Regulatory Mechanism of Phosphorus Tailings and Organic Fertilizer Jointly Driving the Succession of Acidic Soil Microbial Functional Groups and Enhancing Corn Yield
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Site Overview
2.2. Experimental Design and Sample Collection
2.3. Assessment of Quality Indicators in Corn Samples
2.4. Chemical Analysis of Soil Samples
2.5. Soil DNA Extraction and High-Throughput Sequencing
2.6. Calculations and Statistical Analysis
3. Results
3.1. Corn Yield and Quality
3.2. Soil pH
3.3. Spatial Distribution Characteristics of Phosphorus
3.4. Soil Microbial Community and Functional Characteristics
3.4.1. Variations in Soil Bacterial α- and β-Diversity Following Phosphorus Tailings Treatment
3.4.2. Variations in Soil Bacterial Community Composition at Family and Genus Levels
3.4.3. Soil Microbial Co-Occurrence Network Response
3.4.4. Community Traits and Environmental Effects of Soil Phosphorus-Depleting Functional Microorganisms (gcd and phoD Genes)
3.4.5. Prediction of Microbial Functions and Their Relationship with Soil Chemical Properties
3.5. Correlation Between Soil Chemical Properties and Yield Stratification
3.6. Key Pathways Through Which Phosphorus Tailings Regulate Corn Yield and Soil Bacterial Functions
4. Discussion
4.1. Impact of Phosphorus Tailings on Corn Yield and Quality
4.2. Impact of Phosphorus Tailings on Soil Bacterial Community Structure and Function
4.3. Mechanism Linking Soil Properties, Microbial Functions, and Corn Yield
4.4. Research Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SOM | Soil organic matter |
AN | Available nitrogen |
TP | Total phosphorus |
AP | Available phosphorus |
SP | Soil soluble phosphorus |
EC | Cation exchange capacity |
SEM | Structural equation model |
References
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed]
- Galloway, J.N. Acidification of the World: Natural and Anthropogenic. Water Air Soil Pollut. 2001, 130, 17–24. [Google Scholar] [CrossRef]
- Lu, X.; Mao, Q.; Gilliam, F.S.; Luo, Y.; Mo, J. Nitrogen Deposition Contributes to Soil Acidification in Tropical Ecosystems. Glob. Change Biol. 2014, 20, 3790–3801. [Google Scholar] [CrossRef]
- Schroder, J.L.; Zhang, H.; Girma, K.; Raun, W.R.; Penn, C.J.; Payton, M.E. Soil Acidification from Long-Term Use of Nitrogen Fertilizers on Winter Wheat. Soil Sci. Soc. Am. J. 2011, 75, 957–964. [Google Scholar] [CrossRef]
- Ye, J.; Wang, Y.; Wang, Y.; Hong, L.; Jia, X.; Kang, J.; Lin, S.; Wu, Z.; Wang, H. Improvement of Soil Acidification in Tea Plantations by Long-Term Use of Organic Fertilizers and Its Effect on Tea Yield and Quality. Front. Plant Sci. 2022, 13, 1055900. [Google Scholar] [CrossRef]
- Li, X.; Chen, D.; Carrión, V.J.; Revillini, D.; Yin, S.; Dong, Y.; Zhang, T.; Wang, X.; Delgado-Baquerizo, M. Acidification Suppresses the Natural Capacity of Soil Microbiome to Fight Pathogenic Fusarium Infections. Nat. Commun. 2023, 14, 5090. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Z.; Jiang, B.; Baoyin, B.; Cui, Z.; Wang, H.; Li, Q.; Cui, J. Effects of Long-Term Application of Nitrogen Fertilizer on Soil Acidification and Biological Properties in China: A Meta-Analysis. Microorganisms 2024, 12, 1683. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Li, Y.; Yang, L.; Shi, H.; Li, L.; Bai, W.; Zhao, Y. Soil Acidification Under Long-Term N Addition Decreases the Diversity of Soil Bacteria and Fungi and Changes Their Community Composition in a Semiarid Grassland. Microb. Ecol. 2023, 85, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wang, G.; Cheng, Y.; Shi, P.; Yang, C.; Yang, H.; Xu, Z. Soil Acidification in Continuously Cropped Tobacco Alters Bacterial Community Structure and Diversity via the Accumulation of Phenolic Acids. Sci. Rep. 2019, 9, 12499. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, Q.; De Vries, W.; Ros, G.H.; Chen, X.; Muneer, M.A.; Zhang, F.; Wu, L. Effects of Soil Amendments on Soil Acidity and Crop Yields in Acidic Soils: A World-Wide Meta-Analysis. J. Environ. Manag. 2023, 345, 118531. [Google Scholar] [CrossRef]
- Uwiringiyimana, E.; Lai, H.; Ni, N.; Shi, R.; Pan, X.; Gao, J.; Biswash, M.R.; Li, J.; Cui, X.; Xu, R. Comparative Efficacy of Alkaline Slag, Biomass Ash, and Biochar Application for the Amelioration of Different Acidic Soils. Plant Soil 2024, 504, 47–61. [Google Scholar] [CrossRef]
- Shi, R.; Li, J.; Ni, N.; Mehmood, K.; Xu, R.; Qian, W. Effects of Biomass Ash, Bone Meal, and Alkaline Slag Applied Alone and Combined on Soil Acidity and Wheat Growth. J. Soils Sediments 2017, 17, 2116–2126. [Google Scholar] [CrossRef]
- Mosharrof, M.; Uddin, M.K.; Sulaiman, M.F.; Mia, S.; Shamsuzzaman, S.M.; Haque, A.N.A. Combined Application of Biochar and Lime Increases Maize Yield and Accelerates Carbon Loss from an Acidic Soil. Agronomy 2021, 11, 1313. [Google Scholar] [CrossRef]
- Mosharrof, M.; Uddin, M.K.; Sulaiman, M.F.; Mia, S.; Shamsuzzaman, S.M.; Haque, A.N.A. Combined Application of Rice Husk Biochar and Lime Increases Phosphorus Availability and Maize Yield in an Acidic Soil. Agriculture 2021, 11, 793. [Google Scholar] [CrossRef]
- Zhang, N.; Xing, J.; Wei, L.; Liu, C.; Zhao, W.; Liu, Z.; Wang, Y.; Liu, E.; Ren, X.; Jia, Z.; et al. The Potential of Biochar to Mitigate Soil Acidification: A Global Meta-Analysis. Biochar 2025, 7, 49. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Y.-P.; Yu, M.; Cao, N.; Yan, J. Soil Organic Matter Is Important for Acid Buffering and Reducing Aluminum Leaching from Acidic Forest Soils. Chem. Geol. 2018, 501, 86–94. [Google Scholar] [CrossRef]
- Liang, F.; Li, B.; Vogt, R.D.; Mulder, J.; Song, H.; Chen, J.; Guo, J. Straw Return Exacerbates Soil Acidification in Major Chinese Croplands. Resour. Conserv. Recycl. 2023, 198, 107176. [Google Scholar] [CrossRef]
- Li, X.; Shu, J.; Zhao, H.; Wang, J.; Chen, M.; Li, B. A Critical Review on Approaches for Phosphorus Ore Flotation Tailings Treatment and Disposal Technology: Environment Properties, Comprehensive Utilization, and Resource Utilization. Ind. Eng. Chem. Res. 2024, 63, 1191–1199. [Google Scholar] [CrossRef]
- Steiner, G.; Geissler, B.; Watson, I.; Mew, M.C. Efficiency Developments in Phosphate Rock Mining over the Last Three Decades. Resour. Conserv. Recycl. 2015, 105, 235–245. [Google Scholar] [CrossRef]
- Jin, C.; Yang, J.; Chen, B.; Qu, G.; Li, H.; Wu, F.; Liu, X.; Liu, Y.; Kuang, L.; Li, J. Soilization Utilization of Solid Waste: Ecological Regulation of Phosphorus Tailings-Based Soil with Physicochemical Improvement and Bacillus_cereus-Addition. Environ. Res. 2023, 236, 116856. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Du, C.; Zhang, Y.; Yuan, R. Phosphorus Recovery from Phosphate Tailings through a Two-Stage Leaching-Precipitation Process: Toward the Harmless and Reduction Treatment of P-Bearing Wastes. Environ. Res. 2024, 248, 118328. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, Y.; Wu, S.; Li, J.; Long, H.; Ning, Z.; Liu, C. Immobilization of Heavy Metal Cations in Contaminated Mining Soils by High Temperature Activated Phosphate Tailings. Earth Environ. 2024, 2, 166–175. [Google Scholar] [CrossRef]
- Calle-Castañeda, S.M.; Márquez-Godoy, M.A.; Hernández-Ortiz, J.P. Phosphorus Recovery from High Concentrations of Low-Grade Phosphate Rocks Using the Biogenic Acid Produced by the Acidophilic Bacteria Acidithiobacillus thiooxidans. Miner. Eng. 2018, 115, 97–105. [Google Scholar] [CrossRef]
- Joris, H.A.W.; Caires, E.F.; Bini, A.R.; Scharr, D.A.; Haliski, A. Effects of Soil Acidity and Water Stress on Corn and Soybean Performance under a No-till System. Plant Soil 2013, 365, 409–424. [Google Scholar] [CrossRef]
- Revilla, P.; Alves, M.L.; Andelković, V.; Balconi, C.; Dinis, I.; Mendes-Moreira, P.; Redaelli, R.; De Galarreta, J.I.R.; Vaz Patto, M.C.; Žilić, S.; et al. Traditional Foods from Maize (Zea mays L.) in Europe. Front. Nutr. 2022, 8, 683399. [Google Scholar] [CrossRef]
- Sirisuntornlak, N.; Ullah, H.; Sonjaroon, W.; Anusontpornperm, S.; Arirob, W.; Datta, A. Interactive Effects of Silicon and Soil pH on Growth, Yield and Nutrient Uptake of Maize. Silicon 2021, 13, 289–299. [Google Scholar] [CrossRef]
- Daba, N.A.; Li, D.; Huang, J.; Han, T.; Zhang, L.; Ali, S.; Khan, M.N.; Du, J.; Liu, S.; Legesse, T.G.; et al. Long-Term Fertilization and Lime-Induced Soil pH Changes Affect Nitrogen Use Efficiency and Grain Yields in Acidic Soil under Wheat-Maize Rotation. Agronomy 2021, 11, 2069. [Google Scholar] [CrossRef]
- Motte, H.; Vanneste, S.; Beeckman, T. Molecular and Environmental Regulation of Root Development. Annu. Rev. Plant Biol. 2019, 70, 465–488. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, M.; Xiao, Y.; Chen, C.; Wu, J.; Geng, C.; Fu, Y.; Shi, W.; Yang, K.; Wang, Z.; et al. Effects of Modified Phosphorus Tail Powder on Maize Growth and Soil Physicochemical Properties in Red Soil Habitat. Chin. Agric. Sci. Bull. 2024, 40, 64–69. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, T.; Han, Q.; Ren, X.; Jia, Z. Effects of Different Film Mulching Methods on Soil Water Productivity and Maize Yield in a Semiarid Area of China. Agric. Water Manag. 2020, 241, 106382. [Google Scholar] [CrossRef]
- Sharples, A. The Hydrolysis of Cellulose and Its Relation to Structure. Trans. Faraday Soc. 1957, 53, 1003. [Google Scholar] [CrossRef]
- Wall, L.L.; Gehrke, C.W.; Neuner, T.E.; Cathey, R.D.; Rexroad, P.R. Total Protein Nitrogen: Evaluation and Comparison of Four Different Methods. J. AOAC Int. 1975, 58, 811–817. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Yu, T.; Cheng, L.; Wang, P.; Yang, L.; Lian, T.; Zang, H.; Zeng, Z.; Yang, Y. Diversified Rotation Reduced N2O Emissions by Shaping N-Cycling Microbial Communities and Increasing Their Network Complexity. J. Environ. Sci. 2025, in press. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Xu, J.-Y.; Liu, Z.-L.; Cui, H.-L.; Chen, P.; Cai, T.-G.; Li, G.; Ding, L.-J.; Qiao, M.; Zhu, Y.-G.; et al. Biological Interactions Mediate Soil Functions by Altering Rare Microbial Communities. Environ. Sci. Technol. 2024, 58, 5866–5877. [Google Scholar] [CrossRef]
- Cheng, M.; Chen, Z.; Shi, T.; Ma, H.; Wen, Y.; Li, P.; Xu, M. Soil Aggregate Carbon Stocks and Sequestration Efficiency under Long-Term Fertilization across China’s Croplands. Soil Tillage Res. 2026, 255, 106828. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, Y.; Cui, Z.; Cao, C. Responses of Soil Microbial Communities Associated with Phosphorus Transformation to Land-Use Alternations in a Meadow Grassland, Northeast China. Microorganisms 2025, 13, 624. [Google Scholar] [CrossRef]
- Mao, X.; Lu, Q.; Mo, W.; Xin, X.; Chen, X.; He, Z. Phosphorus Availability and Release Pattern from Activated Dolomite Phosphate Rock in Central Florida. J. Agric. Food Chem. 2017, 65, 4589–4596. [Google Scholar] [CrossRef]
- Shao, X.; Yao, H.; Cui, S.; Peng, Y.; Gao, X.; Yuan, C.; Chen, X.; Hu, Y.; Mao, X. Activated Low-Grade Phosphate Rocks for Simultaneously Reducing the Phosphorus Loss and Cadmium Uptake by Rice in Paddy Soil. Sci. Total Environ. 2021, 780, 146550. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Li, J.; Zhang, J.; Li, X.; Liu, T.; Yu, Q.; Tao, S.; Zhou, M.; Hou, H. Development and Mechanistic Study of Phosphate Tailings Based Soil Heavy Metal Prophylactic Agents with Encapsulated Structure for Lead Stabilization and Phosphorus Speciation in Soils. J. Environ. Manag. 2025, 373, 123578. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, Y.; Wang, Y.; Zhang, H.; Zhu, Q.; Yan, B.; Fei, J.; Xiangmin, R.; Peng, J.; Luo, G. Intercropping Regulation of Soil Phosphorus Composition and Microbially-Driven Dynamics Facilitates Maize Phosphorus Uptake and Productivity Improvement. Field Crops Res. 2022, 287, 108666. [Google Scholar] [CrossRef]
- Fang, C.; Dai, Z.; LI, W.; Wang, D.; Jiao, J.; Chen, X.; Xu, L. Effects of Reduced Chemical Fertilizer with Organic Fertilizer Application on the Yield and Grain Quality of Sweet-Waxy Corn. Chin. J. Ecol. 2021, 40, 1347–1355. [Google Scholar] [CrossRef]
- Paramesh, V.; Mohan Kumar, R.; Rajanna, G.A.; Gowda, S.; Nath, A.J.; Madival, Y.; Jinger, D.; Bhat, S.; Toraskar, S. Integrated Nutrient Management for Improving Crop Yields, Soil Properties, and Reducing Greenhouse Gas Emissions. Front. Sustain. Food Syst. 2023, 7, 1173258. [Google Scholar] [CrossRef]
- Liu, Z.; Zhuang, J.; Zheng, K.; Luo, C. Differential Response of the Soil Nutrients, Soil Bacterial Community Structure and Metabolic Functions to Different Risk Areas in Lead-Zine Tailings. Front. Microbiol. 2023, 14, 1131770. [Google Scholar] [CrossRef]
- Mghazli, N.; Sbabou, L.; Hakkou, R.; Ouhammou, A.; El Adnani, M.; Bruneel, O. Description of Microbial Communities of Phosphate Mine Wastes in Morocco, a Semi-Arid Climate, Using High-Throughput Sequencing and Functional Prediction. Front. Microbiol. 2021, 12, 666936. [Google Scholar] [CrossRef]
- Badger, M.R.; Bek, E.J. Multiple Rubisco Forms in Proteobacteria: Their Functional Significance in Relation to CO2 Acquisition by the CBB Cycle. J. Exp. Bot. 2008, 59, 1525–1541. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, M.; Zhai, Z.; Dai, H.; Yang, M.; Zhang, Y.; Liang, T. Soil Organic Carbon, Carbon Fractions, and Microbial Community under Various Organic Amendments. Sci. Rep. 2024, 14, 25431. [Google Scholar] [CrossRef]
- Tang, Q.; Xia, Y.; Ti, C.; Shan, J.; Zhou, W.; Li, C.; Yan, X.; Yan, X. Partial Organic Fertilizer Substitution Promotes Soil Multifunctionality by Increasing Microbial Community Diversity and Complexity. Pedosphere 2023, 33, 407–420. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Y.; Cui, Z.; Peng, L.; Cao, C. Dynamics of phoD- and Gcd-Harboring Microbial Communities across an Age Sequence of Biological Soil Crusts under Sand-Fixation Plantation. Front. Microbiol. 2022, 13, 831888. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Y.; Lian, Z.; Yang, T.; Zeng, Q.; Feng, S.; Fang, Z.; Shu, W.; Huang, L.; Ye, Z.; et al. Revegetation Approach and Plant Identity Unequally Affect Structure, Ecological Network and Function of Soil Microbial Community in a Highly Acidified Mine Tailings Pond. Sci. Total Environ. 2020, 744, 140793. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Yan, W.; Canisares, L.P.; Wang, S.; Brodie, E.L. Alterations in Soil PH Emerge as a Key Driver of the Impact of Global Change on Soil Microbial Nitrogen Cycling: Evidence from a Global Meta-analysis. Glob. Ecol. Biogeogr. 2023, 32, 145–165. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, X.; Li, T.; Yang, J.; Zhao, L.; Yuan, D.; Guo, Z.; Liu, C.; Duan, C. Changes in Soil Microbe-Mediated Carbon, Nitrogen and Phosphorus Cycling during Spontaneous Succession in Abandoned Pb Zn Mining Areas. Sci. Total Environ. 2024, 920, 171018. [Google Scholar] [CrossRef]
- Li, R.; Ren, C.; Wu, L.; Zhang, X.; Mao, X.; Fan, Z.; Cui, W.; Zhang, W.; Wei, G.; Shu, D. Fertilizing-Induced Alterations of Microbial Functional Profiles in Soil Nitrogen Cycling Closely Associate with Crop Yield. Environ. Res. 2023, 231, 116194. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, Y.; Wang, G.; Zhang, Z. Soil Physicochemical Properties and Microorganisms Jointly Regulate the Variations of Soil Carbon and Nitrogen Cycles along Vegetation Restoration on the Loess Plateau, China. Plant Soil 2024, 494, 413–436. [Google Scholar] [CrossRef]
- Han, Z.; Ma, J.; Yang, C.-H.; Ibekwe, A.M. Soil Salinity, pH, and Indigenous Bacterial Community Interactively Influence the Survival of E. coli O157:H7 Revealed by Multivariate Statistics. Environ. Sci. Pollut. Res. 2021, 28, 5575–5586. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Bowker, M.A.; Grace, J.B.; Powell, J.R. From Patterns to Causal Understanding: Structural Equation Modeling (SEM) in Soil Ecology. Pedobiologia 2015, 58, 65–72. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Yuan, J.; Tang, Z.; Wang, J.; Zhang, Y. Long-Term Organic Fertilization Strengthens the Soil Phosphorus Cycle and Phosphorus Availability by Regulating the pqqC- and phoD-Harboring Bacterial Communities. Microb. Ecol. 2023, 86, 2716–2732. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, C.; Ma, X.; Hou, X.; Yang, J.; Sun, X.; Zheng, Y.; Zhou, M.; Kong, C.; Fan, W. Regulatory Mechanism of Phosphorus Tailings and Organic Fertilizer Jointly Driving the Succession of Acidic Soil Microbial Functional Groups and Enhancing Corn Yield. Agriculture 2025, 15, 2011. https://doi.org/10.3390/agriculture15192011
Geng C, Ma X, Hou X, Yang J, Sun X, Zheng Y, Zhou M, Kong C, Fan W. Regulatory Mechanism of Phosphorus Tailings and Organic Fertilizer Jointly Driving the Succession of Acidic Soil Microbial Functional Groups and Enhancing Corn Yield. Agriculture. 2025; 15(19):2011. https://doi.org/10.3390/agriculture15192011
Chicago/Turabian StyleGeng, Chuanxiong, Xinling Ma, Xianfeng Hou, Jinghua Yang, Xi Sun, Yi Zheng, Min Zhou, Chuisi Kong, and Wei Fan. 2025. "Regulatory Mechanism of Phosphorus Tailings and Organic Fertilizer Jointly Driving the Succession of Acidic Soil Microbial Functional Groups and Enhancing Corn Yield" Agriculture 15, no. 19: 2011. https://doi.org/10.3390/agriculture15192011
APA StyleGeng, C., Ma, X., Hou, X., Yang, J., Sun, X., Zheng, Y., Zhou, M., Kong, C., & Fan, W. (2025). Regulatory Mechanism of Phosphorus Tailings and Organic Fertilizer Jointly Driving the Succession of Acidic Soil Microbial Functional Groups and Enhancing Corn Yield. Agriculture, 15(19), 2011. https://doi.org/10.3390/agriculture15192011