Basil Downy Mildew (Peronospora belbahrii): A Major Threat to Ocimum basilicum L. Production
Abstract
1. Introduction
2. Ocimum basilicum: Economic Context and Agronomic Relevance
2.1. Economic Importance at the Global Level
2.2. Main Uses: Fresh Consumption, Processing (Pesto), and Essential Oils
2.3. Basil Is Affected by a Variety of Diseases
3. Basil Downy Mildew (Peronospora belbahrii): Biology, Epidemiology, and Global Spread
3.1. Biology and Epidemiology of Peronospora belbahrii
3.2. Global Spread and Geographic Distribution of Peronospora belbahrii
4. Diagnosis
5. Disease Management
5.1. Preventive Measures (Seed Health, Cultural Practices, Genetic Control)
5.1.1. Seed Health
5.1.2. Cultivation Practices
5.1.3. Resistant Cultivars
5.2. Control Measures: Fungicides, Resistance Inducers, Biocontrol Agents, and Plant Extracts
5.2.1. Fungicides
5.2.2. Resistance Inducers
5.2.3. Biocontrol Agents and Plant Extracts
6. Challenges and Perspectives
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dalby, A. Siren Feasts: A History of Food and Gastronomy in Greece; Routledge: London, UK, 1996; pp. 1–352. [Google Scholar]
- Gilardi, G.; Garibaldi, A.; Gullino, M.L. Integrated management of downy mildew of basil. Crop Prot. 2020, 137, 105202. [Google Scholar] [CrossRef]
- McGrath, M.T. Sweet basil cultivars resistant to downy mildew evaluated under open field conditions. Crop Prot. 2024, 184, 106815. [Google Scholar] [CrossRef]
- Macaluso, D.; Licciardo, F.; Carbone, K. Farming of Medicinal and Aromatic Plants in Italy: Structural Features and Economic Results. Agriculture 2024, 14, 151. [Google Scholar] [CrossRef]
- Paton, A.; Harley, R.M.; Harley, M.M. Ocimum: An overview of classification and relationships. In Basil; CRC Press: Boca Raton, FL, USA, 1999; pp. 11–46. [Google Scholar]
- Garibaldi, A.; Gullino, M.L.; Minuto, G. Diseases of basil and their management. Plant Dis. 1997, 81, 124–132. [Google Scholar] [CrossRef][Green Version]
- Ciriello, M.; Kyriacou, M.C.; De Pascale, S.; Rouphael, Y. An appraisal of critical factors configuring the composition of basil in minerals, bioactive secondary metabolites, micronutrients and volatile aromatic compounds. J. Food Compos. Anal. 2022, 111, 104582. [Google Scholar] [CrossRef]
- Al-Malahmeh, A.J.; Al-Ajlouni, A.M.; Wesseling, S.; Vervoort, J.; Rietjens, I.M.C.M. Determination and risk assessment of naturally occurring genotoxic and carcinogenic alkenylbenzenes in basil-containing sauce of pesto. Toxicol. Rep. 2016, 4, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Grayer, R.J.; Kite, G.C.; Goldstone, F.J.; Bryan, S.E.; Paton, A.; Putievsky, E. Infraspecific taxonomy and essential oil chemotypes in sweet basil (Ocimum basilicum). Phytochemistry 1996, 43, 1033–1039. [Google Scholar] [CrossRef]
- Castronuovo, D.; Russo, D.; Libonati, R.; Faraone, I.; Candido, V.; Picuno, P.; Andrade, P.; Valentão, P.; Milella, L. Influence of shading treatment on yield, morphological traits and phenolic profile of sweet basil (Ocimum basilicum L.). Sci. Hortic. 2019, 254, 91–98. [Google Scholar] [CrossRef]
- Masino, F.; Foca, G.; Ulrici, A.; Arru, L.; Antonelli, A. A chemometric study of pesto sauce appearance and of its relation to pigment concentration. J. Sci. Food Agric. 2009, 88, 1335–1343. [Google Scholar] [CrossRef]
- Research and Markets. Global Pesto Sauces Market 2022–2026. Report ID: 5574291. Available online: https://www.researchandmarkets.com/reports/5574291/global-pesto-sauces-market-2022-2026 (accessed on 3 August 2025).
- Elad, Y.; Omer, C.; Nisan, Z.; Harari, D.; Goren, H.; Adler, U.; Silverman, D.; Biton, S. Passive heat treatment of sweet basil crops suppresses Peronospora belbahrii downy mildew. Ann. Appl. Biol. 2016, 168, 373–389. [Google Scholar] [CrossRef]
- Khater, E.S.; Bahnasawy, A.; Abass, W.; Morsly, O.M.; El-Ghobashy, H.; Shanban, Y.; Egela, M. Production of basil (Ocimum basilicum L.) under different soilless cultures. Sci. Rep. 2021, 11, 12754. [Google Scholar] [CrossRef] [PubMed]
- Sowmya, R.S.; Warke, V.G.; Mahajan, G.B.; Annapure, U.S. Quality and shelf-life assessment of pesto prepared using herbs cultivated by hydroponics. Int. J. Gastron. Food Sci. 2022, 30, 100608. [Google Scholar] [CrossRef]
- Sathyanarayana, S.R.; Warke, V.G.; Mahajan, G.B.; Annapure, U.S. Comparative studies of microbial and heavy metal safety assessment of the herbs cultivated in hydroponically and regular soil system. J. Food Saf. 2021, 41, e12936. [Google Scholar] [CrossRef]
- De Bruin, W.; Otto, D.; Korsten, L. Microbiological status and food safety compliance of commercial basil production systems. J. Food Prot. 2016, 79, 43–50. [Google Scholar] [CrossRef]
- Rheinholds, I.; Pugajeva, I.; Bavrins, K.; Kuckovska, G.; Bertkevics, V. Mycotoxins, pesticides and toxic metals in commercial spices and herbs. Food Addit. Contam. Part B Surveill. 2017, 10, 5–10. [Google Scholar] [CrossRef]
- Elmer, W.H.; Wick, R.L.; Haviland, P. Vegetative compatibility among Fusarium oxysporum f. sp. basilicum isolates recovered from basil seed and infected plants. Plant Dis. 1994, 78, 789–791. [Google Scholar] [CrossRef]
- Gamliel, A.; Katan, T.; Yunis, H.; Katan, J. Fusarium wilt and crown rot of sweet basil: I. Involvement of soilborne and airborne inoculum. Phytopathology 1996, 86, 56–62. [Google Scholar] [CrossRef]
- Gamliel, A.; Yarden, O. Diversification of diseases affecting herb crops in Israel accompanies the increase in herb crop production. Phytoparasitica 1998, 26, 53–58. [Google Scholar] [CrossRef][Green Version]
- Chellemi, D.O.; Gamliel, A.; Katan, J.; Subbarao, L.V. Development and deployment of systems-based approaches for the management of soilborne plant pathogens. Phytopathology 2016, 106, 216–225. [Google Scholar] [CrossRef]
- Cacciola, S.O.; Gilardi, G.; Faedda, R.; Schena, L.; Pane, A.; Garibaldi, A.; Gullino, M.L. Characterization of Colletotrichum ocimi population associated with black spot of sweet basil (Ocimum basilicum) in Northern Italy. Plants 2020, 9, 654. [Google Scholar] [CrossRef]
- Sharabani, G.; Shtienberg, D.; Elad, Y.; Dinoor, A. Epidemiology of Botrytis cinerea in sweet basil and implications for disease management. Plant Dis. 1999, 83, 554–560. [Google Scholar] [CrossRef]
- Garibaldi, A.; Gilardi, G.; Bertoldo, C.; Gullino, M.L. First report of a leaf spot of sweet basil (Ocimum basilicum) caused by Alternaria alternata in Italy. J. Plant Pathol. 2011, 93, S71. [Google Scholar]
- Farr, D.F.; Rossman, A.Y. Fungal Databases, U.S. National Fungus Collections, ARS, USDA. Available online: https://fungi.ars.usda.gov/ (accessed on 20 April 2025).
- Gilardi, G.; Gullino, M.L.; Garibaldi, A. Occurrence of Alternaria spp. in the seeds of basil and its pathogenicity. J. Plant Pathol. 2013, 95, 41–47. [Google Scholar]
- Siciliano, I.; Franco Ortega, S.; Gilardi, G.; Bosio, P.; Garibaldi, A.; Gullino, M.L. Molecular phylogeny and characterization of secondary metabolite profile of plant pathogenic Alternaria species isolated from basil. Food Microbiol. 2018, 73, 264–274. [Google Scholar] [CrossRef]
- Guarnaccia, V.; Gilardi, G.; Napoletano, E.; Garibaldi, A.; Gullino, M.L. A new foliar disease of sweet basil caused by Stagonosporopsis vannaccii. J. Plant Pathol. 2022, 4, 1491–1498. [Google Scholar] [CrossRef]
- Matic, S.; Gilardi, G.; Gullino, M.L.; Garibaldi, A. Emergence of leaf spot disease on leafy vegetable and ornamental crops caused by Paramyrothecium and Albifimbria species. Phytopathology 2019, 109, 1053–1061. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Mathur, S.B.; Neergaard, P. Seed-borne species of Myrothecium and their pathogenic potential. Trans. Br. Mycol. Soc. 1973, 61, 347–354. [Google Scholar] [CrossRef]
- Crouch, J.A. Peronospora belbahrii (basil downy mildew). CABI Compend. 2020, 118352. [Google Scholar] [CrossRef]
- Garibaldi, A.; Minuto, G.; Bertetti, D.; Gullino, M.L. Seed transmission of Peronospora sp. of basil. J. Plant Dis. Prot. 2004, 111, 465–469. [Google Scholar]
- Farahani-Kofoet, D.R.; Römer, P.; Grosch, R. Systemic spread of downy mildew in basil plants and detection of the pathogen in seed and plant samples. Mycol. Prog. 2012, 11, 961–966. [Google Scholar] [CrossRef]
- Cohen, Y.; Vaknin, M.; Ben-Naim, Y.; Rubin, A.E. Epidemiology of basil downy mildew. Phytopathology 2017, 107, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Falach-Block, L.; Ben-Naim, Y.; Cohen, Y. Investigation of seed transmission in Peronospora belbahrii, the causal agent of basil downy mildew. Agronomy 2019, 9, 205. [Google Scholar] [CrossRef]
- Naim, Y.B.; Falach-Block, L.; Ben-Daniel, B.H.; Cohen, Y. Host range of Peronospora belbahrii, causal agent of basil downy mildew, in Israel. Eur. J. Plant Pathol. 2019, 155, 789–799. [Google Scholar] [CrossRef]
- Henricot, B.; Denton, J.; Scrace, J.; Barnes, A.V.; Lane, C.R. Peronospora belbahrii causing downy mildew disease on Agastache in the UK: A new host and location for the pathogen. Plant Pathol. 2010, 59, 801. [Google Scholar] [CrossRef]
- Ito, Y.; Takeuchi, T.; Matsushita, Y.; Chikuo, Y.; Satou, M. Downy mildew of coleus caused by Peronospora belbahrii in Japan. J. Gen. Plant Pathol. 2015, 81, 328–330. [Google Scholar] [CrossRef]
- Rivera, Y.; Salgado-Salazar, C.; Creswell, T.C.; Ruhl, G.; Crouch, J.A. First report of downy mildew caused by Peronospora sp. on Agastache sp. in the United States. Plant Dis. 2016, 100, 1249–1250. [Google Scholar] [CrossRef]
- Gorayeb, E.S.; Pieroni, L.P.; Cruciol, G.C.D.; Pieri, C.; Dovigo, L.H.; Pavan, M.A.; Kurozawa, C.; Krause-Sakate, R. First report of downy mildew on coleus (Plectranthus spp.) caused by Peronospora belbahrii sensu lato in Brazil. Plant Dis. 2020, 104, 294. [Google Scholar] [CrossRef]
- Hoffmeister, M.; Ashrafi, S.; Thines, M.; Maier, W. Two new species of the Peronospora belbahrii species complex, Pe. choii sp. nov. and Pe. salvia-pratensis sp. nov., and a new host for Pe. salviae-officinalis. Fungal Syst. Evol. 2020, 6, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Salgado-Salazar, C.; LeBlanc, N.; Wallace, E.C.; Daughtrey, M.L.; Crouch, J.A. Peronospora monardae, Hyaloperonospora daughtreyae, and H. iberidis: New species associated with downy mildew diseases affecting ornamental plants in the United States. Eur. J. Plant Pathol. 2020, 157, 311–326. [Google Scholar] [CrossRef]
- Garibaldi, A.; Bertetti, D.; Gullino, M.L. Effect of leaf wetness duration and temperature on infection of downy mildew (Peronospora sp.) of basil. J. Plant Dis. Prot. 2007, 114, 6–8. [Google Scholar] [CrossRef]
- Zhang, G.; Thompson, A.; Schisler, D.; Johnson, E.T. Characterization of the infection process by Peronospora belbahrii on basil by scanning electron microscopy. Heliyon 2019, 5, e01117. [Google Scholar] [CrossRef]
- Patel, J.S.; Zhang, S.; McGrath, M.T. Red light increases suppression of downy mildew in basil by chemical and organic products. J. Phytopathol. 2016, 164, 1022–1029. [Google Scholar] [CrossRef]
- Gilardi, G.; Pugliese, M.; Chitarra, W.; Ramon, I.; Gullino, M.L.; Garibaldi, A. Effect of elevated atmospheric CO2 and temperature increases on the severity of basil downy mildew caused by Peronospora belbahrii under phytotron conditions. J. Phytopathol. 2016, 164, 114–121. [Google Scholar] [CrossRef]
- Hansford, C.G. Annual report of the mycologist. Rev. Appl. Mycol. 1933, 12, 421–422. [Google Scholar]
- Lefort, F.; Gigon, V.; Amos, B. Le mildiou s’étend. Déjà détecté dans de nombreux pays européens, Peronospora lamii, responsable du mildiou de basilic, a été observé en Suisse dans la région lémanique. Réussir Fruits Légumes 2003, 223, 66. [Google Scholar]
- Liberato, J.R.; Forsberg, L.; Grice, K.R.; Shivas, R.G. Peronospora lamii on Lamiaceae in Australia. Australas. Plant Pathol. 2006, 35, 367–368. [Google Scholar] [CrossRef]
- Thines, M.; Buaya, A.; Ploch, S.; Naim, Y.B.; Cohen, Y. Downy mildew of lavender caused by Peronospora belbahrii in Israel. Mycol. Progr. 2020, 19, 1537–1543. [Google Scholar] [CrossRef]
- Riley, E.A. A revised list of plant diseases in Tanganyika Territory. Mycol. Pap. 1960, 75, 42. [Google Scholar]
- Gumedzoe, M.Y.D.; Hemou, P.; Lepage, A.; Lecat, N. Inventaire et identification de Peronospora lamii (Al. Br.) de By, agent causal du mildiou du basilic (Ocimum basilicum) dans les exploitations de Gyma Cultures. In Proceedings of the Les VIIIe Journées Scientifiques de l’Université du Bénin, University of Lomé, Benin, Togo, 11–15 May 1998. [Google Scholar]
- Belbahri, I.; Calmin, G.; Pawlowski, J.; Lefort, F. Phylogenetic analysis and real time PCR detection of a presumably undescribed Peronospora species on sweet basil and sage. Mycol. Res. 2005, 109, 1276–1287. [Google Scholar] [CrossRef]
- Voglmayr, H.; Piątek, M. Peronospora causing downy mildew disease of sweet basil newly reported in Cameroon. Plant Pathol. 2009, 58, 805. [Google Scholar] [CrossRef]
- McLeod, A.; Coertze, S.; Mostert, L. First report of a Peronospora species on sweet basil in South Africa. Plant Dis. 2006, 90, 1115. [Google Scholar] [CrossRef]
- Hu, B.; Li, Z.; Hu, M.; Sun, H.; Zheng, J.; Diao, Y. Outbreak of downy mildew caused by Peronospora belbahrii on Ocimum basilicum var. polosum in China. New Dis. Rep. 2018, 37, 1. [Google Scholar] [CrossRef]
- Kong, X.Y.; Wang, S.; Wan, S.L.; Xiao, C.L.; Luo, F.; Liu, Y. First report of downy mildew on basil (Ocimum basilicum) in China. Plant Dis. 2015, 99, 1642. [Google Scholar] [CrossRef]
- Khateri, H.; Calmin, G.; Moarrefzadeh, N.; Belbahri, L.; Lefort, F. First report of downy mildew caused by Peronospora sp. on basil in northern Iran. J. Plant Pathol. 2007, 89, S70. [Google Scholar]
- Cohen, Y.; Vaknin, M.; Ben-Naim, Y.; Rubin, A.E.; Galperin, M.; Silverman, D.; Bitton, S.; Adler, U. First report of the occurrence and resistance to mefenoxam of Peronospora belbahrii, causal agent of downy mildew of basil (Ocimum basilicum) in Israel. Plant Dis. 2013, 97, 692. [Google Scholar] [CrossRef]
- EPPO. Peronospora belbahrii, Distribution. EPPO Global Database. 2021. Available online: https://gd.eppo.int/taxon/PEROBE/distribution (accessed on 4 August 2025).
- Choi, Y.J.; Choi, I.Y.; Lee, K.J.; Shin, H.D. First report of downy mildew caused by Peronospora belbahrii on sweet basil (Ocimum basilicum) in Korea. Plant Dis. 2016, 100, 2335. [Google Scholar] [CrossRef]
- Chen, C.H.; Huang, J.H.; Hsieh, T.F. First report of Peronospora belbahrii causing downy mildew on basil. Plant Pathol. Bull. 2010, 19, 177–180. [Google Scholar]
- CABI; EPPO. Peronospora belbahrii [Distribution map]. In Distribution Maps of Plant Diseases, 1st ed.; CABI International: Wallingford, UK, 2015; p. Map 1177. Available online: https://www.cabidigitallibrary.org/doi/10.1079/DMPD/20153399811 (accessed on 4 August 2025).
- Hafellner, J. Der Falsche Mehltaupilz auf Basilikum nun auch in Österreich eingeschleppt. Fritschiana 2006, 54, 29–34. [Google Scholar]
- Coosemans, J. First report of Peronospora lamii, downy mildew on basil (Ocimum basilicum) in Belgium. Parasitica 2004, 60, 27. [Google Scholar]
- Novak, A.; Sever, Z.; Ivić, D.; Čajkulić, A.M. Plamenjača bosiljka (Peronospora belbahrii)—Destruktivna bolest u proizvodnji bosiljka. Glas. Biljn. Zaštite 2016, 16, 544–547. [Google Scholar]
- Kanetis, L.; Vasiliou, A.; Neophytou, G.; Samouel, S.; Tsaltas, D. First report of downy mildew caused by Peronospora belbahrii on sweet basil (Ocimum basilicum) in Cyprus. Plant Dis. 2014, 98, 283. [Google Scholar] [CrossRef]
- Šafránková, I.; Holková, L. The first report of downy mildew caused by Peronospora belbahrii on sweet basil in greenhouses in the Czech Republic. Plant Dis. 2014, 98, 1579. [Google Scholar] [CrossRef]
- Petrželová, I.; Kitner, M.; Doležalová, I.; Ondřej, V.; Lebeda, A. First report of basil downy mildew caused by Peronospora belbahrii in the Czech Republic. Plant Dis. 2015, 99, 418. [Google Scholar] [CrossRef]
- Garibaldi, A.; Minuto, A.; Gullino, M.L. First report of downy mildew caused by Peronospora sp. on basil (Ocimum basilicum) in France. Plant Dis. 2005, 89, 683. [Google Scholar] [CrossRef]
- Nagy, G.; Horváth, A. Occurrence of downy mildew caused by Peronospora belbahrii on sweet basil in Hungary. Plant Dis. 2011, 95, 1034. [Google Scholar] [CrossRef] [PubMed]
- Garibaldi, A.; Minuto, A.; Minuto, G.; Gullino, M.L. First report of downy mildew of basil (Ocimum basilicum) in Italy. Plant Dis. 2004, 88, 312. [Google Scholar] [CrossRef]
- Porta-Puglia, A.; Mifsud, D. First record of downy mildew caused by Peronospora sp. on basil in Malta. J. Plant Pathol. 2006, 88, 124. [Google Scholar]
- Gómez Tenorio, M.A.; Lupión Rodríguez, B.; Boix Ruiz, A.; Ruiz Olmos, C.; Moreno Díaz, A.; Marín Guirao, J.I. El mildiu: Nueva enfermedad de la albahaca en España. Phytoma Esp. 2016, 282, 48–52. [Google Scholar]
- Heller, W.; Baroffio, C. Le mildiou (Peronospora lamii) du basilic progresse! Gemüsebau/Maraîcher 2003, 8, 12–13. [Google Scholar]
- Webb, K.; Sansford, C.; MacLeod, A.; Matthews-Berry, S. Rapid Assessment of the Need for a Detailed Pest Risk Analysis for Peronospora belbahrii. UK Risk Register Details for Peronospora belbahrii. UK Plant Health Risk Register (DEFRA). 2012. Available online: https://planthealthportal.defra.gov.uk/pests-and-diseases/uk-plant-health-risk-register/downloadExternalPra.cfm?id=3901 (accessed on 3 August 2025).
- Saude, C.; Westerveld, S.; Filotas, M.; McDonald, M.R. First report of downy mildew caused by Peronospora belbahrii on basil (Ocimum spp.) in Ontario. Plant Dis. 2013, 97, 1248. [Google Scholar] [CrossRef]
- Joshi, V.; Jeffries, M.; Jesperson, G. Canadian Plant Disease Survey. Can. Plant Dis. Surv. 2013, 93, 7–32. [Google Scholar]
- Wyenandt, C.A.; Simon, J.E.; Pyne, R.M.; Homa, K.; McGrath, M.T.; Zhang, S.; Raid, R.N.; Ma, L.-J.; Wick, R.; Guo, L.; et al. Basil downy mildew (Peronospora belbahrii): Discoveries and challenges relative to its control. Phytopathology 2015, 105, 885–894. [Google Scholar] [CrossRef]
- Ronco, L.; Rollán, C.; Choi, Y.J.; Shin, H.D. Downy mildew of sweet basil (Ocimum basilicum) caused by Peronospora sp. in Argentina. Plant Pathol. 2009, 58, 395. [Google Scholar] [CrossRef]
- Silva, A.L.; Mansur, P.S.C.; Barreto, R.W.; Salcedo-Sarmiento, S. Peronospora belbahrii causes downy mildew on Ocimum basilicum in Brazil. Australas. Plant Dis. Notes 2019, 14, 37. [Google Scholar] [CrossRef]
- Martinez-de la Parte, E.; Perez-Vicente, L.; Bernal, B.; Garcia, D. First report of Peronospora sp. on sweet basil (Ocimum basilicum) in Cuba. Plant Pathol. 2010, 59, 800. [Google Scholar] [CrossRef]
- Koroch, A.R.; Villani, T.S.; Pyne, R.M.; Simon, J.E. Rapid staining method to detect and identify downy mildew (Peronospora belbahrii) in basil. Appl. Plant Sci. 2013, 1, 1300032. [Google Scholar] [CrossRef]
- Shao, D.; Tian, M. A qPCR approach to quantify the growth of basil downy mildew pathogen Peronospora belbahrii during infection. Curr. Plant Biol. 2018, 15, 2–7. [Google Scholar] [CrossRef]
- Wyenandt, C.A.; Maimone, L.R.; Homa, K.; Madeiras, A.M.; Wick, R.L.; Simon, J.E. Detection of the downy mildew pathogen on seed of basil following field infection in Southern New Jersey. HortTechnology 2018, 28, 637–641. [Google Scholar] [CrossRef]
- Standish, J.R.; Raid, R.N.; Pigg, S.; Quesada-Ocampo, L.M. A diagnostic guide for basil downy mildew. Plant Health Prog. 2020, 21, 77–81. [Google Scholar] [CrossRef]
- Pyne, R.M.; Koroch, A.R.; Wyenandt, C.A.; Simon, J.E. A rapid screening approach to identify resistance to basil downy mildew (Peronospora belbahrii). HortScience 2014, 49, 1041–1045. [Google Scholar] [CrossRef]
- McGrath, M.T. Efficacy of conventional fungicides for downy mildew in field-grown sweet basil in the United States. Plant Dis. 2020, 104, 2967–2972. [Google Scholar] [CrossRef]
- Cohen, Y.; Vaknin, M.; Ben-Naim, Y.; Rubin, A.E. Light suppresses sporulation and epidemics of Peronospora belbahrii. PLoS ONE 2013, 8, e81282. [Google Scholar] [CrossRef]
- Cohen, Y.; Vaknin, M.; Ben-Naim, Y.; Rubin, A.E. Nocturnal fanning suppresses downy mildew epidemics in sweet basil. PLoS ONE 2016, 11, e0155330. [Google Scholar] [CrossRef]
- Tinivella, F.; Hirata, L.M.; Celan, M.A.; Wright, A.I.; Amein, T.; Schmitt, A.; Koch, E.; Garibaldi, A.; Gullino, M.L. Control of seed-borne pathogens on legumes by microbial and other alternative seed treatments. Eur. J. Plant Pathol. 2009, 123, 139–151. [Google Scholar] [CrossRef]
- Gilardi, G.; Pintore, I.; Demarchi, S.; Gullino, M.L.; Garibaldi, A. Seed dressing to control downy mildew of basil. Phytoparasitica 2015, 44, 531–539. [Google Scholar] [CrossRef]
- Lopez-Reyes, J.G.; Gilardi, G.; Garibaldi, A.; Gullino, M.L. In vivo evaluation of essential oils and biocontrol agents combined with heat treatments on basil cv Genovese Gigante seeds against Fusarium oxysporum f. sp. basilici. Phytoparasitica 2016, 44, 35–45. [Google Scholar] [CrossRef]
- Omer, C.; Nisan, Z.; Rav-David, D.; Elad, Y. Effects of agronomic practices on the severity of sweet basil downy mildew (Peronospora belbahrii). Plants 2021, 10, 907. [Google Scholar] [CrossRef] [PubMed]
- La Placa, L.; Cornali, S.; Bertinara, F.; Rossetti, A.; Reggiani, R.; Battilani, P. Cropping system support downy mildew control in basil in organic farming: A two-year open field experiment. J. Plant Pathol. 2025, 107, 167–179. [Google Scholar] [CrossRef]
- Elad, Y.; Kleinman, Z.; Nisan, Z.; Rav-David, D.; Yermiyahu, U. Effects of calcium, magnesium and potassium on sweet basil downy mildew (Peronospora belbahrii). Agronomy 2021, 11, 688. [Google Scholar] [CrossRef]
- Elad, Y.; Nisan, Z.; Kleinman, Z.; Rav-David, D.; Yermiyahu, U. Effects of microelements on downy mildew (Peronospora belbahrii) of sweet basil. Plants 2021, 10, 1793. [Google Scholar] [CrossRef] [PubMed]
- Rav David, D.; Yermiyahu, U.; Fogel, M.; Faingold, I.; Elad, Y. Plant nutrition for management of white mold in sweet basil. Phytoparasitica 2019, 47, 99–115. [Google Scholar] [CrossRef]
- Yermiyahu, U.; Israeli, L.; Rav David, D.; Faingold, I.; Elad, Y. Higher potassium concentration in shoots reduces gray mold in sweet basil. Phytopathology 2015, 105, 1059–1068. [Google Scholar] [CrossRef][Green Version]
- Wyenandt, C.A.; Simon, J.E.; McGrath, M.T.; Ward, D.L. Susceptibility of basil cultivars and breeding lines to downy mildew (Peronospora belbahrii). HortScience 2010, 45, 1416–1419. [Google Scholar] [CrossRef]
- Farahani-Kofoet, R.D.; Römer, P.; Grosch, R. Selecting basil genotypes with resistance against downy mildew. Sci. Hortic. 2014, 179, 22–28. [Google Scholar] [CrossRef]
- Naim, B.Y.; Falach, L.; Cohen, Y. Resistance against basil downy mildew in Ocimum species. Phytopathology 2015, 105, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Homa, K.; Barney, W.P.; Ward, D.L.; Wyenandt, C.A.; Simon, J.E. Morphological characteristics and susceptibility of basil species and cultivars to Peronospora belbahrii. HortScience 2016, 51, 1389–1396. [Google Scholar] [CrossRef]
- Naim, B.Y.; Weitman, M. Joint action of Pb1 and Pb2 provides dominant complementary resistance against new races of Peronospora belbahrii (basil downy mildew). Phytopathology 2022, 112, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Pyne, R.M.; Koroch, A.R.; Wyenandt, C.A.; Simon, J.E. Inheritance of resistance to downy mildew in sweet basil. J. Am. Soc. Hortic. Sci. 2015, 140, 396–403. [Google Scholar] [CrossRef]
- Pyne, R.M.; Honig, J.; Vaiciunas, J.; Bonos, S.; Wyenandt, A.; Simon, J.E. A first genetic map and downy mildew resistance QTL discovery for sweet basil (Ocimum basilicum). PLoS ONE 2017, 12, e0184319. [Google Scholar] [CrossRef]
- Zhang, X.; Low, Y.C.; Lawton, M.A.; Simon, J.E.; Di, R. CRISPR-editing of sweet basil (Ocimum basilicum L.) homoserine kinase gene for improved downy mildew disease resistance. Front. Genome Ed. 2021, 3, 629769. [Google Scholar] [CrossRef]
- Naim, B.Y.; Falach, L.; Cohen, Y. Transfer of downy mildew resistance from wild basil (Ocimum americanum) to sweet basil (O. basilicum). Phytopathology 2018, 108, 114–123. [Google Scholar] [CrossRef]
- Patel, J.S.; Wyenandt, C.A.; McGrath, M.T. Effective downy mildew management in basil using resistant varieties, environment modifications, and fungicides. Plant Health Prog. 2021, 22, 226–234. [Google Scholar] [CrossRef]
- Thines, M.; Telle, S.; Ploch, S.; Runge, F. Identity of the downy mildew pathogens of basil, coleus, and sage with implications for quarantine measures. Fungal Biol. 2009, 113, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Thines, M.; Sharma, R.; Rodenburg, S.Y.; Gogleva, A.; Judelson, H.S.; Xia, X.; de Ridder, D. The genome of Peronospora belbahrii reveals high heterozygosity, a low number of canonical effectors and CT-rich promoter. Mol. Plant Microbe Interact. 2019, 33, 742–753. [Google Scholar] [CrossRef]
- Naim, B.Y.; Mattera, R.; Cohen, Y.; Wyenandt, A.C.; Simon, J.E. Predicting the resistance of basil entries to downy mildew based on their genetics, pathogen race, growth stage, and environmental conditions. Planta 2025, 262, 10. [Google Scholar] [CrossRef] [PubMed]
- Gullino, M.L.; Gilardi, G.; Garibaldi, A. Chemical control of downy mildew on lettuce and basil under greenhouse. Commun. Agric. Appl. Biol. Sci. 2009, 74, 933–940. [Google Scholar]
- Gilardi, G.; Demarchi, S.; Garibaldi, A.; Gullino, M.L. Management of downy mildew of sweet basil (Ocimum basilicum) caused by Peronospora belbahrii by means of resistance inducers, fungicides, biocontrol agents and natural products. Phytoparasitica 2013, 41, 59–72. [Google Scholar] [CrossRef]
- Homa, K.; Barney, W.P.; Ward, D.L.; Wyenandt, C.A.; Simon, J.E. Evaluation of fungicides for the control of Peronospora belbahrii on sweet basil in New Jersey. Plant Dis. 2014, 98, 1561–1566. [Google Scholar] [CrossRef]
- Margot, P.; Huggenberger, F.; Amrein, J.; Weiss, B. CGA 279202: A new broad-spectrum strobilurin fungicide. In Proceedings Brighlon Crop Proleclion Conference, Pests and Diseases; British CropProtection Council: Surrey, UK, 1998; pp. 375–382. [Google Scholar]
- Huggenberger, F.; Lamberth, C.; Iwanzik, W. Mandipropamid, a new fungicide against oomycete pathogens. In Proceedings of the BCPC International Congress, Glasgow, UK, 31 October–2 November 2005. [Google Scholar]
- Patel, J.S.; Costa de Novaes, M.I.; Zhang, S. Evaluation of the new compound oxathiapiprolin for control of downy mildew in basil. Plant Health Prog. 2015, 16, 165–172. [Google Scholar] [CrossRef]
- Patel, J.S.; Zhang, S.; de Novaes, M.I.C. Effect of plant age and acibenzolar-S-methyl on development of downy mildew of basil. HortScience 2014, 49, 1392–1396. [Google Scholar] [CrossRef]
- Pintore, I.; Gilardi, G.; Gullino, M.L.; Garibaldi, A. Detection of mefenoxam-resistant strains of Peronospora belbahrii, the causal agent of basil downy mildew, transmitted through infected seeds. Phytoparasitica 2016, 44, 563–569. [Google Scholar] [CrossRef]
- Bączek, K.; Kosakowska, O.; Gniewosz, M.; Gientka, I.; Węglarz, Z. Sweet basil (Ocimum basilicum L.) productivity and raw material quality from organic cultivation. Agronomy 2019, 9, 279. [Google Scholar] [CrossRef]
- Mersha, Z.; Zhang, S.; Raid, R.N. Evaluation of systemic acquired resistance inducers for control of downy mildew on basil. Crop Prot. 2012, 40, 83–90. [Google Scholar] [CrossRef]
- Guest, D.; Grant, B.R. The complex action of phosphonates as antifungal agents. Biol. Rev. 1991, 66, 159–187. [Google Scholar] [CrossRef]
- Mitchell, A.F.; Walters, D.R. Potassium phosphate induces systemic protection in barley to powdery mildew infection. Pest Manag. Sci. 2004, 60, 126–134. [Google Scholar] [CrossRef]
- McGrath, M.T.; LaMarsh, K.A. Evaluation of fungicides for managing downy mildew in basil, 2012. Plant Dis. Manag. Rep. 2013, 7, V015. [Google Scholar]
- Gullino, M.L.; Pugliese, M.; Garibaldi, A. Use of Silicon Amendments Against Foliar and Vascular Diseases of Vegetables Grown Soil-less. In Sustainable Crop Disease Management Using Natural Products; Ganesan, S., Vadivel, K., Jayaraman, J., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 293–306. [Google Scholar] [CrossRef]
- Paarlberg, A.; Babadoost, M. Evaluating effectiveness of selected compounds for control of downy mildew of basil in Momence, Illinois, 2021. Plant Dis. Manag. Rep. 2022, 16, V061. [Google Scholar] [CrossRef]
- Elad, Y.; Israeli, L.; Fogel, M.; Adler, U. Conditions influencing the development of sweet basil gray mold and cultural measures for disease management. Crop Prot. 2014, 64, 67–77. [Google Scholar] [CrossRef]
- McGrath, M.T. Efficacy of organic fungicides for downy mildew in field-grown sweet basil. Plant Dis. 2023, 107, 2467–2473. [Google Scholar] [CrossRef]
Continent/Country/Region (Year of First Report) | Reference |
---|---|
Africa | |
Benin (1998) | [53] |
Cameroon (2007) | [55] |
South Africa (2005) | [56] |
Tanzania (1960) | [52] |
Uganda (1933) | [48] |
Asia and Oceania | |
China: | |
- Beijing (2016) | [57] |
- Hainan (2014) | [58] |
Iran (2006) | [59] |
Israel (2011) | [60] |
Japan (2007) | [61] |
South Korea (2015) | [62] |
Taiwan (2009) | [63] |
New Zealand (2005) | [64] |
Europe | |
Austria (2005) | [65] |
Belgium (2004) | [66] |
Croatia (2012) | [67] |
Cyprus (2012) | [68] |
The Czech Republic (2012) | [69,70] |
France (2004) | [71] |
Germany (2005) | [51] |
Hungary (2003) | [72] |
Italy (2003) | [73] |
Malta (2005) | [74] |
Spain (2016) | [75] |
Switzerland (2001) | [76] |
The United Kingdom (2005) | [77] |
North America | |
Canada (2011): | [78] |
- British Columbia (2011) | [79] |
- Ontario (2011) | [78] |
- Quebec (2011) | [79] |
The United States: | |
- Florida (2007) - Arkansas, California, Connecticut, Delaware, District of Columbia, Kansas, Massachusetts, New Jersey, New York, North Carolina, North Dakota (2008) - Alabama, Illinois, Indiana, Louisiana, Maryland, Pennsylvania, South Carolina, Texas, Vermont, Wisconsin (2009) - Hawaii, Kentucky, Michigan, Montana, Ohio, Virginia (2010) - Alaska, Minnesota, Washington (2011) - Colorado, Maine, Missouri, New Hampshire, Oregon, Rhode Island, West Virginia (2012) - New Mexico, Tennessee (2013) - Iowa, Nebraska (2014) | [80] |
- Mississippi, Oklahoma (2016) | [32] |
Mexico (2009) | [64] |
Central and South America | |
Argentina (2008) | [81] |
Brazil (2017) | [82] |
Cuba (2009) | [83] |
Name of the Cultivar | Origin/Seed Company | Degree of Resistance | References |
---|---|---|---|
Amazel | University of Florida | 100% | [3] |
Eleonora | Enza Zaden | 26 and 34% control | [3] |
Prospera Plus | Genesis Seeds | 100% | [3] |
Prospera | Genesis Seeds | 60% | [96] |
Devotion, Obsession, Passion, Thunderstruck | Rutgers DMR | 46–99% control | [3] |
Fungicide (No. of Applications) 1 | Salt (No. of Applications) | Interval Between Sprays (Days) | Total No. Sprays | % of the Infected Leaf Area | |||
---|---|---|---|---|---|---|---|
Inoculated untreated control 2 | - | - | - | 28.8 | ±3.5 | h 3 | E% |
Pyraclostrobin + dimethomorph (1) | Calcium oxide (4) | 3 | 5 | 1.8 | ±0.5 | a | 93.9 |
Fluopicolide (1) | Calcium oxide (4) | 3 | 5 | 5.7 | ±1.1 | ab | 80.4 |
Mandipropamid (1) | Calcium oxide (4) | 3 | 5 | 4.5 | ±0.9 | ab | 84.3 |
Pyraclostrobin + dimethomorph (1) | Calcium oxide (2) | 6 | 3 | 3.6 | ±0.7 | ab | 87.6 |
Fluopicolide (1) | Calcium oxide (2) | 6 | 3 | 10.8 | ±0.7 | b–f | 62.4 |
Mandipropamid (1) | Calcium oxide (2) | 6 | 3 | 9.2 | ±1.8 | a–d | 68.1 |
Pyraclostrobin + dimethomorph (1) | Potassium phosphite (2) | 6 | 3 | 6.5 | ±0.9 | ab | 77.5 |
Fluopicolide (1) | Potassium phosphite (2) | 6 | 3 | 9.4 | ±1.4 | b–e | 67.2 |
Mandipropamid (1) | Potassium phosphite (2) | 6 | 3 | 7.9 | ±2.0 | a–c | 72.7 |
Calcium oxide (5) | 3 | 5 | 7.5 | ±1.4 | a–c | 73.9 | |
Calcium oxide (3) | 6 | 3 | 14.8 | ±1.6 | c–g | 48.4 | |
Potassium phosphite (3) | 6 | 3 | 16.9 | ±1.1 | e–g | 41.2 | |
Copper sulphite (3) | - | 6 | 3 | 20.3 | ±1.1 | g | 29.5 |
Pyraclostrobin + dimethomorph (1) | - | - | 1 | 6.0 | ±1.1 | ab | 79.2 |
Fluopicolide (1) | - | - | 1 | 17.1 | ±1.5 | fg | 40.4 |
Mandipropamid (1) | - | - | 1 | 16.1 | ±1.5 | d–g | 44.2 |
Pyraclostrobin + dimethomorph (1); fluopicolide (1); mandipropamid (1) | - | 6 | 3 | 1.7 | ±0.7 | a | 94.2 |
Non-inoculated untreated control | - | - | - | 7.4 | ±1.6 | a–c | 74.3 |
Active Ingredient | Commercial Product | Dosage (g a.i./100 L) 1 | Efficacy on the Day After the Last Treatment (DAT) in Three Trials | ||
---|---|---|---|---|---|
DAT15 (Trial 1) | DAT13 (Trial 2) | DAT15 (Trial 3) | |||
- | Inoculated control 2 | - | - | ||
Copper oxychloride | Cupravit flow | 50 | 78.4 | 42.1 | 42.1 |
Copper oxychloride + copper hydroxide | Airone | 40 + 40 | 89.1 | 77.2 | 77.2 |
Acibenzolar-S-methyl | Bion | 1 | 97.6 | 89.9 | 89.9 |
Organic mineral fertilizer N:K | Kendal | 10.5 + 45 | 45.6 | 47.2 | 47.2 |
Mineral fertilizer: Cu + Mn + Zn | Kendal TE | 46 + 1.5 + 1.5 | 90.6 | 71.1 | 71.1 |
Prohexadione-Ca | Regalis | 5 | 83.9 | 65.7 | 65.7 |
Thyme oil extract | Tyme oil | 100 | 30.4 | 30.1 | 30.1 |
Bacillus subtilis QST713 | Serenade | 58.4 | 84.5 | 51.1 | 51.1 |
Glucohumate activator complex z | Glucoinductor | 400 | 39.2 | 44.7 | 44.7 |
Copper sulphate + copper gluconate | Labimethyl | 9 + 6 | 100.0 | 89.6 | 89.6 |
Copper hydroxide and terpenic alcohols | Heliocuivre | 60 | 91.8 | 42.1 | 42.1 |
Copper sulfate | Cuproxat | 53.2 | 98.8 | 80.9 | 80.9 |
Mineral fertilizer P2O5 52%, K2O 42% | Alexin | 130 + 105 | 91.5 | 59.6 | 59.6 |
Metalaxyl-M + copper hydroxide | Ridomil Gold R | 7.5+ 120 | 100.0 | 87.1 | 87.1 |
Mandipropamid | Pergado | 11.7 | 100.0 | 100.0 | 100.0 |
Azoxystrobin | Ortiva | 18.6 | 100.0 | 100.0 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pugliese, M.; Gilardi, G.; Garibaldi, A.; Gullino, M.L. Basil Downy Mildew (Peronospora belbahrii): A Major Threat to Ocimum basilicum L. Production. Agriculture 2025, 15, 1999. https://doi.org/10.3390/agriculture15191999
Pugliese M, Gilardi G, Garibaldi A, Gullino ML. Basil Downy Mildew (Peronospora belbahrii): A Major Threat to Ocimum basilicum L. Production. Agriculture. 2025; 15(19):1999. https://doi.org/10.3390/agriculture15191999
Chicago/Turabian StylePugliese, Massimo, Giovanna Gilardi, Angelo Garibaldi, and Maria Lodovica Gullino. 2025. "Basil Downy Mildew (Peronospora belbahrii): A Major Threat to Ocimum basilicum L. Production" Agriculture 15, no. 19: 1999. https://doi.org/10.3390/agriculture15191999
APA StylePugliese, M., Gilardi, G., Garibaldi, A., & Gullino, M. L. (2025). Basil Downy Mildew (Peronospora belbahrii): A Major Threat to Ocimum basilicum L. Production. Agriculture, 15(19), 1999. https://doi.org/10.3390/agriculture15191999