Significance of Temperature-Rearing Conditions for Shaping the Responses of the Aphid Parasitoid, Aphidius platensis, Under Thermal Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Rearing Under Fluctuating and Constant Temperature Regimens
2.2. Effect of Rearing Temperature Regimen on the Response of Parasitoids Under Contrasting Thermal Conditions: A Reciprocal Transplant Experiment
2.3. Data Analysis
3. Results
3.1. Effect of Temperature-Rearing Regimens on Parasitoid Traits
3.2. Effect of Temperature Rearing Regimen on the Response of Parasitoids Under Contrasting Thermal Conditions
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Furlong, M.J.; Zalucki, M.P. Climate change and biological control: The consequences of increasing temperatures on host–parasitoid interactions. Curr. Opin. Insect Sci. 2017, 20, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Tougeron, K.; Brodeur, J.; Le Lann, C.; van Baaren, J. How climate change affects the seasonal ecology of insect parasitoids. Ecol. Entomol. 2020, 45, 167–181. [Google Scholar] [CrossRef]
- Monticelli, L.S.; Bishop, J.; Desneux, N.; Gurr, G.M.; Jaworski, C.C.; McLean, A.H.; Vanbergen, A.J. Multiple global change impacts on parasitism and biocontrol services in future agricultural landscapes. Adv. Ecol. Res. 2021, 65, 245–304. [Google Scholar] [CrossRef]
- Barratt, B.I.P.; Moran, V.C.; Bigler, F.; Van Lenteren, J.C. The status of biological control and recommendations for improving uptake for the future. BioControl 2018, 63, 155–167. [Google Scholar] [CrossRef]
- Patel, H.R.; Mandaliya, V.B. Biocontrol agents in agriculture: Patent landscape, market dynamics, and recommendations for sustainable farming. In Bio-Control Agents for Sustainable Agriculture; Mitra, D., de los Santos Villalobos, S., Rani, A., Guerra Sierra, B.E., Andjelković, S., Eds.; Springer: Singapore, 2025. [Google Scholar] [CrossRef]
- Wakil, W.; Kavallieratos, N.G.; Eleftheriadou, N.; Ghazanfar, M.U.; El-Shafie, H.A.; Blankson, A.; Harvey, J.A. Climate change consequences for insect pest management, sustainable agriculture and food security. Entomol. Gen. 2025, 45, 37–51. [Google Scholar] [CrossRef]
- Harvey, J.A.; Tougeron, K.; Gols, R.; Heinen, R.; Abarca, M.; Abram, P.K.; Chown, S.L. Scientists’ warning on climate change and insects. Ecol. Monogr. 2023, 93, e1553. [Google Scholar] [CrossRef]
- Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.K.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 2002, 8, 1–16. [Google Scholar] [CrossRef]
- Godfray, H.C.J. Parasitoids: Behavioral and Evolutionary Ecology; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Schreven, S.J.J.; Frago, E.; Stens, A.; de Jong, P.W.; van Loon, J.J.A. Contrasting effects of heat pulses on different trophic levels: An experiment with a herbivore–parasitoid model system. PLoS ONE 2017, 12, e0176704. [Google Scholar] [CrossRef]
- Machekano, H.; Mvumi, B.M.; Nyamukondiwa, C. Loss of coevolved basal and plastic responses to temperature may underlie trophic level host–parasitoid interactions under global change. Biol. Control 2018, 118, 44–54. [Google Scholar] [CrossRef]
- Mutamiswa, R.; Chidawanyika, F.; Nyamukondiwa, C. Comparative assessment of the thermal tolerance of spotted stemborer and its larval parasitoid. Insect Sci. 2018, 25, 847–860. [Google Scholar] [CrossRef]
- Moore, M.E.; Hill, C.A.; Kingsolver, J.G. Differing thermal sensitivities in a host–parasitoid interaction: High, fluctuating developmental temperatures produce dead wasps and giant caterpillars. Funct. Ecol. 2021, 35, 675–685. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Ruane, A.C.; Vautard, R.; Arnell, N.; Coppola, E.; Dessai, S.; Cruz, F.A.; Dessai, S.; Islam, A.K.M.S.; Rahimi, M.; et al. Climate change information for regional impact and risk assessment. Clim. Change 2021, 1767, 1926. [Google Scholar] [CrossRef]
- Pörtner, H.O. Climate impacts on organisms, ecosystems and human societies: Integrating OCLTT into a wider context. J. Exp. Biol. 2021, 224 (Suppl. 1), jeb238360. [Google Scholar] [CrossRef]
- Sgrò, C.M.; Terblanche, J.S.; Hoffmann, A.A. What can plasticity contribute to insect responses to climate change? Annu. Rev. Entomol. 2016, 61, 433–451. [Google Scholar] [CrossRef]
- Le Lann, C.; Van Baaren, J.; Visser, B. Dealing with predictable and unpredictable temperatures in a climate change context: The case of parasitoids and their hosts. J. Exp. Biol. 2021, 224 (Suppl. 1), jeb238626. [Google Scholar] [CrossRef]
- Jerbi-Elayed, M.; Foray, V.; Tougeron, K.; Grissa-Lebdi, K.; Hance, T. Developmental temperature affects life-history traits and heat tolerance in the aphid parasitoid Aphidius colemani. Insects 2021, 12, 852. [Google Scholar] [CrossRef] [PubMed]
- Logan, M.L.; Cox, C.L. Genetic constraints, transcriptome plasticity, and the evolutionary response to climate change. Front. Genet. 2020, 11, 538226. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, N.L.; Bueno, A.F.; Haddi, K.; Silveira, E.C.; Rodrigues, H.S.; Hirose, E.; Smagghe, G.; Oliveira, E.E. The fitness and economic benefits of rearing the parasitoid Telenomus podisi under fluctuating temperature regime. Neotrop. Entomol. 2019, 48, 934–948. [Google Scholar] [CrossRef] [PubMed]
- Tougeron, K.; Van Baaren, J.; Llopis, S.; Ridel, A.; Doyon, J.; Brodeur, J.; Le Lann, C. Disentangling plasticity from local adaptation in diapause expression in parasitoid wasps from contrasting thermal environments: A reciprocal translocation experiment. Biol. J. Linn. Soc. 2018, 124, 756–764. [Google Scholar] [CrossRef]
- Rakhshani, E.; Starý, P. Aphid Parasitoids: Aphidiinae (Hym., Braconidae). In Biological Control of Insect and Mite Pests in Iran: A Review from Fundamental and Applied Aspects; Springer International Publishing: Cham, Switzerland, 2021; pp. 333–399. [Google Scholar]
- Van Lenteren, J.C.; Bolckmans, K.; Köhl, J.; Ravensberg, W.J.; Urbaneja, A. Biological control using invertebrates and microorganisms: Plenty of new opportunities. BioControl 2018, 63, 39–59. [Google Scholar] [CrossRef]
- Le Ralec, A.; Anselme, C.; Outreman, Y.; Poirié, M.; van Baaren, J.; Le Lann, C.; van Alphen, J.J.M. Evolutionary ecology of the interactions between aphids and their parasitoids. Comptes Rendus Biol. 2010, 333, 554–565. [Google Scholar] [CrossRef]
- Starý, P. The Aphidiidae of Chile (Hymenoptera, Ichneumonoidea, Aphidiidae). Dtsch. Entomol. Z. 1995, 42, 113–138. [Google Scholar] [CrossRef]
- Tomanović, Z.; Petrović, A.; Mitrović, M.; Kavallieratos, N.G.; Starý, P.; Rakhshani, E.; Popović, A.; Shukshuk, A.; Ivanović, A. Molecular and morphological variability within the Aphidius colemani group with redescription of Aphidius platensis brethes. Bull. Entomol. Res. 2014, 104, 552–565. [Google Scholar] [CrossRef]
- Nieto, J.M.; Fuentes-Contreras, E.; Castro, M.C.; Aldea, M.P.; Ortego, J.; Mier, P.D. Catálogo de los áfidos (Hemiptera: Aphididae) de Chile, con plantas hospedadoras y distribuciones regional y provincial. Graellsia 2016, 72, e050. [Google Scholar] [CrossRef]
- Alvarez-Baca, J.K.; Alfaro-Tapia, A.; Lavandero, B.; Le Lann, C.; Van Baaren, J. Suitability and profitability of a cereal aphid for the parasitoid Aphidius platensis in the context of conservation biological control of Myzus persicae in orchards. Insects 2020, 11, 381. [Google Scholar] [CrossRef] [PubMed]
- Alfaro-Tapia, A.; Alvarez-Baca, J.K.; Tougeron, K.; Lavandero, B.; Le Lann, C.; Van Baaren, J. Overwintering strategies and life-history traits of different populations of Aphidius platensis along a latitudinal gradient in Chile. Entomol. Gen. 2021, 42, 127–145. [Google Scholar] [CrossRef]
- Alfaro-Tapia, A.; Alvarez-Baca, J.K.; Tougeron, K.; Van Baaren, J.; Lavandero, B.; Le Lann, C. Composition and structure of winter aphid–parasitoid food webs along a latitudinal gradient in Chile. Oecologia 2022, 200, 425–440. [Google Scholar] [CrossRef]
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; et al. IPCC, Sections. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar] [CrossRef]
- Nicol, C.M.Y.; Mackauer, M. The scaling of body size and mass in a host–parasitoid association: Influence of host species and stage. Entomol. Exp. Appl. 1999, 90, 83–92. [Google Scholar] [CrossRef]
- Dion, E.; Zélé, F.; Simon, J.-C.; Outreman, Y. Rapid evolution of parasitoids when faced with the symbiont-mediated resistance of their hosts. J. Evol. Biol. 2011, 24, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Jerbi-Elayed, M.; Tougeron, K.; Grissa-Lebdi, K.; Hance, T. Effect of developmental temperatures on Aphidius colemani host-foraging behavior at high temperature. J. Therm. Biol. 2022, 103, 103140. [Google Scholar] [CrossRef]
- Piticar, A. Changes in agro-climatic indices related to temperature in Central Chile. Int. J. Biometeorol. 2019, 63, 499–510. [Google Scholar] [CrossRef]
- Charles, J.J.; Paine, T.D. Fitness effects of food resources on the polyphagous aphid parasitoid, Aphidius colemani Viereck. PLoS ONE 2016, 11, e0147551. [Google Scholar] [CrossRef]
- Antolin, M.F.; Bjorkstein, T.A.; Vaughn, T.T. Host-related fitness trade-offs in a presumed generalist parasitoid, Diaeretiella rapae (Hymenoptera: Aphidiidae). Ecol. Entomol. 2006, 31, 242–254. [Google Scholar] [CrossRef]
- Charnov, E.L.; Los-den Hartogh, R.L.; Jones, W.T.; van den Assem, J. Sex ratio evolution in a variable environment. Nature 1981, 289, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Colinet, H.; Boivin, G.; Hance, T. Manipulation of parasitoid size using the temperature-size rule: Fitness consequences. Oecologia 2007, 152, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Araya-Osses, D.; Casanueva, A.; Román-Figueroa, C.; Uribe, J.M.; Paneque, M. Climate change projections of temperature and precipitation in Chile based on statistical downscaling. Clim. Dyn. 2020, 54, 4309–4330. [Google Scholar] [CrossRef]
- Domínguez, J.I.; Vergara, M.M.; Aguirre, R.; Barrera, D.; Montero, J.; Cáceres, L.; Eguillor, P.; Espinoza, A.; García, A.; Reyes, A.; et al. Chilean Agriculture Overview; Office of Agricultural Studies and Policies (ODEPA) of the Chilean Ministry of Agriculture, Santiago, Chile. 2019. Available online: https://www.odepa.gob.cl/wp-content/uploads/2019/09/panorama2019Final.pdf (accessed on 1 June 2025).
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Maechler, M.; Bolker, B.M. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- The Jamovi Project. Jamovi. (Version 2.6). 2024. Available online: https://www.jamovi.org (accessed on 1 June 2025).
- R Core Team. R: A Language and Environment for Statistical Computing (Version 4.4). R packages retrieved from CRAN snapshot 2024-08-07. 2024. Available online: https://cran.r-project.org (accessed on 1 June 2025).
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. B. 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R Package, version 3.1-162. 2021. [Google Scholar]
- Lenth, R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Package Version 1.10.6090003. 2025. Available online: https://cran.r-project.org/package=emmeans (accessed on 1 June 2025).
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Lüdecke, D.; Ben-Shachar, M.; Patil, I.; Waggoner, P.; Makowski, D. performance: An R Package for Assessment, Comparison and Testing of Statistical Models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- Cohen, A.C. Ecology of insect rearing systems: A mini-review of insect rearing papers from 1906–2017. Adv. Entomol. 2018, 6, 86. [Google Scholar] [CrossRef]
- Herren, P.; Hesketh, H.; Meyling, N.V.; Dunn, A.M. Environment–host–parasite interactions in mass-reared insects. Trends Parasitol. 2023, 39, 588–602. [Google Scholar] [CrossRef]
- Lommen, S.T.; de Jong, P.W.; Pannebakker, B.A. It is time to bridge the gap between exploring and exploiting: Prospects for utilizing intraspecific genetic variation to optimize arthropods for augmentative pest control—A review. Entomol. Exp. Appl. 2017, 162, 108–123. [Google Scholar] [CrossRef]
- Buckley, L.B.; Schoville, S.D.; Williams, C.M. Shifts in the relative fitness contributions of fecundity and survival in variable and changing environments. J. Exp. Biol. 2021, 224 (Suppl. 1), jeb228031. [Google Scholar] [CrossRef]
- Le Lann, C.; Wardziak, T.; van Baaren, J.; van Alphen, J.J.M. Thermal plasticity of metabolic rates linked to life-history traits and foraging behaviour in a parasitic wasp. Funct. Ecol. 2011, 25, 641–651. [Google Scholar] [CrossRef]
- Giri, M.K.; Pass, B.C.; Yeargan, K.V.; Parr, J.C. Behavior, net reproduction, longevity, and mummy-stage survival of Aphidius matricariae. Entomophaga 1982, 27, 147–153. [Google Scholar] [CrossRef]
- Zamani, A.A.; Talebi, A.; Fathipour, Y.; Baniameri, V. Effect of temperature on life history of Aphidius colemani and Aphidius matricariae, two parasitoids of Aphis gossypii and Myzus persicae. Environ. Entomol. 2007, 36, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Logan, M.L.; Cox, R.M.; Calsbeeka, R. Natural selection on thermal performance in a novel thermal environment. Proc. Natl. Acad. Sci. USA 2014, 33, 14165–14169. [Google Scholar] [CrossRef]
- Ismaeil, I.; Doury, G.; Desouhant, E.; Dubois, F.; Prevost, G.; Couty, A. Trans-generational effects of mild heat stress on the life history traits of an aphid parasitoid. PLoS ONE 2013, 8, e54306. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, C.A.; Tewksbury, J.J.; Tigchelaar, M.; Battisti, D.S.; Merrill, S.C.; Huey, R.B.; Naylor, R.L. Increase in crop losses to insect pests in a warming climate. Science 2018, 361, 916–919. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zepeda-Paulo, F.; Lavandero, B.; Villegas, C.; Véliz, M. Significance of Temperature-Rearing Conditions for Shaping the Responses of the Aphid Parasitoid, Aphidius platensis, Under Thermal Stress. Agriculture 2025, 15, 2014. https://doi.org/10.3390/agriculture15192014
Zepeda-Paulo F, Lavandero B, Villegas C, Véliz M. Significance of Temperature-Rearing Conditions for Shaping the Responses of the Aphid Parasitoid, Aphidius platensis, Under Thermal Stress. Agriculture. 2025; 15(19):2014. https://doi.org/10.3390/agriculture15192014
Chicago/Turabian StyleZepeda-Paulo, Francisca, Blas Lavandero, Cinthya Villegas, and Mariana Véliz. 2025. "Significance of Temperature-Rearing Conditions for Shaping the Responses of the Aphid Parasitoid, Aphidius platensis, Under Thermal Stress" Agriculture 15, no. 19: 2014. https://doi.org/10.3390/agriculture15192014
APA StyleZepeda-Paulo, F., Lavandero, B., Villegas, C., & Véliz, M. (2025). Significance of Temperature-Rearing Conditions for Shaping the Responses of the Aphid Parasitoid, Aphidius platensis, Under Thermal Stress. Agriculture, 15(19), 2014. https://doi.org/10.3390/agriculture15192014