Mapping Banana and Peach Palm in Diversified Landscapes in the Brazilian Atlantic Forest with Sentinel-2
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Approach
2.3. Image Acquisition
2.4. Time Series Gap-Filling and Resampling
2.5. Hierarchical Classification System and Sample Collection
2.6. Land-Use Land-Cover Classification
3. Results
3.1. Accuracy Assessment
3.2. Importance of Variables
3.3. Digital Classification Results
4. Discussion
4.1. Mapping Banana and Peach Palm Cultivation in Heterogeneous Smallholder Landscapes
4.2. Hierarchical Classification as a Tool for Mapping Diversified Farming Systems
4.3. Advances and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BSI | Bare Soil Index |
| Cfa | Humid subtropical climate (Köppen climate classification) |
| CE | Commission error |
| DEM | Digital Elevation Model |
| DWT | Discrete Wavelet Transform |
| ESA | European Space Agency |
| GEE | Google Earth Engine |
| GIS | Geographic information system |
| HLS | Harmonized Landsat and Sentinel-2 |
| MDA | Mean Decrease Accuracy |
| MG | Minas Gerais |
| MSI | Multispectral Instrument |
| NDVI | Normalized Difference Vegetation Index |
| NDWI | Normalized Difference Water Index |
| OA | Overall Accuracy |
| OE | Omission error |
| PA | Producer’s accuracy |
| RF | Random Forest |
| SCL | Scene Classification Layer |
| SP | São Paulo State |
| UA | User’s accuracy |
References
- Fundação SOS Mata Atlântica; INPE. Atlas dos Remanescentes Florestais da Mata Atlântica—Período 2021–2022; Fundação SOS Mata Atlântica: São Paulo, Brazil, 2023; pp. 1–61. Available online: https://cms.sosma.org.br/wp-content/uploads/2023/05/SOSMAAtlas-da-Mata-Atlantica_2021-2022-1.pdf (accessed on 20 August 2025).
- Ribeiro, M.C.; Metzger, J.P.; Martensen, A.C.; Ponzoni, F.J.; Hirota, M.M. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Biol. Conserv. 2009, 142, 1141–1153. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Produção Agrícola Municipal (PAM); IBGE: Rio de Janeiro, Brazil, 2024. Available online: https://sidra.ibge.gov.br/pesquisa/pam/tabelas (accessed on 20 August 2025).
- Coltro, L.; Karaski, T.U. Environmental indicators of banana production in Brazil: Cavendish and Prata varieties. J. Clean. Prod. 2019, 207, 363–378. [Google Scholar] [CrossRef]
- Silva, A.R.; de Sá, M.E.G.; Lelli Riga, H.; Norder, L.A.C.; Borsatto, R.S. Agroecological transitions in traditional agricultural systems with agroforestry: Outcomes in biodiversity hotspots. Agroecol. Sustain. Food Syst. 2025, 1–23. [Google Scholar] [CrossRef]
- González-Jaramillo, N.; Bailon-Moscoso, N.; Duarte-Casar, R.; Romero-Benavides, J.C. Peach Palm (Bactris gasipaes Kunth.): Ancestral Tropical Staple with Future Potential. Plants 2022, 11, 3134. [Google Scholar] [CrossRef]
- Zou, Y.; Liu, Z.; Chen, Y.; Wang, Y.; Feng, S. Crop Rotation and Diversification in China: Enhancing Sustainable Agriculture and Resilience. Agriculture 2024, 14, 1465. [Google Scholar] [CrossRef]
- Dardonville, M.; Urruty, N.; Bockstaller, C.; Therond, O. Influence of diversity and intensification level on vulnerability, resilience and robustness of agricultural systems. Agric. Syst. 2020, 184, 102913. [Google Scholar] [CrossRef]
- Sasaki, K.; Hotes, S.; Ichinose, T.; Doko, T.; Wolters, V. Hotspots of Agricultural Ecosystem Services and Farmland Biodiversity Overlap with Areas at Risk of Land Abandonment in Japan. Land 2021, 10, 1031. [Google Scholar] [CrossRef]
- Le Provost, G.; Schenk, N.V.; Penone, C.; Thiele, J.; Westphal, C.; Allan, E.; Manning, P. The Supply of Multiple Ecosystem Services Requires Biodiversity across Spatial Scales. Nat. Ecol. Evol. 2023, 7, 236–249. [Google Scholar] [CrossRef]
- Mihrete, T.B.; Mihretu, F.B. Crop Diversification for Ensuring Sustainable Agriculture, Risk Management and Food Security. Global Chall. 2025, 9, 2400267. [Google Scholar] [CrossRef]
- Seo, S.N. Is an integrated farm more resilient against climate change? A micro-econometric analysis of portfolio diversification in African agriculture. Food Pol. 2010, 35, 32–40. [Google Scholar] [CrossRef]
- Schroth, G.; Ruf, F. Farmer Strategies for Tree Crop Diversification in the Humid Tropics—A Review. Agron. Sustain. Dev. 2014, 34, 139–154. [Google Scholar] [CrossRef]
- Abson, D.J.; Fraser, E.D.; Benton, T.G. Landscape Diversity and the Resilience of Agricultural Returns: A Portfolio Analysis of Land-Use Patterns and Economic Returns from Lowland Agriculture. Agric. Food Secur. 2013, 2, 2. [Google Scholar] [CrossRef]
- Vagge, I.; Sgalippa, N.; Chiaffarelli, G. Agricultural Landscapes: A Pattern-Process-Design Approach to Enhance Their Ecological Quality and Ecosystem Services through Agroforestry. Diversity 2024, 16, 431. [Google Scholar] [CrossRef]
- Fuentes-Peñailillo, F.; Gutter, K.; Vega, R.; Silva, G.C. Transformative Technologies in Digital Agriculture: Leveraging Internet of Things, Remote Sensing, and Artificial Intelligence for Smart Crop Management. J. Sens. Actuator Netw. 2024, 13, 39. [Google Scholar] [CrossRef]
- Bolfe, É.L.; Jorge, L.A.d.C.; Sanches, I.D.; Luchiari Júnior, A.; da Costa, C.C.; Victoria, D.d.C.; Inamasu, R.Y.; Grego, C.R.; Ferreira, V.R.; Ramirez, A.R. Precision and Digital Agriculture: Adoption of Technologies and Perception of Brazilian Farmers. Agriculture 2020, 10, 653. [Google Scholar] [CrossRef]
- Parreiras, T.C.; Bolfe, É.L.; Pereira, P.R.M.; de Souza, A.M.; Alves, V.F. Applications, challenges and perspectives for monitoring agricultural dynamics in the Brazilian savanna with multispectral remote sensing. Remote Sens. Appl. Soc. Environ. 2025, 37, 101448. [Google Scholar] [CrossRef]
- Begué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; De Abelleyra, D.; Ferraz, R.P.D.; Lebourgeois, V.; Lelong, C.; Simões, M.; Verón, S.R. Remote sensing and cropping practices: A review. Agric. Syst. 2018, 166, 144–159. [Google Scholar] [CrossRef]
- Macário, R.; Andrade, A.; Santos, C.; Ferreira, M. Agricultural land use mapping in Brazil using Sentinel-2 imagery and random forest. Remote Sens. Appl. Soc. Environ. 2020, 18, 100297. [Google Scholar] [CrossRef]
- Matyukira, C.; Mhangara, P. Advances in vegetation mapping through remote sensing and machine learning techniques: A scientometric review. Eur. J. Remote Sens. 2024, 57, 2422330. [Google Scholar] [CrossRef]
- Misra, G.; Cawkwell, F.; Wingler, A. Status of Phenological Research Using Sentinel-2 Data: A Review. Remote Sens. 2020, 12, 2760. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Wu, B.; Zhang, X.; Xu, B. Multi-temporal Sentinel-2 data for cropland mapping in complex agricultural landscapes. ISPRS J. Photogramm. Remote Sens. 2023, 197, 335–352. [Google Scholar] [CrossRef]
- MapBiomas Project—Annual Mapping of Land Cover and Use in Brazil. Collection 9. Available online: https://mapbiomas.org (accessed on 20 August 2025).
- MapBiomas Project—MapBiomas Brasil Platform. Available online: https://plataforma.brasil.mapbiomas.org/coverage (accessed on 20 August 2025).
- Silva, G.B.S.; Bolfe, E.L.; Sano, E.E.; Gava, G.; Moraes, J.; Maria, I.; Silveira, J.; Santos, C.; Leandro, V.; Matusevicius, V. Diagnóstico agroambiental dos Distritos Agrotecnológicos (DATs) do projeto Semear Digital. In Proceedings of the 1st Workshop Científico do Centro de Ciência para o Desenvolvimento em Agricultura Digital—Semear Digital, Piracicaba, Brazil, 30 June–1 July 2024; ESALQ/USP: Piracicaba, Brazil, 2024; pp. 23–24, ISBN 978-68-87391-73-1. Available online: https://www.alice.cnptia.embrapa.br/alice/handle/doc/1172543 (accessed on 20 September 2025).
- Marques, J.P.; Vaz, C.M.P.; Sígolo, J.B.; Rodrigues, V.G.S. Soils of the Ribeira Valley (Brazil) as Environmental Protection Barriers: Characterization and Adsorption of Lead and Cadmium. Sustainability 2022, 14, 5135. [Google Scholar] [CrossRef]
- Prudente, V.H.R.; Martins, V.S.; Vieira, D.C.; de França e Silva, N.R.; Adami, M.; Sanches, I.D. Limitations of cloud cover for optical remote sensing of agricultural areas across South America. Remote Sens. Appl. Soc. Environ. 2020, 20, 100414. [Google Scholar] [CrossRef]
- Santos, O.N.; Santos Junior, C.F.; Rocha, A.C.O.; Martins, N.P.; Parreira, M.C. Productive Diversification and Family Farming: A Case Study of the Community of Tocantina Amazon. Rev. Agroecossistemas 2023, 15, 85–103. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite (ERTS) Symposium, NASA SP-351, Washington, DC, USA, 10–14 December 1973; NASA: Washington, DC, USA, 1974; Volume 1, pp. 309–317. [Google Scholar]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Rikimaru, A.; Roy, P.S.; Miyatake, S. Tropical forest cover density mapping. Trop. Ecol. 2002, 43, 39–47. [Google Scholar]
- Chaves, M.E.D.; Picoli, M.C.A.; Sanches, I.D. Recent Applications of Landsat 8/OLI and Sentinel-2/MSI for Land Use and Land Cover Mapping: A Systematic Review. Remote Sens. 2020, 12, 3062. [Google Scholar] [CrossRef]
- Parreiras, T.C.; Santos, C.d.O.; Bolfe, É.L.; Sano, E.E.; Leandro, V.B.S.; Bayma, G.; Silva, L.A.P.d.; Furuya, D.E.G.; Romani, L.A.S.; Morton, D. Dense Time Series of Harmonized Landsat Sentinel-2 and Ensemble Machine Learning to Map Coffee Production Stages. Remote Sens. 2025, 17, 3168. [Google Scholar] [CrossRef]
- Bolfe, É.L.; Parreiras, T.C.; Silva, L.A.P.d.; Sano, E.E.; Bettiol, G.M.; Victoria, D.d.C.; Sanches, I.D.; Vicente, L.E. Mapping Agricultural Intensification in the Brazilian Savanna: A Machine Learning Approach Using Harmonized Data from Landsat Sentinel-2. ISPRS Int. J. Geo-Inf. 2023, 12, 263. [Google Scholar] [CrossRef]
- Chaves, M.E.D.; Sanches, I.D. Improving Crop Mapping in Brazil’s Cerrado from a Data Cubes-Derived Sentinel-2 Temporal Analysis. Remote Sens. Appl. Soc. Environ. 2023, 32, 101014. [Google Scholar] [CrossRef]
- Ramírez-Juidias, E.; Amaro-Mellado, J.-L.; Antón, D. Wavelet Analysis of a Sentinel-2 Time Series to Detect Land Use Changes in Agriculture in the Vega Alta of the Guadalquivir River: Cantillana Case Study (Seville). Remote Sens. 2023, 15, 5225. [Google Scholar] [CrossRef]
- Sajadi, P.; Sang, Y.-F.; Gholamnia, M.; Bonafoni, S.; Brocca, L.; Pradhan, B.; Singh, A. Performance Evaluation of Long NDVI Timeseries from AVHRR, MODIS and Landsat Sensors over Landslide-Prone Locations in Qinghai-Tibetan Plateau. Remote Sens. 2021, 13, 3172. [Google Scholar] [CrossRef]
- Araújo, L.S.d.; Vicente, L.E.; Manzatto, C.V.; Skorupa, L.A.; Victoria, D.C.; Soares, A.R. AgroTag: Um sistema de coleta, análise e compartilhamento de dados de campo para qualificação do uso e cobertura das terras no Brasil. In Proceedings of the Anais do Simpósio Brasileiro de Sensoriamento Remoto—SBSR, Santos, Brazil, 14–19 April 2019; INPE: São José dos Campos, Brazil, 2019; pp. 451–454. [Google Scholar]
- Esquerdo, J.C.D.M.; Antunes, J.F.G.; Coutinho, A.C.; Speranza, E.A.; Kondo, A.A.; dos Santos, J.L. SATVeg: A web-based tool for visualization of MODIS vegetation indices in South America. Comput. Electron. Agric. 2020, 175, 105516. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Biau, G.; Scornet, E. A Random Forest Guided Tour. TEST 2016, 25, 197–227. [Google Scholar] [CrossRef]
- Alabi, T.R.; Adewopo, J.; Duke, O.P.; Kumar, P.L. Banana Mapping in Heterogenous Smallholder Farming Systems Using High-Resolution Remote Sensing Imagery and Machine Learning Models with Implications for Banana Bunchy Top Disease Surveillance. Remote Sens. 2022, 14, 5206. [Google Scholar] [CrossRef]
- Johansen, K.; Sohlbach, M.; Sullivan, B.; Stringer, S.; Peasley, D.; Phinn, S. Mapping Banana Plants from High Spatial Resolution Orthophotos to Facilitate Plant Health Assessment. Remote Sens. 2014, 6, 8261–8286. [Google Scholar] [CrossRef]
- Ochola, D.; Boekelo, B.; van de Ven, G.W.J.; Oduor, A.M.O.; van Asten, P.J.A.; Tittonell, P. Mapping Spatial Distribution and Geographic Shifts of East African Highland Banana (Musa spp.) in Uganda. PLoS ONE 2022, 17, e0263439. [Google Scholar] [CrossRef]
- Huete, A.R.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Waśniewski, A.; Hościło, A.; Chmielewska, M. Can a Hierarchical Classification of Sentinel-2 Data Improve Land Cover Mapping? Remote Sens. 2022, 14, 989. [Google Scholar] [CrossRef]
- Ojwang, G.O.; Ogutu, J.O.; Said, M.Y.; Ojwala, M.A.; Kifugo, S.C.; Verones, F.; Graae, B.J.; Buitenwerf, R.; Olff, H. An Integrated Hierarchical Classification and Machine Learning Approach for Mapping Land Use and Land Cover in Complex Social-Ecological Systems. Front. Remote Sens. 2024, 4, 1188635. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, W.; Li, F.; Gao, J.; Chen, Y.; Zhang, X.; Luo, J. Hierarchical Classification for Improving Parcel-Scale Crop Mapping Using Time-Series Sentinel-1 Data. J. Environ. Manag. 2024, 369, 122251. [Google Scholar] [CrossRef]
- Manabe, V.; Melo, M.; Rocha, J. Framework for mapping integrated crop-livestock systems in Mato Grosso, Brazil. Remote Sens. 2018, 10, 1322. [Google Scholar] [CrossRef]
- Garcia, A.S.; Vilela, V.M.F.N.; Rizzo, R.; West, P.; Gerber, J.S.; Engstrom, P.M.; Ballester, M.V.R. Assessing land use/cover dynamics and exploring drivers in the Amazon’s Arc of Deforestation through a hierarchical, multi-scale and multi-temporal classification approach. Remote Sens. Appl. Soc. Environ. 2019, 15, 100233. [Google Scholar] [CrossRef]
- Kuchler, P.C.; Simões, M.; Ferraz, R.; Arvor, D.; de Almeida Machado, P.L.O.; Rosa, M.; Gaetano, R.; Bégué, A. Monitoring complex integrated crop–livestock systems at regional scale in Brazil: A big Earth observation data approach. Remote Sens. 2022, 14, 1648. [Google Scholar] [CrossRef]
- Li, J.; Zhang, B.; Huang, X. A hierarchical category structure based convolutional recurrent neural network (HCS-Conv RNN) for land-cover classification using dense MODIS time-series data. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102744. [Google Scholar] [CrossRef]
- FAO. Land Cover Classification System (LCCS): Classification Concepts and User Manual; Food and Agriculture Organization of the United Nations: Rome, Italy, 2000; Available online: https://www.fao.org/4/y7220e/y7220e06.htm (accessed on 20 August 2025).
- Jiao, L.; Sun, W.; Yang, G.; Ren, G.; Liu, Y. A Hierarchical Classification Framework of Satellite Multispectral/Hyperspectral Images for Mapping Coastal Wetlands. Remote Sens. 2019, 11, 2238. [Google Scholar] [CrossRef]
- Demirkan, D.; Koz, A.; Düzgün, H. Hierarchical classification of Sentinel 2-a images for land use and land cover mapping and its use for the Corine system. J. App. Remote Sens. 2020, 14, 026524. [Google Scholar] [CrossRef]
- Parreiras, T.C.; Bolfe, É.L.; Chaves, M.E.D.; Sanches, I.D.; Sano, E.E.; Victoria, D.d.C.; Bettiol, G.M.; Vicente, L.E. Hierarchical Classification of Soybean in the Brazilian Savanna Based on Harmonized Landsat Sentinel Data. Remote Sens. 2022, 14, 3736. [Google Scholar] [CrossRef]
- Bendini, H.N.; Fonseca, L.M.G.; Schwieder, M.; Körting, T.S.; Rufin, P.; Sanches, I.D.; Leitão, P.J.; Hostert, P. Detailed agricutural land classification in the Brazilian Cerrado based on phenological information from dense satellite image time series. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101872. [Google Scholar] [CrossRef]
- Lebourgeois, V.; Dupuy, S.; Vintrou, É.; Ameline, M.; Butler, S.; Bégué, A. A Combined Random Forest and OBIA Classification Scheme for Mapping Smallholder Agriculture at Different Nomenclature Levels Using Multisource Data (Simulated Sentinel-2 Time Series, VHRS and DEM). Remote Sens. 2017, 9, 259. [Google Scholar] [CrossRef]
- Khan, H.R.; Gillani, Z.; Jamal, M.H.; Athar, A.; Chaudhry, M.T.; Chao, H.; He, Y.; Chen, M. Early Identification of Crop Type for Smallholder Farming Systems Using Deep Learning on Time-Series Sentinel-2 Imagery. Sensors 2023, 23, 1779. [Google Scholar] [CrossRef] [PubMed]
- Coordenadoria de Desenvolvimento Rural Sustentável (CATI). Levantamento Censitário das Unidades de Produção Agropecuária do Estado de São Paulo (LUPA) 2016/2017; Secretaria de Agricultura e Abastecimento do Estado de São Paulo: São Paulo, Brazil, 2017. Available online: https://www.cati.sp.gov.br/projetolupa/dadosmunicipais1617.php (accessed on 20 August 2025).
- Alonso-Sarria, F.; Valdivieso-Ros, C.; Gomariz-Castillo, F. Imagery Time Series Cloud Removal and Classification Using Long Short Term Memory Neural Networks. Remote Sens. 2024, 16, 2150. [Google Scholar] [CrossRef]
- Mouret, F.; Albughdadi, M.; Duthoit, S.; Kouamé, D.; Rieu, G.; Tourneret, J.-Y. Reconstruction of Sentinel-2 Time Series Using Robust Gaussian Mixture Models—Application to the Detection of Anomalous Crop Development in Wheat and Rapeseed Crops. arXiv 2022, arXiv:2110.11780. [Google Scholar] [CrossRef]
- Mazzia, V.; Khaliq, A.; Chiaberge, M. Improvement in Land Cover and Crop Classification based on Temporal Features Learning from Sentinel-2 Data Using Recurrent-Convolutional Neural Network (R-CNN). Appl. Sci. 2020, 10, 238. [Google Scholar] [CrossRef]
- Chu, D.; Shen, H.; Guan, X.; Chen, J.M.; Li, X.; Li, J.; Zhang, L. Long Time-Series NDVI Reconstruction in Cloud-Prone Regions via Spatio-Temporal Tensor Completion. Remote Sens. Environ. 2021, 264, 112582. [Google Scholar] [CrossRef]
- Tian, J.; Zhu, X.; Wan, L.; Collin, M. Impacts of Satellite Revisit Frequency on Spring Phenology Monitoring of Deciduous Broad-Leaved Forests Based on Vegetation Index Time Series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10500–10508. [Google Scholar] [CrossRef]
- Sheng, L.; Lv, Y.; Ren, Z.; Zhou, H.; Deng, X. Detection of the Optimal Temporal Windows for Mapping Paddy Rice Under a Double-Cropping System Using Sentinel-2 Imagery. Remote Sens. 2025, 17, 57. [Google Scholar] [CrossRef]
- Chakhar, A.; Hernández-López, D.; Ballesteros, R.; Moreno, M.A. Improving the Accuracy of Multiple Algorithms for Crop Classification by Integrating Sentinel-1 Observations with Sentinel-2 Data. Remote Sens. 2021, 13, 243. [Google Scholar] [CrossRef]
- Pratama, B.A.S.; Danoedoro, P.; Arjasakusuma, S. Exploring Optimal Integration Schemes for Sentinel-1 SAR and Sentinel-2 Multispectral Data in Land Cover Mapping across Different Atmospheric Conditions. Remote Sens. Appl. Soc. Environ. 2024, 34, 101185. [Google Scholar] [CrossRef]
- Xu, W.; Li, Z.; Lin, H.; Shao, G.; Zhao, F.; Wang, H.; Cheng, J.; Lei, L.; Chen, R.; Han, S.; et al. Mapping Fruit-Tree Plantation Using Sentinel-1/2 Time Series Images with Multi-Index Entropy Weighting Dynamic Time Warping Method. Remote Sens. 2024, 16, 3390. [Google Scholar] [CrossRef]
- Aeberli, A.; Johansen, K.; Robson, A.; Lamb, D.W.; Phinn, S. Detection of Banana Plants Using Multi-Temporal Multispectral UAV Imagery. Remote Sens. 2021, 13, 2123. [Google Scholar] [CrossRef]
- Turner, D.; Fortescue, J.; Thomas, D.S. Environmental Physiology of the Bananas (Musa spp.). Braz. J. Plant Physiol. 2007, 19, 463–484. [Google Scholar] [CrossRef]
- Da Silva Júnior, C.A.; Santi, A.L.; Uribe-Opazo, M.A.; da Silva, A.P.; Bazzi, C.L.; Bazzi, H. Performance of machine learning algorithms for mapping coffee crops using multitemporal multispectral data. Agriengineering 2022, 4, 1074–1092. [Google Scholar] [CrossRef]
- Narushynska, O.; Doroshenko, A.; Teslyuk, V.; Antoniv, V.; Arzubov, M. Enhancing Hierarchical Classification in Tree-Based Models Using Level-Wise Entropy Adjustment. Big Data Cogn. Comput. 2025, 9, 65. [Google Scholar] [CrossRef]
- Gholoobi, M.; Kumar, L. Using object-based hierarchical classification to extract land use land cover classes from high-resolution satellite imagery in a complex urban area. J. Appl. Remote Sens. 2015, 9, 096052. [Google Scholar] [CrossRef]








| Level → Combination ↓ | Overall Accuracy | Kappa | ||||
|---|---|---|---|---|---|---|
| Level 1 | Level 2 | Level 3 | Level 1 | Level 2 | Level 3 | |
| NDVI | 0.892 | 0.864 | 0.847 | 0.783 | 0.723 | 0.692 |
| NDWI | 0.868 | 0.898 | 0.782 | 0.735 | 0.795 | 0.552 |
| BSI | 0.857 | 0.885 | 0.782 | 0.714 | 0.767 | 0.547 |
| NDVI + NDWI | 0.923 | 0.855 | 0.913 | 0.846 | 0.766 | 0.821 |
| NDVI + BSI | 0.927 | 0.878 | 0.913 | 0.853 | 0.752 | 0.821 |
| NDWI + BSI | 0.881 | 0.858 | 0.804 | 0.763 | 0.713 | 0.594 |
| NDVI + NDWI + BSI | 0.937 | 0.891 | 0.934 | 0.874 | 0.780 | 0.864 |
| Level 1 | Level 2 | Level 3 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Class | NV | AA | OE% | Class | NPC | PC | OE% | Class | BAN | PAL | OE% |
| NV | 127 | 11 | 7.97 | NPC | 75 | 11 | 12.79 | BAN | 26 | 0 | 0 |
| AA | 7 | 143 | 4.67 | PC | 4 | 58 | 6.45 | PAL | 3 | 17 | 15 |
| CE% | 5.22 | 7.14 | - | CE% | 5.06 | 15.94 | - | CE% | 10.34 | 0 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, V.B.; Parreiras, T.C.; Furuya, D.E.G.; Bolfe, É.L.; Nechet, K.d.L. Mapping Banana and Peach Palm in Diversified Landscapes in the Brazilian Atlantic Forest with Sentinel-2. Agriculture 2025, 15, 2052. https://doi.org/10.3390/agriculture15192052
Soares VB, Parreiras TC, Furuya DEG, Bolfe ÉL, Nechet KdL. Mapping Banana and Peach Palm in Diversified Landscapes in the Brazilian Atlantic Forest with Sentinel-2. Agriculture. 2025; 15(19):2052. https://doi.org/10.3390/agriculture15192052
Chicago/Turabian StyleSoares, Victória Beatriz, Taya Cristo Parreiras, Danielle Elis Garcia Furuya, Édson Luis Bolfe, and Katia de Lima Nechet. 2025. "Mapping Banana and Peach Palm in Diversified Landscapes in the Brazilian Atlantic Forest with Sentinel-2" Agriculture 15, no. 19: 2052. https://doi.org/10.3390/agriculture15192052
APA StyleSoares, V. B., Parreiras, T. C., Furuya, D. E. G., Bolfe, É. L., & Nechet, K. d. L. (2025). Mapping Banana and Peach Palm in Diversified Landscapes in the Brazilian Atlantic Forest with Sentinel-2. Agriculture, 15(19), 2052. https://doi.org/10.3390/agriculture15192052

