 4.34 ± 0.88 a | |
Kilimanjaro | 13.7 ± 0.7 b | 0.475 ± 0.124 b | 3.51 ± 0.76 a | 299 ± 69 b | 3.91 ± 1.21 c | |
Hymalaya | 14.7 ± 0.9 a | 0.511 ± 0.324 a | 3.53 ± 1.21 a | 333 ± 61 a | 4.16 ± 0.93b | |
Ostroga | 14.5 ± 1.2 a | 0.486 ± 0.214 b | 3.18 ± 1.31 b | 311 ± 55 b | 4.57 ± 0.68 a | |
Conventional | Kilimanjaro | 14.6 ± 1.5 b | 0.504 ± 0.181 b | 3.59 ± 1.10 ab | 301 ± 39 b | 4.06 ± 0.96 c |
Hymalaya | 15.3 ± 1.2 a | 0.553 ± 0.214 a | 3.91 ± 0.83 a | 350 ± 42 a | 3.91 ± 0.88 c | |
Ostroga | 15.2 ± 0.6 a | 0.531 ± 0.145 a | 3.72 ± 1.24 a | 328 ± 21 a | 4.09 ± 0.75 c | |
Reduced | Kilimanjaro | 13.2 ± 0.7 c | 0.490 ± 0.325 b | 3.39 ± 0.83 b | 290 ± 35 c | 3.90 ± 1.12 c |
Hymalaya | 14.3 ± 0.8 b | 0.538 ± 0.045 a | 3.21 ± 0.59 c | 335 ± 62 a | 4.45 ± 1.10 b | |
Ostroga | 14.7 ± 1.1 b | 0.516 ± 0.214 b | 3.24 ± 0.95 c | 316 ± 74 b | 4.53 ± 0.78 b | |
No-tillage | Kilimanjaro | 13.5 ± 0.9 c | 0.430 ± 0.214 c | 3.57 ± 1.41 ab | 306 ± 45 b | 3.78 ± 1.23 d |
Hymalaya | 14.6 ± 0.7 b | 0.442 ± 0.324 c | 3.48 ± 0.69 b | 315 ± 62 b | 4.19 ± 1.12 b | |
Ostroga | 13.7 ± 0.9 c | 0.411 ± 0.254 d | 2.58 ± 0.58 d | 288 ± 55c | 5.31 ± 0.89 a | |
Year (Y) | 2018/2019 | 13.7 ± 0.9 b | 0.475 ± 0.223 b | 3.17 ± 1.40 b | 293 ± 38 c | 4.30 ± 1.01 a |
2019/2020 | 14.3 ± 0.8 b | 0.490 ± 0.201 a | 3.50 ± 0.86 a | 316 ± 48 b | 4.09 ± 0.78 a | |
2020/2021 | 15.0 ± 0.6 a | 0.507 ± 0.125 a | 3.55 ± 0.68 a | 334 ± 52 a | 4.22 ± 0.96 a | |
Mean | 14.3 | 0.491 | 3.41 | 314 | 4.21 | |
TS | ** | * | ** | *** | ** | |
C | * | * | ** | * | ** | |
Y | ** | * | * | ** | ns | |
TS × C | ** | ** | * | ** | * | |
TS × Y | ns | ns | * | * | ns | |
C × Y | ns | ns | ns | * | ns | |
TS × C × Y | ns | ns | ns | ns | ns |
Factor | Ash (g kg−1) | Protein (g kg−1) | Wet Gluten (%) | Gluten Index (%) | Falling Number (s) | |
---|---|---|---|---|---|---|
Tillage System (TS) | Cultivar (C) | |||||
Conventional | 18.6 ± 1.8 b | 130.0 ± 11.2 a | 27.6 ± 4.3 a | 88 ± 9 ab | 318 ± 59 a | |
Reduced | 19.1± 1.8 ab | 126.5 ± 10.7 b | 26.2 ± 3.8 a | 91 ± 14 a | 288 ± 48 b | |
No-tillage | 20.1 ± 1.7 a | 124.3 ± 9.5 b | 23.2 ± 3.1 b | 84 ± 12 b | 292 ± 46 b | |
Kilimanjaro | 20.9 ± 1.7 a | 134.2 ± 10.5 a | 28.3 ± 3.9 a | 89 ± 7 a | 313 ± 71 b | |
Hymalaya | 18.6 ± 1.8 b | 124.8 ± 6.8 b | 24.8 ± 4.4 b | 88 ± 8 a | 330 ± 65 a | |
Ostroga | 18.2 ± 1.9 b | 121.7 ± 7.9 c | 23.8 ± 3.8 b | 86 ± 10 a | 255 ± 60 c | |
Conventional | Kilimanjaro | 20.3 ± 2.2 b | 139.1 ± 10.1 a | 31.1 ± 4.9 a | 87 ± 8 b | 329 ± 76 b |
Hymalaya | 18.3 ± 1.8 d | 127.4 ± 8.6 c | 26.1 ± 4.5 c | 90 ± 15 ab | 347 ± 62 a | |
Ostroga | 17.3 ± 1.7 e | 123.6 ± 7.5 d | 25.5 ± 4.0 c | 89 ± 8 ab | 278 ± 60 d | |
Reduced | Kilimanjaro | 21.0 ± 2.0 a | 132.7 ± 9.7 b | 29.0 ± 5.2 b | 93 ± 10 a | 305 ± 66 c |
Hymalaya | 18.0 ± 1.7 d | 123.0 ± 8.4 d | 25.6 ± 3.4 c | 90 ± 11 ab | 323 ± 75 b | |
Ostroga | 18.1 ± 1.7 d | 123.7 ± 7.9 d | 24.1 ± 2.9 d | 89 ± 9 ab | 235 ± 69 e | |
No-tillage | Kilimanjaro | 21.5 ± 2.3 a | 130.8 ± 9.5 b | 24.9 ± 3.5 d | 88 ± 8 b | 304 ± 69 c |
Hymalaya | 19.5 ± 1.8 c | 124.1 ± 9.7 d | 22.8 ± 4.7 e | 84 ± 7 c | 320 ± 70 b | |
Ostroga | 19.4 ± 1.9 c | 117.9 ± 7.9 e | 21.8 ± 3.5 e | 80 ± 8 d | 253 ± 56 d | |
Year (Y) | 2018/2019 | 20.2 ± 2.3 a | 134.3 ± 9.9 a | 27.1 ± 3.1 a | 86 ± 5 b | 324 ± 49 a |
2019/2020 | 19.5 ± 1.7 a | 127.0 ± 8.8 b | 25.3 ± 2.9 b | 90 ± 13a | 301 ± 64 b | |
2020/2021 | 18.2 ± 1.6 b | 119.5 ± 8.7 c | 24.5 ± 3.7 b | 87 ± 8 b | 272 ± 52 c | |
Mean | 19.3 | 126.9 | 25.7 | 88 | 299 | |
TS | ** | ** | ** | * | ** | |
C | * | *** | ** | ns | *** | |
Y | ** | ** | * | ** | ** | |
TS × C | ** | * | * | ** | ** | |
TS × Y | ns | ns | ns | ns | ns | |
C × Y | * | * | ns | ns | ns | |
TS × C × Y | ns | ns | ns | ns | ns |
Factor | Hectoliter Weight (kg hl−1) | Thousand Grain Weight (g) | Grain Uniformity (%) | Grain Vitreousness (%) | |
---|---|---|---|---|---|
Tillage System (TS) | Cultivar (C) | ||||
Conventional | 77.5 ± 8.1 a | 41.0 ± 5.3 a | 91.0 ± 7.3 a | 64 ± 4 a | |
Reduced | 76.0 ± 6.6 ab | 40.3 ± 4.9 ab | 86.9 ± 8.8 ab | 62 ± 2 a | |
No-tillage | 74.7 ± 8.5 b | 38.3 ± 5.6 b | 85.3 ±9.7 b | 60 ± 8 a | |
Kilimanjaro | 77.0 ± 7.2 a | 39.5 ± 8.4 ab | 90.7 ± 11.5 a | 65 ± 7 a | |
Hymalaya | 75.5 ± 8.1 ab | 41.2 ± 7.1 a | 88.8 ± 9.5 a | 64 ± 6 a | |
Ostroga | 75.7 ± 5.6 b | 38.8 ± 6.4 b | 83.8 ± 4.2 b | 56 ± 4 b | |
Conventional | Kilimanjaro | 78.1 ± 4.2 a | 42.2 ± 3.8 a | 95.7 ± 10.1 a | 69 ± 7 a |
Hymalaya | 77.0 ± 5.7 b | 41.4 ± 4.1 ab | 89.0 ± 8.7 b | 67 ± 6 ab | |
Ostroga | 77.5 ± 6.7 a | 39.4 ± 4.3 c | 88.3 ± 9.5 b | 55 ± 5 e | |
Reduced | Kilimanjaro | 77.2 ± 4.8 b | 38.8 ± 7.8 cd | 86.3 ± 7.8b c | 65 ± 8 bc |
Hymalaya | 75.6 ± 3.9 bc | 42.0 ± 7.2 a | 88.7 ± 10.6 b | 63 ± 9 c | |
Ostroga | 75.3 ± 4.7 bc | 40.0 ± 6.1 bc | 85.7 ± 7.9 c | 58 ± 5 de | |
No-tillage | Kilimanjaro | 75.8 ± 3.9 b | 37.7 ± 5.8 d | 90.0 ± 4.5 b | 63 ± 4 c |
Hymalaya | 74.0 ± 5.6 c | 40.3 ± 7.1 b | 88.7 ± 6.4 b | 62 ± 10 cd | |
Ostroga | 74.4 ± 6.7 c | 37.0 ± 8.5 d | 77.3 ± 9.7 d | 55 ± 8 e | |
Year (Y) | 2018/2019 | 75.4 ± 4.8 b | 38.7 ± 5.3 b | 84.4 ± 7.6 b | 66 ± 8 a |
2019/2020 | 75.9 ± 7.6 ab | 40.1 ± 4.1 a | 88.9 ± 6.7 a | 60 ± 7 a | |
2020/2021 | 77.0 ± 6.7 a | 40.8 ± 7.1 a | 89.9 ± 4.1 a | 59 ± 4 a | |
Mean | 76.1 | 39.8 | 87.7 | 62 | |
TS | * | * | ** | ns | |
C | * | * | ** | ** | |
Y | * | * | * | ns | |
TS × C | * | * | * | * | |
TS × Y | ns | ns | ns | ns | |
C × Y | ns | ns | ns | ns | |
TS × C × Y | ns | ns | ns | ns |
Traits | GY | LAI | SPAD | Pn | Gs | E | Ci | WUE | A | P | WG | GI | FN | HW | TGW | GU |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LAI | 0.714 ** | |||||||||||||||
SPAD | 0.845 ** | 0.689 ** | ||||||||||||||
Pn | 0.804 ** | 0.590 * | 0.740 ** | |||||||||||||
Gs | 0.714 ** | 0.659 ** | 0.689 ** | 0.589 * | ||||||||||||
E | 0.470 | 0.463 | 0.560* | 0.382 | 0.793 ** | |||||||||||
Ci | 0.932 ** | 0.702 ** | 0.848 ** | 0.742 ** | 0.782 ** | 0.509 * | ||||||||||
WUE | 0.292 | −0.282 | −0.280 | 0.235 | −0.282 | −0.195 | −0.230 | |||||||||
A | −0.715 ** | −0.616 | −0.776 | −0.761 | −0.616 | −0.199 | −0.692 | −0.080 | ||||||||
P | −0.514 * | −0.078 | −0.552 | −0.372 | −0.078 | 0.044 | −0.505 | −0.201 | 0.674 ** | |||||||
WG | −0.247 | 0.306 | −0.171 | −0.235 | 0.307 | 0.151 | −0.222 | −0.280 | 0.375 | 0.661 ** | ||||||
GI | 0.027 | 0.510 * | 0.146 | −0.042 | 0.510 | 0.400 | 0.123 | −0.460 | 0.022 | 0.237 | 0.441 | |||||
FN | −0.067 | 0.131 | −0.131 | −0.211 | 0.130 | 0.184 | 0.019 | −0.255 | 0.379 | 0.581 * | 0.535 * | 0.244 | ||||
HW | 0.536 * | 0.378 | 0.164 | 0.239 | 0.379 | 0.314 | 0.083 | −0.224 | −0.452 | −0.357 | 0.419 | 0.425 | −0.003 | |||
TGW | 0.583 * | 0.429 | 0.440 | 0.266 | 0.429 | 0.154 | 0.429 | −0.112 | −0.272 | 0.207 | 0.249 | 0.195 | 0.062 | 0.355 | ||
GU | 0.346 | 0.439 | 0.423 | 0.351 | 0.439 | 0.639 * | 0.425 | −0.545 | −0.055 | 0.144 | 0.381 | 0.427 | 0.273 | 0.429 | 0.432 | |
GV | −0.302 | 0.065 | −0.236 | −0.269 | 0.065 | 0.108 | −0.275 | −0.255 | 0.503 * | 0.749 ** | 0.673 ** | 0.325 | 0.772 ** | 0.137 | 0.071 | 0.251 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buczek, J.; Michalska-Klimczak, B.; Tobiasz-Salach, R.; Gawęda, D. Integrated Effects of Tillage Intensity, Genotype, and Weather Variability on Growth, Yield, and Grain Quality of Winter Wheat in Maize–Wheat Rotation. Agriculture 2025, 15, 2069. https://doi.org/10.3390/agriculture15192069
Buczek J, Michalska-Klimczak B, Tobiasz-Salach R, Gawęda D. Integrated Effects of Tillage Intensity, Genotype, and Weather Variability on Growth, Yield, and Grain Quality of Winter Wheat in Maize–Wheat Rotation. Agriculture. 2025; 15(19):2069. https://doi.org/10.3390/agriculture15192069
Chicago/Turabian StyleBuczek, Jan, Beata Michalska-Klimczak, Renata Tobiasz-Salach, and Dorota Gawęda. 2025. "Integrated Effects of Tillage Intensity, Genotype, and Weather Variability on Growth, Yield, and Grain Quality of Winter Wheat in Maize–Wheat Rotation" Agriculture 15, no. 19: 2069. https://doi.org/10.3390/agriculture15192069
APA StyleBuczek, J., Michalska-Klimczak, B., Tobiasz-Salach, R., & Gawęda, D. (2025). Integrated Effects of Tillage Intensity, Genotype, and Weather Variability on Growth, Yield, and Grain Quality of Winter Wheat in Maize–Wheat Rotation. Agriculture, 15(19), 2069. https://doi.org/10.3390/agriculture15192069