ID-APM: Inverse Disparity-Guided Annealing Point Matching Approach for Robust ROI Localization in Blurred Thermal Images of Sika Deer
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Data
2.2. Image Size Adaptation and Rectification
2.3. Target Object Detection
2.4. Detection Box Matching
2.5. Infrared Region Mapping
3. Results
3.1. Validation of the Calibration Method
3.2. Effect of Image Scaling on Registration Quality
3.3. Evaluation Metrics
3.4. Experimental Results and Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bianchi, M.C.; Bava, L.; Sandrucci, A.; Tangorra, F.M.; Tamburini, A.; Gislon, G.; Zucali, M. Diffusion of Precision Livestock Farming Technologies in Dairy Cattle Farms. Animal 2022, 16, 100650. [Google Scholar] [CrossRef]
- Tuyttens, F.A.M.; Molento, C.F.M.; Benaissa, S. Twelve Threats of Precision Livestock Farming (PLF) for Animal Welfare. Front. Vet. Sci. 2022, 9, 889623. [Google Scholar] [CrossRef]
- Tablado, Z.; Jenni, L. Determinants of Uncertainty in Wildlife Responses to Human Disturbance. Biol. Rev. 2017, 92, 216–233. [Google Scholar] [CrossRef]
- Di Credico, A.; Perpetuini, D.; Izzicupo, P.; Gaggi, G.; Cardone, D.; Filippini, C.; Merla, A.; Ghinassi, B.; Di Baldassarre, A. Estimation of Heart Rate Variability Parameters by Machine Learning Approaches Applied to Facial Infrared Thermal Imaging. Front. Cardiovasc. Med. 2022, 9, 893374. [Google Scholar] [CrossRef]
- Takahashi, Y.; Gu, Y.; Nakada, T.; Abe, R.; Nakaguchi, T. Estimation of Respiratory Rate from Thermography Using Respiratory Likelihood Index. Sensors 2021, 21, 4406. [Google Scholar] [CrossRef]
- Wang, F.-K.; Shih, J.-Y.; Juan, P.-H.; Su, Y.-C.; Wang, Y.-C. Non-Invasive Cattle Body Temperature Measurement Using Infrared Thermography and Auxiliary Sensors. Sensors 2021, 21, 2425. [Google Scholar] [CrossRef]
- Wang, G.; Ma, Y.; Huang, J.; Fan, F.; Wang, Z. Measurement of Pig Body Temperature Based on Ear Segmentation and Multifactor Infrared Temperature Compensation. IEEE Trans. Instrum. Meas. 2025, 74, 5008415. [Google Scholar] [CrossRef]
- Ma, S.; Yao, Q.; Masuda, T.; Higaki, S.; Yoshioka, K.; Arai, S.; Takamatsu, S.; Itoh, T. Development of Noncontact Body Temperature Monitoring and Prediction System for Livestock Cattle. IEEE Sens. J. 2021, 21, 9367–9376. [Google Scholar] [CrossRef]
- Dan, B.; Zhu, Z.; Wei, Y.; Liu, D.; Li, M.; Tang, T. Infrared Dim-Small Target Detection via Chessboard Topology. Opt. Laser Technol. 2025, 181, 111867. [Google Scholar] [CrossRef]
- Xie, Q.; Wu, M.; Yang, M.; Bao, J.; Li, X.; Liu, H.; Yu, H.; Zheng, P. A Deep Learning-Based Fusion Method of Infrared Thermography and Visible Image for Pig Body Temperature Detection. In Proceedings of the 2021 International Symposium on Animal Environment and Welfare, Chongqing, China, 21–23 October 2021. [Google Scholar]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Tuytelaars, T.; Van Gool, L. Surf: Speeded up Robust Features. In Proceedings of the Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; Part I 9. pp. 404–417. [Google Scholar] [CrossRef]
- Gao, C.; Li, W. An Invariant Feature Extraction for Multi-Modal Images Matching. arXiv 2023, arXiv:2311.02842. [Google Scholar] [CrossRef]
- Xiang, L.; Zhao, L.; Chen, S.; Li, X. Infrared and Visible Image Registration in UAV Inspection. In Proceedings of the 2022 6th International Conference on Video and Image Processing, Shanghai, China, 23–26 December 2022; Association for Computing Machinery: New York, NY, USA, 2023; pp. 67–71. [Google Scholar] [CrossRef]
- Zhang, Z. A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
- Nakagawa, W.; Matsumoto, K.; de Sorbier, F.; Sugimoto, M.; Saito, H.; Senda, S.; Shibata, T.; Iketani, A. Visualization of Temperature Change Using RGB-D Camera and Thermal Camera. In Proceedings of the Computer Vision-ECCV 2014 Workshops, Zurich, Switzerland, 6–7 and 12 September 2014; Part I 13. pp. 386–400. [Google Scholar] [CrossRef]
- Song, K.; Wang, J.; Bao, Y.; Huang, L.; Yan, Y. A Novel Visible-Depth-Thermal Image Dataset of Salient Object Detection for Robotic Visual Perception. IEEE ASME Trans. Mechatron. 2023, 28, 1558–1569. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, P.; Wergeles, N.; Shang, Y. A Survey and Performance Evaluation of Deep Learning Methods for Small Object Detection. Expert Syst. Appl. 2021, 172, 114602. [Google Scholar] [CrossRef]
- Wanner, S.; Goldluecke, B. Variational Light Field Analysis for Disparity Estimation and Super-Resolution. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 606–619. [Google Scholar] [CrossRef]
- Fan, A.; Ma, J.; Tian, X.; Mei, X.; Lin, W. Coherent Point Drift Revisited for Non-Rigid Shape Matching and Registration. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 1414–1424. [Google Scholar] [CrossRef]
- Brenner, M.; Reyes, N.H.; Susnjak, T.; Barczak, A.L.C. RGB-D and Thermal Sensor Fusion: A Systematic Literature Review. IEEE Access 2023, 11, 82410–82442. [Google Scholar] [CrossRef]
- Jiang, X.; Ma, J.; Xiao, G.; Shao, Z.; Guo, X. A Review of Multimodal Image Matching: Methods and Applications. Inf. Fusion 2021, 73, 22–71. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments against Avoiding RMSE in the Literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Gao, C.; Li, W. Multi-Scale PIIFD for Registration of Multi-Source Remote Sensing Images. arXiv 2021, arXiv:2104.12572. [Google Scholar]
- Ye, Y.; Bruzzone, L.; Shan, J.; Bovolo, F.; Zhu, Q. Fast and Robust Matching for Multimodal Remote Sensing Image Registration. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9059–9070. [Google Scholar] [CrossRef]
- Tyszkiewicz, M.; Fua, P.; Trulls, E. DISK: Learning Local Features with Policy Gradient. In Advances in Neural Information Processing Systems; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 14254–14265. [Google Scholar]
- Deng, Y.; Ma, J. ReDFeat: Recoupling Detection and Description for Multimodal Feature Learning. IEEE Trans. Image Process. 2023, 32, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Liu, Y.; Zhang, L. POS-GIFT: A Geometric and Intensity-Invariant Feature Transformation for Multimodal Images. Inf. Fusion 2024, 102, 102027. [Google Scholar] [CrossRef]
- Tuzcuoğlu, Ö.; Köksal, A.; Sofu, B.; Kalkan, S.; Alatan, A.A. XoFTR: Cross-Modal Feature Matching Transformer. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 17–21 June 2024; pp. 4275–4286. [Google Scholar] [CrossRef]
Picture Type | Deer Face | Deer Eye |
---|---|---|
Left visible image | 4555 | 3865 |
Infrared thermal image | 4490 | 3880 |
Right visible image | 4605 | 3975 |
Method | RMSE (Faces) | RMSE (Eyes) | RMSE | Best RMSE | Accuracy (Faces) | Accuracy (Eyes) | Accuracy | CMR | Time |
---|---|---|---|---|---|---|---|---|---|
MS-PIIFD [25] | 54.26 | 58.27 | 55.74 | 47.45 | 39.87% | 36.60% | 38.35% | 4.16% | 6.38 s |
CFOG [26] | 53.20 | 50.72 | 52.07 | 46.55 | 10.36% | 11.34% | 10.81% | 30.76% | 4.31 s |
DISK [27] | 40.96 | 36.95 | 39.08 | 30.23 | 64.70% | 64.69% | 64.69% | 10.81% | 76.43 s |
MS-HLMO [13] | 39.33 | 50.99 | 45.77 | 18.78 | 56.34% | 59.54% | 57.83% | 99.95% | 390.29 s |
ReDFeat [28] | 17.65 | 16.88 | 17.36 | 13.03 | 58.13% | 61.21% | 59.56% | 81.92% | 4.43 s |
POS-GIFT [29] | 22.38 | 22.24 | 22.32 | 13.92 | 54.34% | 59.92% | 56.93% | 93.89% | 16.57 s |
XoFTR [30] | 23.77 | 18.68 | 21.36 | 12.85 | 47.88% | 52.45% | 50.01% | 77.33% | 0.09 s |
ID-APM | 21.90 | 20.45 | 21.25 | 21.25 | 97.11% | 96.78% | 96.95% | 99.93% | 1.26 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Mu, Y.; Sun, Y.; Gong, H.; Guo, Y.; Fan, J.; Li, S.; Li, Z.; Hu, T. ID-APM: Inverse Disparity-Guided Annealing Point Matching Approach for Robust ROI Localization in Blurred Thermal Images of Sika Deer. Agriculture 2025, 15, 2018. https://doi.org/10.3390/agriculture15192018
Zhu C, Mu Y, Sun Y, Gong H, Guo Y, Fan J, Li S, Li Z, Hu T. ID-APM: Inverse Disparity-Guided Annealing Point Matching Approach for Robust ROI Localization in Blurred Thermal Images of Sika Deer. Agriculture. 2025; 15(19):2018. https://doi.org/10.3390/agriculture15192018
Chicago/Turabian StyleZhu, Caocan, Ye Mu, Yu Sun, He Gong, Ying Guo, Juanjuan Fan, Shijun Li, Zhipeng Li, and Tianli Hu. 2025. "ID-APM: Inverse Disparity-Guided Annealing Point Matching Approach for Robust ROI Localization in Blurred Thermal Images of Sika Deer" Agriculture 15, no. 19: 2018. https://doi.org/10.3390/agriculture15192018
APA StyleZhu, C., Mu, Y., Sun, Y., Gong, H., Guo, Y., Fan, J., Li, S., Li, Z., & Hu, T. (2025). ID-APM: Inverse Disparity-Guided Annealing Point Matching Approach for Robust ROI Localization in Blurred Thermal Images of Sika Deer. Agriculture, 15(19), 2018. https://doi.org/10.3390/agriculture15192018