Insect Pests of Wheat in North India: A Comprehensive Review of Their Bio-Ecology and Integrated Management Strategies
Abstract
1. Introduction
2. Major Wheat Pests: Bio-Ecology and Their Management Strategies
2.1. Aphids
2.1.1. Pest Description
2.1.2. Bio-Ecology and Management
2.2. Termites
2.2.1. Pest Description
2.2.2. Bio-Ecology and Management
2.3. Oriental Armyworm
2.3.1. Pest Description
2.3.2. Bio-Ecology and Management
2.4. Pink Stem Borer
2.4.1. Pest Description
2.4.2. Bio-Ecology and Management
2.5. Gram Pod Borer
2.5.1. Pest Description
2.5.2. Bio-Ecology and Management
2.6. Brown Wheat Mite
2.6.1. Pest Description
2.6.2. Bio-Ecology and Management
3. Challenges and Opportunities in Wheat Pest Management Under Changing Agroecological Conditions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erenstein, O.; Jaleta, M.; Mottaleb, K.A.; Sonder, K.; Donovan, J.; Braun, H.-J. Global trends in wheat production, consumption and trade. In Wheat Improvement: Food Security in a Changing Climate; Reynolds, M.P., Braun, H.-J., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 47–66. [Google Scholar] [CrossRef]
- FAO. FAOSTAT: Crops and Livestock Products; Food and Agriculture Organization of the United Nations: Rome, Italy, 2025; Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 2 July 2025).
- Shiferaw, B.; Smale, M.; Braun, H.-J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef]
- Singh, S.; Kaur, J.; Ram, H.; Singh, J.; Kaur, S. Agronomic bio-fortification of wheat (Triticum aestivum L.) to alleviate zinc deficiency in human being. Rev. Environ. Sci. Biotechnol. 2023, 22, 505–526. [Google Scholar] [CrossRef]
- Langridge, P.; Alaux, M.; Almeida, N.F.; Ammar, K.; Baum, M.; Bekkaoui, F.; Bentley, A.R.; Beres, B.L.; Berger, B.; Braun, H.-J.; et al. Meeting the Challenges Facing Wheat Production: The Strategic Research Agenda of the Global Wheat Initiative. Agronomy 2022, 12, 2767. [Google Scholar] [CrossRef]
- Wang, Y.; Zia-Khan, S.; Owusu-Adu, S.; Miedaner, T.; Müller, J. Early detection of Zymoseptoria tritici in winter wheat by infrared thermography. Agriculture 2019, 9, 139. [Google Scholar] [CrossRef]
- Getahun, D. Predictions of climate change impacts on agricultural insect pests vis-à-vis food crop productivity: A critical review. Ethiop. J. Sci. Sustain. Dev. 2020, 7, 18–26. [Google Scholar] [CrossRef]
- Qayyum, M.A.; Saeed, S.; Naeem-Ullah, U.; Matloob, A.; Wajid, M.; Siddique, A.B.; Shahid, R.; Zia, H.U.U.R.; Bilal, H.; Ramzan, M. Insect pest complex of wheat crop. In Current Trends in Wheat Research; Ansari, M.-u.-R., Ed.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Ramadas, S.; Kumar, T.K.; Singh, G.P. Wheat production in India: Trends and prospects. In Recent Advances in Grain Crops Research; Iqbal, A., Shah, F., Khan, Z., Turan, M., Olgun, M., Eds.; IntechOpen: London, UK, 2019; pp. 89–104. [Google Scholar] [CrossRef]
- Statista. Production Volume of Wheat Across India in Financial Year 2024, by Leading State (in 1,000 Metric Tons). 2025. Available online: https://www.statista.com/statistics/1365756/india-wheat-production-by-leading-state/ (accessed on 20 July 2025).
- Narang, D.; Singh, B.; Grewal, S.K.; Kaur, S.; Chhuneja, P. Comparative biochemical and transcriptomic analyses reveal the bases of Rhopalosiphum padi L. resistance in Aegilops tauschii Coss. Ann. Appl. Biol. 2025, 186, 168–180. [Google Scholar] [CrossRef]
- John, D.A.; Babu, G.R. Lessons from the aftermaths of Green Revolution on food system and health. Front. Sustain. Food Syst. 2021, 5, 644559. [Google Scholar] [CrossRef] [PubMed]
- Deol, G.S. Latest trends for insect-pest management in wheat. In Proceedings of the Specialized Workshop on Identification and Management of Weeds, Insect-Pests and Diseases in Wheat, CETWPT, PAU, Ludhiana, India, 20 February 2002. [Google Scholar]
- Singh, B. Changing scenario of insect pests of wheat and their management. In Theory and Practice of Integrated Pest Management; Arora, R., Singh, B., Dhawan, A.K., Eds.; Scientific Publishers: Rajasthan, India, 2017; ISBN 93-86347-82-2. [Google Scholar]
- Farook, U.B.; Khan, Z.H.; Ahad, I.; Maqbool, S.; Yaqoob, M.; Rafieq, I.; Rehman, S.A.; Sultan, N. A review on insect pest complex of wheat (Triticum aestivum L.). J. Entomol. Zool. Stud. 2019, 7, 1292–1298. [Google Scholar]
- Dhaliwal, G.S.; Dhawan, A.K.; Singh, R. Biodiversity and ecological agriculture: Issues and perspectives. Indian J. Ecol. 2007, 34, 100–109. [Google Scholar]
- Dhaliwal, G.S.; Jindal, V.; Dhawan, A.K. Insect pest problems and crop losses: Changing trends. Indian J. Ecol. 2010, 37, 1–7. [Google Scholar] [CrossRef]
- Mondal, S.; Rutkoski, J.E.; Velu, G.; Singh, P.K.; Crespo-Herrera, L.A.; Guzmán, C.; Bhavani, S.; Lan, C.; He, X.; Singh, R.P. Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches. Front. Plant Sci. 2016, 7, 991. [Google Scholar] [CrossRef]
- Singh, B.; Kular, J.S.; Ram, H.; Mahal, M.S. Relative abundance and damage of some insect pests of wheat under different tillage practices in rice–wheat cropping in India. Crop Prot. 2014, 61, 16–22. [Google Scholar] [CrossRef]
- Katare, S.; Reza, M.W.; Jasrotia, P.; Saharan, M.S.; Sharma, I. Efficacy of botanicals and biopesticides against foliage feeding aphids in wheat. Indian J. Entomol. 2018, 80, 40–46. [Google Scholar] [CrossRef]
- PAU. Package of Practices for Crops of Punjab. Rabi 2024–25; Punjab Agricultural University: Ludhiana, India, 2024; pp. 1–22. Available online: https://www.pau.edu/content/ccil/pf/pp_rabi.pdf (accessed on 4 July 2025).
- Jasrotia, P.; Bhardwaj, A.K.; Katare, S.; Yadav, J.; Kashyap, P.L.; Kumar, S.; Singh, G.P. Tillage intensity influences insect-pest and predator dynamics of wheat crop grown under different conservation agriculture practices in rice-wheat cropping system of Indo-Gangetic Plain. Agronomy 2021, 11, 1087. [Google Scholar] [CrossRef]
- Singh, B.; Singh, P. Influence of sowing date and weather parameters on the relative abundance and damage of major insect-pests of wheat in north-western plains of India. Agric. Res. J. 2021, 58, 801–807. [Google Scholar] [CrossRef]
- Nagaich, B.B.; Vashisth, K.S. Barley yellow dwarf: A new viral disease for India. Indian Phytopathol. 1963, 16, 318–319. [Google Scholar]
- Nogia, V.K.; Sharma, A. Biology of the brown wheat mite Petrobia latens. Indian J. Entomol. 2003, 65, 393–398. [Google Scholar]
- Navik, O.S.; Varshney, R. Field pests of wheat and their management. In Wheat a Premier Food Crop; Kumar, A., Kumar, A., Prasad, B., Eds.; Kalyani Publishers: Kolkata, India, 2017; pp. 322–347. [Google Scholar]
- Jasrotia, P.; Singh, B.; Nagpal, M. Biology and management strategies of major insect-pests of wheat. In New Horizons in Wheat and Barley Research: Crop Protection and Resource Management; Kashyap, P.L., Gupta, V., Prakash Gupta, O., Sendhil, R., Gopalareddy, K., Jasrotia, P., Singh, G.P., Eds.; Springer Nature: Singapore, 2022; pp. 283–307. [Google Scholar] [CrossRef]
- Fradgley, N.S.; Bacon, J.; Bentley, A.R.; Costa-Neto, G.; Cottrell, A.; Crossa, J.; Cuevas, J.; Kerton, M.; Pope, E.; Swarbreck, S.M.; et al. Prediction of near-term climate change impacts on UK wheat quality and the potential for adaptation through plant breeding. Glob. Change Biol. 2023, 29, 1296–1313. [Google Scholar] [CrossRef]
- Atkinson, N.J.; Urwin, P.E. The interaction of plant biotic and abiotic stresses: From genes to the field. J. Exp. Bot. 2012, 63, 3523–3543. [Google Scholar] [CrossRef]
- Eigenbrode, S.D.; Macfadyen, S. The impact of climate change on wheat insect pests: Current knowledge and future trends. In Achieving Sustainable Cultivation of Wheat Volume 1: Breeding, Quality Traits, Pests and Diseases; Langridge, P., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2017; pp. 545–567. [Google Scholar] [CrossRef]
- Lehmann, P.; Ammunét, T.; Barton, M.; Battisti, A.; Eigenbrode, S.D.; Jepsen, J.U.; Kalinkat, G.; Neuvonen, S.; Niemelä, P.; Terblanche, J.S.; et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 2020, 18, 141–150. [Google Scholar] [CrossRef]
- Parry, H.R.; Macfadyen, S.; Kriticos, D.J. The geographical distribution of Yellow dwarf viruses and their aphid vectors in Australian grasslands and wheat. Australas. Plant Pathol. 2012, 41, 375–387. [Google Scholar] [CrossRef]
- Bebber, D.P.; Ramotowski, M.A.T.; Gurr, S.J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 2013, 3, 985–988. [Google Scholar] [CrossRef]
- Singh, B.; Suri, K.S.; Chhuneja, P.K. Insect pest infestation in wheat sown in paddy-straw managed fields. Progress. Farming 2019, 55, 22. [Google Scholar]
- Dhillon, G.S. Comparative evaluation of happy seeder technology versus normal sowing in wheat (Triticum aestivum) in adopted village Killi Nihal Singh of Bathinda district of Punjab. J. Appl. Nat. Sci. 2016, 8, 2278–2282. [Google Scholar] [CrossRef]
- Bassi, F.M.; Bentley, A.R.; Charmet, G.; Ortiz, R.; Crossa, J. Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci. 2016, 242, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Abdul Fiyaz, R.; Ajay, B.C.; Ramya, K.T.; Kumar, J.A.; Sundaram, R.M.; Subba Rao, L.V. Speed breeding: Methods and applications. In Accelerated Plant Breeding, Volume 1: Cereal Crops; Gosal, S.S., Wani, S.H., Eds.; Springer: Cham, Switzerland, 2020; pp. 31–49. [Google Scholar] [CrossRef]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.S.; Aggarwal, P.K.; Swaroopa Rani, D.N.; Saxena, R.; Chauhan, N.; Jain, S. Vulnerability of wheat production to climate change in India. Clim. Res. 2014, 59, 173–187. [Google Scholar] [CrossRef]
- Foster, S.P.; Paul, V.L.; Slater, R.; Warren, A.; Denholm, I.; Field, L.M.; Williamson, M.S. A mutation (L1014F) in the voltage-gated sodium channel of the grain aphid, Sitobion avenae, is associated with resistance to pyrethroid insecticides. Pest Manag. Sci. 2014, 70, 1249–1253. [Google Scholar] [CrossRef] [PubMed]
- Panwar, N.; Bansal, L.; Furlong, M.; Kumar, S. Introduction. In Plant Resistance to Insects in Major Field Crops; Kumar, S., Furlong, M., Eds.; Springer: Singapore, 2024; pp. 1–12. [Google Scholar] [CrossRef]
- Heeb, L.; Jenner, E.; Cock, M.J. Climate-smart pest management: Building resilience of farms and landscapes to changing pest threats. J. Pest Sci. 2019, 92, 951–969. [Google Scholar] [CrossRef]
- Jaipal, S.; Malik, R.K.; Yadav, A.; Gupta, R. IPM issues in zero-tillage system in rice–wheat cropping sequence. Tech. Bull. 2005, 8, 32. [Google Scholar]
- Jasrotia, P.; Katare, S. Compatibility of insecticides with propiconazole against foliar aphid Rhopalosiphum maidis (Fitch) and yellow rust in wheat. Indian J. Entomol. 2018, 80, 1304–1309. [Google Scholar] [CrossRef]
- Verma, K.D. Economically important aphids and their management. In IPM System in Agriculture; Upadhyay, R.K., Mukerji, K.G., Dubey, O.P., Eds.; Aditya Books Private Ltd.: New Delhi, India, 2000; Volume 7, pp. 143–168. [Google Scholar]
- Keerthana, A.; Keerthana, M.; Shireesh Kumar, M.P.; Bahuguna, R.N.; Singh, S.K.; Rai, D.; Reddy, M.S.S. Characterizing and assessing the wheat–aphid complex under varying temperature and humidity. Cereal Res. Commun. 2023, 29, 259–268. [Google Scholar] [CrossRef]
- Chaudhary, J.P.; Ramzan, M.; Atwal, A.S. Preliminary studies on biology of wheat aphid. Indian J. Agric. Sci. 1968, 39, 672–675. [Google Scholar]
- Chander, S. Infestation of root and foliage/ear head aphids on wheat in relation to predators. Indian J. Agric. Sci. 1998, 68, 754–755. [Google Scholar]
- Venkatesh, Y.N.; Rajna, S.; Suroshe, S.S.; Joshi, S.; Chander, S. Wheat as a new host for potato aphid Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae) and construction of its age-stage two-sex life tables. Cereal Res. Commun. 2024, 52, 177–187. [Google Scholar] [CrossRef]
- Sekhar, S.M.V.; Singh, V.S. Incidence and species composition of aphids infesting wheat. Indian J. Entomol. 1999, 61, 291–295. [Google Scholar]
- Kazemi, M.H.; Talebi-Chaichi, P.; Shakiba, M.R.; Mashhadi-Jafarloo, M. Biological responses of Russian wheat aphid, Diuraphis noxia (Mordvilko) (Homoptera: Aphididae) to different wheat varieties. J. Agric. Sci. Technol. 2001, 3, 249–255. [Google Scholar]
- Shrivastava, S.K.; Verma, R.K.; Singh, B. Integrated pest management in wheat. In Wheat: Recent Trends on Production Strategies of Wheat in India; Shukla, R., Mishra, P., Chatrath, R., Gupta, R., Tomar, S., Sharma, I., Eds.; Jawaharlal Nehru Krishi Vishwa Vidyalaya (JNKVV) and ICAR–Indian Institute of Wheat and Barley Research: Jabalpur, India, 2014; pp. 197–209. [Google Scholar]
- Millar, I.M. A Catalogue of the Aphids (Homoptera: Aphidoidea) of Sub-Saharan Africa; Handbook No. 4; Biosystematics Division, Plant Protection Research Institute, Agricultural Research Council: Pretoria, South Africa, 1994; ISBN 978-1868490127. [Google Scholar]
- Burd, J.D.; Elliott, N.C. Changes in chlorophyll a fluorescence induction kinetics in cereals infested with Russian wheat aphid (Homoptera: Aphididae). J. Econ. Entomol. 1996, 89, 1332–1337. [Google Scholar] [CrossRef]
- Haile, F.J.; Higley, L.G.; Ni, X.; Quisenberry, S.S. Physiological and growth tolerance in wheat to Russian wheat aphid (Homoptera: Aphididae) injury. Environ. Entomol. 1999, 28, 787–794. [Google Scholar] [CrossRef]
- Chander, S.; Husain, M.; Pal, V.; Pathak, H.; Singh, S.D.; Harit, R.; Kumar, V. Effect of sowing date and cultivars on aphid infestation in wheat with climate change adaptation perspective. Proc. Natl. Acad. Sci. India B Biol. Sci. 2016, 86, 315–323. [Google Scholar] [CrossRef]
- Riedell, W.E.; Kieckhefer, R.W.; Haley, S.D.; Langham, M.A.C.; Evenson, P.D. Winter wheat responses to bird cherry-oat aphids and barley yellow dwarf virus infection. Crop Sci. 1999, 39, 158–163. [Google Scholar] [CrossRef]
- Satyagopal, K.; Sushil, S.N.; Jeyakumar, P.; Shankar, G.; Sharma, O.P.; Sain, S.K.; Boina, D.R.; Chattopadhyay, D.; Rao, N.S.; Sunanda, B.S.; et al. AESA Based IPM Package for Wheat; National Institute of Plant Health Management: Hyderabad, India, 2014. Available online: https://niphm.gov.in/IPMPackages/Wheat.pdf (accessed on 2 July 2025).
- Srivastava, A.; Singh, R. Systematics, nymphal characteristics and food plants of Sitobion (Sitobion) miscanthi (Takahashi) (Homoptera: Aphididae). Int. J. Res. Stud. Biosci. 2014, 2, 17–41. [Google Scholar]
- Gaur, N.; Mogalapu, S. Pests of wheat. In Pests and Their Management; Omkar, Ed.; Springer: Singapore, 2018; pp. 81–97. [Google Scholar] [CrossRef]
- Singh, B.; Jasrotia, P. Impact of integrated pest management (IPM) module on major insect-pests of wheat and their natural enemies in north-western plains of India. J. Cereal Res. 2020, 12, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Jasrotia, P.; Yadav, J.; Singh, B.; Patil, S.D.; Kumar, S.; Singh, G.P. Efficiency of sticky traps for monitoring aphids in wheat under north-western plains and peninsular zones of India. J. Environ. Biol. 2022, 43, 794–800. [Google Scholar] [CrossRef]
- Chaudary, F.K.; Khan, B.; Khan, P.; Hafeez, A.; Liaqat, F.; Shams, S.; Din, A.S.U. Assessment of peas as a trap crop in wheat ecosystem. Pak.-Eur. J. Med. Life Sci. 2024, 7, 111–126. [Google Scholar]
- Haicui, X.; Chen, J.; Cheng, D.; Zhou, H.; Sun, J.; Yong, L.; Francis, F. The function of ecological regulation to aphids in the wheat intercropping field. Plant Protect. 2012, 38, 50–54. [Google Scholar]
- Simon, A.L.; Caulfield, J.C.; Hammond-Kosack, K.E. Identifying aphid resistance in the ancestral wheat Triticum monococcum under field conditions. Sci. Rep. 2021, 11, 13495. [Google Scholar] [CrossRef]
- Singh, B.; Singh, H. Relative susceptibility of advanced breeding lines against major insect pests of wheat (Triticum aestivum L.). J. Cereal Res. 2023, 15, 261–272. [Google Scholar] [CrossRef]
- Singh, B.; Simon, A.; Halsey, K.; Kurup, S.; Clark, S.; Aradottir, G.I. Characterisation of bird cherry-oat aphid (Rhopalosiphum padi L.) behaviour and aphid host preference in relation to partially resistant and susceptible wheat landraces. Ann. Appl. Biol. 2020, 177, 184–194. [Google Scholar] [CrossRef]
- Sharma, J.; Singh, B. Unravelling the category of host plant resistance in Aegilops tauschii Coss. against the bird cherry-oat aphid, Rhopalosiphum padi L. Euphytica 2022, 218, 108. [Google Scholar] [CrossRef]
- Pathania, M.; Kaur, J.; Singh, B. Efficacy of neem-based formulations against wheat aphids under semi-arid irrigated conditions in south-west Punjab. Indian J. Entomol. 2023, 85, 1069–1072. [Google Scholar] [CrossRef]
- Katare, S.; Jasrotia, P.; Yadav, J.; Saharan, M.S. Efficacy of sulfoxaflor 12% SC against aphids complex and Coccinella septempunctata L. in wheat. Indian J. Entomol. 2022, 84, 373–376. [Google Scholar] [CrossRef]
- Collins, N.M. Termites. In Key Environments: Malaysia; Cranbrook, E., Ed.; Pergamon Press: Oxford, UK, 1988. [Google Scholar]
- Thorne, B.L.; Carpenter, J.M. Phylogeny of the Dictyoptera. Syst. Entomol. 1992, 17, 253–268. [Google Scholar] [CrossRef]
- Chellappan, M.; Ranjith, M.T. Termites. In Polyphagous Pests of Crops; Omkar, Ed.; Springer: Singapore, 2021; pp. 51–104. [Google Scholar] [CrossRef]
- Kumari, K.; Patil, K.; Sharma, S. Farmer friendly ways to control termites. Pop. Kheti 2013, 1, 25–29. [Google Scholar]
- Verma, M.; Sharma, S.; Prasad, R. Biological alternatives for termite control: A review. Int. Biodeterior. Biodegrad. 2009, 63, 959–972. [Google Scholar] [CrossRef]
- Joshi, P.K.; Singh, N.P.; Singh, N.N.; Gerpacio, R.V.; Pingali, P.L. Maize in India: Production Systems, Constraints, and Research Priorities; CIMMYT: Texcoco, Mexico, 2005. [Google Scholar]
- Borji, M.; Rahimi, S.; Ghorbani, G.R.; Vandyousefi, J.; Fazaeli, H. Isolation and identification of some bacteria from termites’ gut capable in degrading straw lignin and polysaccharides. J. Vet. Res. 2003, 58, 249–256. [Google Scholar]
- Rouland-Lefevre, C. Termites as pests of agriculture. In Biology of Termites: A Modern Synthesis; Bignell, D., Roisin, Y., Lo, N., Eds.; Springer: London, UK, 2010; pp. 499–517. [Google Scholar] [CrossRef]
- Chhillar, B.S.; Saini, R.K.; Roshanlal, K. Emerging Trends in Economic Entomology; Chaudhary Charan Singh Haryana Agricultural University Press: Hissar, India, 2006; pp. 191–192. [Google Scholar]
- Roonwal, M.L. Termite Life and Termite Control in Tropical South Asia; Scientific Publishers: Jodhpur, India, 1979. [Google Scholar]
- Sattar, A.; Salihah, Z. Detection and control of subterranean termites. In Technologies for Sustainable Agriculture, Proceedings of the National Workshop, Faisalabad, Pakistan, 24–26 September 2001; National Institute for Agricultural and Biology: Faisalabad, Pakistan, 2001; pp. 195–198. [Google Scholar]
- Paul, B.; Khan, M.A.; Paul, S.; Shankarganesh, K.; Chakravorty, S. Termites and Indian agriculture. In Termites and Sustainable Management, Volume 2; Khan, M.A., Ahmad, W., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 51–96. [Google Scholar] [CrossRef]
- Parween, T.; Bhandari, P.; Raza, S.K. Survey and identification of termite in some selected parts of India. Res. J. Life Sci. Bioinform. Pharm. Chem. Sci. 2016, 2, 122–135. [Google Scholar]
- Kumar, A.; Singh, V.; Singh, H.; Yadav, A. Effect of organic amendments on termite population and yield of wheat in arid eco-system of Rajasthan. J. Pharm. Phytochem. 2018, SP1, 1745–1749. [Google Scholar]
- Srivastava, K.P. A Textbook of Applied Entomology; Kalyani Publishers: New Delhi, India, 1993; pp. 256–265. [Google Scholar]
- Parihar, D.R. Termite Pest of Vegetation in Rajasthan and Their Management; CAZRI Monograph No. 16; Central Arid Zone Research Institute: Jodhpur, India, 1981. [Google Scholar]
- Rana, A.; Chandel, R.S.; Verma, K.S.; Joshi, M.J. Termites in important crops and their management. Indian J. Entomol. 2021, 83, 486–504. [Google Scholar] [CrossRef]
- Bajpeyi, M.M.; Kumar, A.; Aman, A.S.; Kushwaha, D. Integrated management of soil dwelling pests of wheat crop. Biot. Res. Today 2023, 5, 81–83. [Google Scholar]
- Kaur, J.; Pathania, M. Bioefficacy of insecticides for the management of termites in wheat under semi-arid irrigated conditions of South-Western Punjab. Pestic. Res. J. 2021, 33, 120–124. [Google Scholar] [CrossRef]
- Singh, B.; Bala, R. Effect of imidacloprid-hexaconazole seed treatment mixture on germination, seedling growth and termite damage in wheat. Pestic. Res. J. 2020, 32, 296–303. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Chaudhary, S.; Antil, J.; Somvanshi, V.S.; Nebapure, S.M.; Patanjali, N.; Dutta, A.; Babu, S.; Bharadwaj, C.; Sudhishri, S.; et al. Novel moisture retaining dustable powder containing Steinernema abbasi effectively controls damage of subterranean termite in wheat and chickpea. J. Environ. Sci. Health B 2023, 58, 679–688. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Chaudhary, S.; Somvanshi, V.S.; Nebapure, S.M.; Babu, S.; Singh, A. Field efficacy of Steinernema abbasi-nematodes enriched bio-insecticidal powder to control termite in wheat and chickpea. Allelopathy J. 2024, 62, 59–70. [Google Scholar] [CrossRef]
- Chander, S.; Aggarwal, P.K.; Kalra, N.; Swaruparani, D.N. Changes in pest profiles in rice-wheat cropping system in Indo-Gangetic plains. Ann. Plant Prot. Sci. 2003, 11, 258–263. [Google Scholar]
- Deol, G.S. Outbreak of armyworm on wheat in India. Trop. Pest Manag. 1982, 28, 175. [Google Scholar]
- Sharma, H.C.; Sullivan, D.J.; Bhatnagar, V.S. Population dynamics and natural mortality factors of the Oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae), in South Central India. Crop Prot. 2002, 21, 721–732. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, C.; Zeng, J.; Liu, J. Population dynamics of the armyworm in China: A review of the past 60 years’ research. Chin. J. Appl. Entomol. 2014, 51, 890–898. [Google Scholar]
- Hamblyn, C.J. Army caterpillar damage on East Coast hill country. N. Z. J. Agric. 1959, 98, 329–333. [Google Scholar]
- Lin, D.-J.; Fang, Y.; Li, L.-Y.; Zhang, L.-Z.; Gao, S.-J.; Wang, R.; Wang, J.-D. The insecticidal effect of the botanical insecticide chlorogenic acid on Mythimna separata (Walker) is related to changes in MsCYP450 gene expression. Front. Plant Sci. 2022, 13, 1015095. [Google Scholar] [CrossRef]
- Kim, K.-N.; Song, H.-S.; Li, C.-S.; Huang, Q.-Y.; Lei, C.-L. Effect of several factors on the phototactic response of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). J. Asia Pac. Entomol. 2018, 21, 952–957. [Google Scholar] [CrossRef]
- Deol, G.S.; Singh, D. Biology and behavior of armyworm Mythimna separata (Walker) (Noctuidae: Lepidoptera) on wheat. J. Res. PAU 1991, 28, 222–228. [Google Scholar]
- David, B.V. General and Applied Entomology, 2nd ed.; Tata McGraw-Hill Publishing Company Limited: New Delhi, India, 2003. [Google Scholar]
- Tanwar, R.K.; Prakash, A.; Panda, S.K.; Swain, N.C.; Garg, D.K.; Singh, S.P.; Kumar, S.S.; Bambawale, O.M. Rice Swarming Caterpillar (Spodoptera mauritia) and Its Management Strategies; Technical Bulletin 24; NCIPM: New Delhi, India, 2010; Available online: http://nriipm.res.in/NCIPMPDFs/Publication/Swarming_caterpillar_.pdf (accessed on 18 July 2025).
- Singh, B.; Sarao, P.S. Efficacy of biopesticides and insecticides against army worm Mythimna separata (Walker). Indian J. Entomol. 2020, 82, 369–373. [Google Scholar] [CrossRef]
- Patel, B.; Maurya, R.; Brijwal, L.; Patwal, H.; Suyal, P. Host range and distribution of predatory stink bug Andrallus spinidens (F.) in Uttarakhand. Indian J. Entomol. 2021, 83, 380–384. [Google Scholar] [CrossRef]
- Patil, J.; Vijayakumar, R.; Linga, V.; Sivakumar, G. Susceptibility of Oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae) larvae and pupae to native entomopathogenic nematodes. J. Appl. Entomol. 2020, 144, 647–654. [Google Scholar] [CrossRef]
- Tomar, P.; Thakur, N.; Yadav, A.N. Indigenous entomopathogenic nematode as biocontrol agents for insect pest management in hilly regions. Plant Sci. Today 2022, 8, 51–59. [Google Scholar] [CrossRef]
- Ji, J.; Liu, Y.; Zhang, L.; Cheng, Y.; Stanley, D.; Jiang, X. The clock gene, period, influences migratory flight and reproduction of the oriental armyworm, Mythimna separata (Walker). Insect Sci. 2023, 30, 650–660. [Google Scholar] [CrossRef]
- Singh, V.S. Management of insect and mite pests. In Twenty Years of Coordinated Wheat Research 1961–1986; Tandon, J.P., Sethi, A.P., Eds.; Wheat Project Directorate, All India Coordinated Wheat Improvement Project; ICAR: New Delhi, India, 1986; pp. 158–188. [Google Scholar]
- Razzaq, A. Control of insect pests on rice crop using tillage practices. Agric. Mech. Asia Pac. Lat. Am. 1997, 28, 29–30. [Google Scholar]
- Singh, B. Incidence of the pink noctuid stem borer, Sesamia inferens (Walker), on wheat under two tillage conditions and three sowing dates in north-western plains of India. J. Entomol. 2012, 9, 368–374. [Google Scholar] [CrossRef]
- Singh, B.; Kular, J.S. Influence of abiotic factors on population dynamics of pink stem borer (Sesamia inferens Walker) in rice-wheat cropping system of India. J. Wheat Res. 2015, 7, 23–28. [Google Scholar]
- Singh, B.; Kular, J.S. Notes on the bionomics of the pink stem borer Sesamia inferens Walker (Lepidoptera: Noctuidae): An upcoming pest of wheat in India. Acta Phytopathol. Entomol. Hung. 2015, 50, 239–259. [Google Scholar] [CrossRef]
- Hampson, G.F. The Fauna of British India, Including Ceylon and Burma: Moths; Taylor and Francis: London, UK, 1892; Volume 1. [Google Scholar]
- Patel, R.K.; Verma, R. Sex dimorphism in pink stem borer, Sesamia inferens Walk (Lepidoptera: Noctuidae). Sci. Cult. 1980, 46, 195–196. [Google Scholar]
- Garg, D.K. Host range and overwintering of rice pink stem borer (PSB) in a hilly region of India. Int. Rice Res. Notes 1988, 13, 2. [Google Scholar]
- Muhammad, W.; Hussain, S.; Zubair, M.; Shehzad, M.W. Control strategy for rice stem borer in wheat crop by the management of rice straw. Plant Prot. 2022, 6, 19–22. [Google Scholar] [CrossRef]
- Singh, G.; Bal, R. Bio-efficacy of Mortel (Fipronil 0.3 G) against pink stem borer, Sesamia inferens in wheat. J. Krishi Vigyan 2022, 11, 11–16. [Google Scholar] [CrossRef]
- Timbadiya, B.G.; Sisodiya, D.B. Evaluation of insecticides against pink stem borer Sesamia inferens (Walker) infesting durum wheat. Indian J. Entomol. 2021, 83, 446–447. [Google Scholar] [CrossRef]
- Jeer, M.; Yele, Y.; Sharma, K.C.; Prakash, N.B. Exogenous application of different silicon sources and potassium reduces pink stem borer damage and improves photosynthesis, yield and related parameters in wheat. Silicon 2021, 13, 901–910. [Google Scholar] [CrossRef]
- Pawar, P.; Baskaran, R.K.M.; Sharma, K.C.; Marathe, A. Enhancing biocontrol potential of Trichogramma chilonis against borer pests of wheat and chickpea. iScience 2023, 26, 106512. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, J.P.; Zalucki, M.P. Understanding heliothine (Lepidoptera: Heliothinae) pests: What is a host plant? J. Econ. Entomol. 2014, 107, 881–896. [Google Scholar] [CrossRef]
- Gulzar, A.; Maqsood, A.; Ahmed, M.; Tariq, M.; Ali, M.; Qureshi, R. Toxicity, antifeedant and sub-lethal effects of Citrullus colocynthis extracts on cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Pak. J. Zool. 2017, 49, 2019–2026. [Google Scholar] [CrossRef]
- Gregg, P.C.; Del Socorro, A.P.; Le Mottee, K.; Tann, C.R.; Fitt, G.P.; Zalucki, M.P. Host plants and habitats of Helicoverpa punctigera and H. armigera (Lepidoptera: Noctuidae) in inland Australia. Austral Entomol. 2019, 58, 547–560. [Google Scholar] [CrossRef]
- Patankar, A.G.; Giri, A.P.; Harsulkar, A.M.; Sainani, M.N.; Deshpande, V.V.; Ranjekar, P.K.; Gupta, V.S. Complexity in specificities and expression of Helicoverpa armigera gut proteinases explains polyphagous nature of the insect pest. Insect Biochem. Mol. Biol. 2001, 31, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Haile, F.; Tim, N.; Nicolas, S. Overview of pest status, potential risk, and management considerations of Helicoverpa armigera (Lepidoptera: Noctuidae) for U.S. soybean production. J. Integr. Pest Manag. 2021, 12, 3. [Google Scholar] [CrossRef]
- Tay, W.T.; Soria, M.F.; Walsh, T.; Thomazoni, D.; Silvie, P.; Behere, G.T.; Anderson, C.; Downes, S. A brave new world for an old world pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. PLoS ONE 2013, 8, e80134. [Google Scholar] [CrossRef] [PubMed]
- Chakravarty, S.; Srivastava, C.P.; Keval, R. Interbreeding status of Helicoverpa armigera (Hübner) populations across India. J. Exp. Zool. India 2019, 22, 315–320. [Google Scholar]
- Doval, S.L.; Bohra, O.P.; Sharma, S.K. New records of Heliothis armigera Hubn. as a pest of wheat in India and efficacy of some insecticides against its larvae. Indian J. Entomol. 1972, 34, 72–73. [Google Scholar]
- Feng, H.Q.; Wu, X.F.; Wu, B.; Wu, K.M. Seasonal migration of Helicoverpa armigera (Lepidoptera: Noctuidae) over the Bohai Sea. J. Econ. Entomol. 2009, 102, 95–104. [Google Scholar] [CrossRef]
- Behere, G.T.; Tay, W.T.; Russell, D.A.; Kranthi, K.R.; Batterham, P. Population genetic structure of the cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in India as inferred from EPIC-PCR DNA markers. PLoS ONE 2013, 8, e53448. [Google Scholar] [CrossRef]
- Jones, C.M.; Papanicolaou, A.; Mironidis, G.K.; Vontas, J.; Yang, Y.; Lim, K.S.; Oakeshott, J.G.; Bass, C.; Chapman, J.W. Genomewide transcriptional signatures of migratory flight activity in a globally invasive insect pest. Mol. Ecol. 2015, 24, 4901–4911. [Google Scholar] [CrossRef]
- Nibouche, S.; Buès, R.; Toubon, J.-F.; Poitout, S. Allozyme polymorphism in the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae): Comparison of African and European populations. Heredity 1998, 80, 438–445. [Google Scholar] [CrossRef]
- Gonçalves, R.M.; Mastrangelo, T.; Rodrigues, J.C.V.; Paulo, D.F.; Omoto, C.; Corrêa, A.S.; de Azeredo-Espin, A.M.L. Invasion origin, rapid population expansion, and the lack of genetic structure of cotton bollworm (Helicoverpa armigera) in the Americas. Ecol. Evol. 2019, 9, 7378–7401. [Google Scholar] [CrossRef]
- Coaker, T.H. Investigations on Heliothis armigera in Uganda. Bull. Entomol. Res. 1959, 50, 487–506. [Google Scholar] [CrossRef]
- Fitt, G.P.; Zalucki, M.P.; Twine, P. Temporal and spatial patterns in pheromone-trap catches of Helicoverpa spp. (Lepidoptera: Noctuidae) in cotton-growing areas of Australia. Bull. Entomol. Res. 1989, 79, 145–161. [Google Scholar] [CrossRef]
- Mingotti Dias, P.E.; de Souza Loureiro, L.G.A.; Pessoa, F.M.A.; de Oliveira Neto, R.A.; de Souza Tosta, A.; Teodoro, P.E. Interactions between fungal-infected Helicoverpa armigera and the predator Chrysoperla externa. Insects 2019, 10, 309. [Google Scholar] [CrossRef]
- Saleem, M.; Rashid, A. Helicoverpa armigera infestation on various wheat varieties. Ann. Wheat Newsl. 2000, 46, 101–102. [Google Scholar]
- Sharma, S.S.; Chhillar, B.S.; Dahiya, K.K. Incidence of Helicoverpa armigera (Hübner) in wheat in Haryana. Ann. Biol. 2003, 19, 219–220. [Google Scholar]
- Wu, K.M.; Guo, Y.Y. The evolution of cotton pest management practices in China. Annu. Rev. Entomol. 2005, 50, 31–52. [Google Scholar] [CrossRef] [PubMed]
- Mishra, G.; Omkar. Gram Pod Borer (Helicoverpa armigera). In Polyphagous Pests of Crops; Omkar, Ed.; Springer: Singapore, 2021; pp. 311–348. [Google Scholar] [CrossRef]
- King, A.B.S. Heliothis/Helicoverpa (Lepidoptera: Noctuidae). In Insect Pests of Cotton; Matthews, G.A., Tunstall, J.P., Eds.; University Press: Cambridge, UK, 1994; pp. 39–106. [Google Scholar]
- Riaz, S.; Johnson, J.B.; Ahmad, M.; Fitt, G.P.; Naiker, M. A review on biological interactions and management of the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J. Appl. Entomol. 2021, 145, 467–498. [Google Scholar] [CrossRef]
- Lammers, J.W.; MacLeod, A. Report of a Pest Risk Analysis: Helicoverpa armigera (Hübner, 1808). Plant Protection Service (NL) and Central Science Laboratory (UK) Joint Pest Risk Analysis for Helicoverpa armigera (European Union), 2007. Available online: https://planthealthportal.defra.gov.uk/pests-and-diseases/uk-plant-health-risk-register/downloadExternalPra.cfm?id=3879 (accessed on 22 July 2025).
- TNAU Agritech Portal. Crop Protection: Pests of Cotton. 2025. Available online: http://www.agritech.tnau.ac.in/crop_protection/crop_prot_crop_insectpest%20_cottonmain.html (accessed on 10 July 2025).
- Dagar, V.S.; Mishra, M.; Kumar, S. Effect of dietary stress of emamectin benzoate on the fitness cost of American bollworm, Helicoverpa armigera (Hübner, 1808). Int. J. Trop. Insect Sci. 2020, 40, 1069–1077. [Google Scholar] [CrossRef]
- Mishra, M.; Gupta, K.K.; Kumar, S. Growth regulatory and growth inhibitory effects of Thevetia neriifolia stem extracts on Helicoverpa armigera (Lepidoptera: Noctuidae). Arch. Phytopathol. Plant Prot. 2018, 51, 895–914. [Google Scholar] [CrossRef]
- Mishra, M.; Sharma, A.; Dagar, V.S.; Kumar, S. Effects of β-sitosterol on growth, development and midgut enzymes of Helicoverpa armigera Hübner. Arch. Biol. Sci. 2020, 72, 271–278. [Google Scholar] [CrossRef]
- da Costa Inácio, G.; Alves, J.V.B.; Santos, M.F.C.; Vacari, A.M.; Figueiredo, G.P.; Bernardes, W.A.; Veneziani, R.C.S.; Ambrósio, S.R. Feeding deterrence towards Helicoverpa armigera by Tithonia diversifolia tagitinin C-enriched extract. Arab. J. Chem. 2020, 13, 5292–5298. [Google Scholar] [CrossRef]
- Mishra, M.; Sharma, A.; Dagar, V.S.; Warikoo, R.; Kumar, S. Synergistic efficacy of β-sitosterol on the growth inhibitory impacts of triflumuron on an Indian strain of cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Int. J. Trop. Insect Sci. 2024, 44, 1487–1498. [Google Scholar] [CrossRef]
- CABI. Invasive Species Compendium: Detailed Coverage of Invasive Species Threatening Livelihoods and the Environment Worldwide. Helicoverpa armigera (Cotton bollworm), 2021. Available online: https://www.cabi.org/isc/datasheet/26757 (accessed on 23 June 2025).
- Bhullar, M.B.; Kaur, P.; Singh, B.; Brar, P.K.; Thakur, J. Forecasting model for brown wheat mite, Petrobia latens (Müller) on rainfed wheat and distribution in North-West India. Indian J. Ecol. 2024, 51, 1298–1306. [Google Scholar] [CrossRef]
- Gupta, S.K. Handbook of Plant Mites in India; Zoological Survey of India: Calcutta, India, 1985. [Google Scholar]
- Shukla, A. Mites. In Polyphagous Pests of Crops; Omkar, Ed.; Springer: Singapore, 2021; pp. 409–455. [Google Scholar] [CrossRef]
- Dhooria, M.S. Mite pests of field crops. In Fundamentals of Applied Acarology; Springer: Singapore, 2016; pp. 275–305. [Google Scholar] [CrossRef]
- Gupta, B.M. Occurrence of brown wheat mite, Petrobia latens (Müller) on cumin in Rajasthan. Indian Cocoa Arecanut Spices J. 1990, 13, 143. [Google Scholar]
- Bhagat, K.C. Occurrence of brown wheat mite, Petrobia latens (Müller) (Acari: Tetranychidae: Bryobiinae) in Jammu. Insect Environ. 2003, 9, 15. [Google Scholar]
- Wang, K.Q.; Han, R.J.; Shi, J.H. The occurrence of brown wheat mite on wheat in an arid area and methods of control. Appl. At. Energy Agric. (Yuanzineng Nongye Yingyong) 1985, 1, 14–15. [Google Scholar]
- Khan, R.M.; Doval, S.L.; Joshi, H.C. Biology of brown wheat mite, Petrobia latens (Müller). Indian J. Entomol. 1969, 31, 258–264. [Google Scholar]
- Sarwar, M. Mite (Acari: Acarina) vectors involved in transmission of plant viruses. In Applied Plant Virology; Awasthi, L.P., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 257–273. [Google Scholar] [CrossRef]
- Biswas, S.; Bhullar, M.B.; Kaur, P. Five new records and distribution of predatory mite fauna (Arachnida: Acari) associated with crop ecosystems of northern India. Int. J. Trop. Insect Sci. 2023, 43, 1305–1315. [Google Scholar] [CrossRef]
- Biswas, S.; Bhullar, M.B.; Karmakar, K.; Kaur, P. Seven new records and distribution of phytoseiid (Acari: Mesostigmata) mite fauna associated with agri-horticultural crops in Northern India. Int. J. Trop. Insect Sci. 2022, 42, 2425–2442. [Google Scholar] [CrossRef]
- ICAR-Indian Institute of Wheat and Barley Research. Annual Report 2014–15; ICAR-IIWBR: Karnal, Haryana, India, 2015; p. 9. Available online: https://iiwbr.org.in/annual-reports/ (accessed on 2 July 2025).
- Kumar, S.; Sharma, D.K.; Singh, D.R.; Biswas, H.; Praveen, K.V.; Sharma, V. Estimating loss of ecosystem services due to paddy straw burning in North-West India. Int. J. Agric. Sustain. 2019, 17, 146–157. [Google Scholar] [CrossRef]
- Kaur, R.; Kaur, S.; Deol, J.S.; Sharma, R.; Kaur, T.; Brar, A.S.; Choudhary, O.P. Soil Properties and Weed Dynamics in Wheat as Affected by Rice Residue Management in the Rice–Wheat Cropping System in South Asia: A Review. Plants 2021, 10, 953. [Google Scholar] [CrossRef]
- Dhillion, B.S.; Kataria, P.; Dhillion, P.K. National food security vis-à-vis sustainability of agriculture in high crop productivity regions. Curr. Sci. 2010, 98, 33–36. [Google Scholar]
- Prasad, R.; Gangaiah, B.; Aipe, K.C. Effect of crop residue management in a rice-wheat cropping system on growth and yield of crop and on soil fertility. Exp. Agric. 1999, 35, 427–435. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Biswas, R.; Garg, D.K.; Gyawali, B.K.; Haque, N.M.M.; Ijaj, P.; Jaipal, S.; Kamal, N.Q.; Kumar, P.; Pathak, M.; et al. Management of Stem Borers of Rice and Wheat in Rice-Wheat Systems of Pakistan, Nepal, India and Bangladesh; Rice-Wheat Consortium Paper Series 17; Rice-Wheat Consortium: New Delhi, India, 2005. [Google Scholar]
- Sandhu, B.S.; Dhaliwal, N.S.; Sandhu, G.S. Production potential and economics of wheat, Triticum aestivum as influenced by different planting methods in Punjab, India. J. Appl. Nat. Sci. 2016, 8, 777–781. [Google Scholar] [CrossRef]
- Andersen, A. Long-term experiments with reduced tillage in spring cereals. II. Effects on pests and beneficial insects. Crop Prot. 2003, 22, 147–152. [Google Scholar] [CrossRef]
- Tamburini, G.; De Simone, S.; Sigura, M.; Boscutti, F.; Marini, L. Conservation tillage mitigates the negative effect of landscape simplification on biological control. J. Appl. Ecol. 2016, 53, 233–241. [Google Scholar] [CrossRef]
- Rice, M.E.; Wilde, G.E. Aphid predators associated with conventional- and conservation-tillage winter wheat. J. Kans. Entomol. Soc. 1991, 64, 245–250. [Google Scholar]
- Bajwa, A.A.; Farooq, M.; Al-Sadi, A.M.; Nawaz, A.; Jabran, K.; Siddique, K.H.M. Impact of climate change on biology and management of wheat pests. Crop Prot. 2020, 137, 105304. [Google Scholar] [CrossRef]
- Gutbrodt, B.; Mody, K.; Dorn, S. Drought changes plant chemistry and causes contrasting responses in lepidopteran herbivores. Oikos 2011, 120, 1732–1740. [Google Scholar] [CrossRef]
- Jeer, M.; Yele, Y.; Jain, S.K. Heavy infestation of sugarcane leafhopper Pyrilla perpusilla on wheat and oats in Chhattisgarh. Indian J. Entomol. 2019, 81, 516–517. [Google Scholar] [CrossRef]
- Wang, B.-X.; Hof, A.R.; Ma, C.-S. Impacts of climate change on crop production, pests, and pathogens of wheat and rice. Front. Agr. Sci. Eng. 2022, 9, 4–18. [Google Scholar] [CrossRef]
Pests | Common Name | Insect Species | Part Infested and Damage | Factors Associated with Increased Incidence | References |
---|---|---|---|---|---|
Soil and root pests | Termites | Microtermes obesi Holmgren, Odontotermes obesus Rambur | Cuts the roots and underground stem portion of plants; drying of plants | Raised bed sowing | [21,22] |
Root aphid | Rhopalosiphum rufiabdominalis Sasaki | Sucks sap from roots and crown region of stem; stunting of plants | Loose soils | [19] | |
Leaf-feeding pests | Corn leaf aphid Bird cherry-oat aphid English grain aphid Indian grain aphid | Rhopalosiphum maidis (Fitch) Rhopalosiphum padi (Linnaeus) Sitobion avenae (Fabricius) Sitobion miscanthi (Takahashi) | Sucks sap from leaves, stem and earheads; leaf discoloration and stunting; injects toxins and transmit barley yellow dwarf virus | Irrigated conditions | [22,23,24] |
Brown wheat mite | Petrobia latens (Muller) | Feeds on leaf tips and damages the plant cells; stippling of leaves; death of plants | Rainfed conditions | [22,25] | |
Oriental armyworm | Mythimna separata (Walker) | Feeds on leaves of seedlings and earheads; defoliation | Fields with large loads of paddy straw | [21,26] | |
Stem-borer pests | Pink stem borer | Sesamia inferens Walker | Bores into the stem and kills central shoots; dead hearts | Fields that contain rice stubble | [13,19] |
Earhead pests | Gram pod borer | Helicoverpa armigera (Hubner) | Feeds and destroys grains in the earheads | Fields where cotton–wheat rotation occurs | [21,26,27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, G.; Joshi, N.K. Insect Pests of Wheat in North India: A Comprehensive Review of Their Bio-Ecology and Integrated Management Strategies. Agriculture 2025, 15, 2067. https://doi.org/10.3390/agriculture15192067
Singh G, Joshi NK. Insect Pests of Wheat in North India: A Comprehensive Review of Their Bio-Ecology and Integrated Management Strategies. Agriculture. 2025; 15(19):2067. https://doi.org/10.3390/agriculture15192067
Chicago/Turabian StyleSingh, Gurveer, and Neelendra K. Joshi. 2025. "Insect Pests of Wheat in North India: A Comprehensive Review of Their Bio-Ecology and Integrated Management Strategies" Agriculture 15, no. 19: 2067. https://doi.org/10.3390/agriculture15192067
APA StyleSingh, G., & Joshi, N. K. (2025). Insect Pests of Wheat in North India: A Comprehensive Review of Their Bio-Ecology and Integrated Management Strategies. Agriculture, 15(19), 2067. https://doi.org/10.3390/agriculture15192067