Molecular Identification, Pathogenicity, and Fungicide Sensitivity of Sclerotinia spp. Isolates Associated with Sclerotinia Stem Rot in Rapeseed in Germany
Abstract
1. Introduction
2. Materials and Methods
2.1. DNA Extraction and Molecular Identification of S. sclerotiorum and S. subarctica
2.2. Pathogenicity and Aggressiveness Test
2.3. Fungicide Sensitivity Evaluation
Mycelium Growth Inhibition Test
2.4. Statistical Analysis
3. Results
3.1. Molecular Identification and Characterization of Sclerotinia spp. Isolates
3.2. Pathogenicity and Aggressiveness Assessment Results
3.3. Evaluation of Fungicidal Effects on Mycelial Growth
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ITS | Internal transcribed spacer |
BBCH | Biologische Bundesanstalt, Bundessortenamt and CHemical industry |
EC50 | Half maximal effective concentration |
EFSA | European Food Safety Authority |
RNA | Ribonucleic acid |
DNA | Deoxyribonucleic acid |
PCR | Polymerase chain reaction |
bp | Base pairs |
dpi | Days post infection |
References
- Zamani-Noor, N. Baseline sensitivity and control efficacy of various group of fungicides against Sclerotinia sclerotiorum in oilseed rape cultivation. Agronomy 2021, 11, 1758. [Google Scholar] [CrossRef]
- BMLEH. Winterrapsernte: Endgültige Ergebnisse der Rapsernte 2024. Available online: https://www.bmel-statistik.de/landwirtschaft/ernte-und-qualitaet/winterrapsernte (accessed on 22 July 2025).
- Ben-Yephet, Y.; Reuven, M.; Mor, Y. Selection methods for determining resistance of carnation cultivars to Fusarium oxysporum f.sp. dianthi. Plant Pathol. 1993, 42, 517–521. [Google Scholar] [CrossRef]
- Reich, J.; Chatterton, S. Predicting field diseases caused by Sclerotinia sclerotiorum: A review. Plant Pathol. 2023, 72, 3–18. [Google Scholar] [CrossRef]
- Derbyshire, M.C.; Denton-Giles, M. The control of sclerotinia stem rot on oilseed rape (Brassica napus): Current practices and future opportunities. Plant Pathol. 2016, 65, 859–877. [Google Scholar] [CrossRef]
- Zamani-Noor, N.; Klocke, B.; Dominic, A.R.; Brand, S.; Wüsthoff, N.; Papenbrock, J. In-vivo and in-vitro investigation of germination rate of buried sclerotia, and variability in carpogenic germination among Sclerotinia sclerotiorum isolates. Agriculture 2024, 14, 1939. [Google Scholar] [CrossRef]
- Wu, B.M.; Subbarao, K.V.; Liu, Y.-B. Comparative survival of sclerotia of Sclerotinia minor and S. sclerotiorum. Phytopathology 2008, 98, 659–665. [Google Scholar] [CrossRef]
- Chaudhary, S.; Lal, M.; Sagar, S.; Tyagi, H.; Kumar, M.; Sharma, S.; Chakrabarti, S.K. Genetic diversity studies based on morpho-pathological and molecular variability of the Sclerotinia sclerotiorum population infecting potato (Solanum tuberosum L.). World J. Microbiol. Biotechnol. 2020, 36, 177. [Google Scholar] [CrossRef] [PubMed]
- Faruk, M.I.; Rahman, M.M.E. Collection, isolation and characterization of Sclerotinia sclerotiorum, an emerging fungal pathogen causing white mold disease. J. Plant Sci. Phytopathol. 2022, 6, 43–51. [Google Scholar] [CrossRef]
- Zamani-Noor, N.; Brand, S.; Wüsthoff, N.; Klocke, B.; Papenbrock, J. Diversity in morphological traits, cultural characteristics, and virulence of Sclerotinia sclerotiorum isolates in oilseed rape in Germany. J. Crop Health 2025, 77, 49. [Google Scholar] [CrossRef]
- Zamani-Noor, N.; Brand, S.; Noshin, F.; Söchting, H.-P. Variation in pathogenicity and subsequent production of sclerotia of Sclerotinia sclerotiorum isolates in different cover crops, flower strips, and weeds. Plant Dis. 2024, 108, 1688–1694. [Google Scholar] [CrossRef] [PubMed]
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Heß, M.; Lancashire, P.D.; Schnock, U.; Stauß, R.; van den Boom, T.; et al. The BBCH system to coding the phenological growth stages of plants—History and publications. J. Cult. Plants. 2009, 61, 41–52. [Google Scholar] [CrossRef]
- FRAC. FRAC Mode of Action Groups for Recommendations. Available online: https://www.frac.info/fungicide-resistance-management/by-frac-mode-of-action-group/ (accessed on 13 July 2025).
- Avenot, H.F.; Michailides, T.J. Resistance to boscalid fungicide in Alternaria alternata isolates from pistachio in California. Plant. Dis. 2007, 91, 1345–1350. [Google Scholar] [CrossRef]
- Stammler, G.; Speakman, J. Microtiter method to test the sensitivity of Botrytis cinerea to boscalid. J. Phytopathol. 2006, 154, 508–510. [Google Scholar] [CrossRef]
- Stammler, G.; Benzinger, G.; Speakman, J. A rapid and reliable method for monitoring the sensitivity of Sclerotinia sclerotiorum to boscalid. J. Phytopathol. 2007, 155, 746–748. [Google Scholar] [CrossRef]
- Pan, Y.L.; Zhu, G.M.; Guo, J.; Xiao, T.; Gu, B.C. Sensitivity of Sclerotinia sclerotiorum to boscalid and its correlation with other diverse fungicides. Southwest China J. Agric. Sci 2012, 25, 507–512. [Google Scholar]
- Liu, S.; Fu, L.; Hai, F.; Jiang, J.; Che, Z.; Tian, Y.; Chen, G. Sensitivity to boscalid in field isolates of Sclerotinia sclerotiorum from rapeseed in Henan Province, China. J. Phytopathol. 2018, 166, 227–232. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, J.; Zhang, Y.; He, S.; Zhu, F. Baseline sensitivity and toxic actions of boscalid against Sclerotinia sclerotiorum. Crop Prot. 2018, 110, 83–90. [Google Scholar] [CrossRef]
- Xu, C.; Hou, Y.; Wang, J.; Yang, G.; Liang, X.; Zhou, M. Activity of a novel strobilurin fungicide benzothiostrobin against Sclerotinia sclerotiorum. Pestic. Biochemist. Physiol. 2014, 115, 32–38. [Google Scholar] [CrossRef]
- Tóthová, M.; Hudec, K.; Tóth, P. Sensitivity of Sclerotinia sclerotiorum to strobilurin fungicides in Slovakia. Plant Prot. Sci. 2020, 56, 13–17. [Google Scholar] [CrossRef]
- Hoist-Jensen, A.; Vaage, M.; Schumacher, T. An approximation to the phylogeny of Sclerotinia and related genera. Nord. J. Bot. 1998, 18, 705–719. [Google Scholar] [CrossRef]
- Clarkson, J.P.; Carter, H.E.; Coventry, E. First report of Sclerotinia subarctica nom. prov. (Sclerotinia species 1) in the UK on Ranunculus acris. Plant Pathol. 2010, 59, 1173. [Google Scholar] [CrossRef]
- Clarkson, J.P.; Warmington, R.J.; Walley, P.G.; Denton-Giles, M.; Barbetti, M.J.; Brodal, G.; Nordskog, B. Population structure of Sclerotinia subarctica and Sclerotinia sclerotiorum in England, Scotland and Norway. Front. Microbiol. 2017, 8, 490. [Google Scholar] [CrossRef] [PubMed]
- Brodal, G.; Warmington, R.; Grieu, C.; Ficke, A.; Clarkson, J.P. First report of Sclerotinia subarctica nom. prov. (Sclerotinia sp. 1) causing stem rot on turnip rape (Brassica rapa subsp. oleifera) in Norway. Plant Dis. 2017, 101, 386. [Google Scholar] [CrossRef]
- Winton, L.M.; Krohn, A.L.; Leiner, R.H. Genetic diversity of Sclerotinia species from Alaskan vegetable crops. Can. J. Plant. Pathol. 2006, 28, 426–434. [Google Scholar] [CrossRef]
- Sayers, E.W.; Beck, J.; Bolton, E.E.; Brister, J.R.; Chan, J.; Connor, R.; Feldgarden, M.; Fine, A.M.; Funk, K.; Hoffman, J.; et al. Database resources of the National Center for Biotechnology Information in 2025. Nucleic Acids Res. 2025, 53, D20–D29. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Posit Team. RStudio: Integrated Development Environment for R; Posit Software; PBC: Boston, MA, USA, 2025. [Google Scholar]
- Tabussum, L. Exploring the Diversity and Distribution of Sclerotinia sclerotiorum in Oilseed Rape Through Molecular Techniques. Master’s Thesis, University of Skövde, Skövde, Sweden, 2023. [Google Scholar]
- Clarkson, J.P.; Fawcett, L.; Anthony, S.G.; Young, C. A model for Sclerotinia sclerotiorum infection and disease development in lettuce, based on the effects of temperature, relative humidity and ascospore density. PLoS ONE 2014, 9, e94049. [Google Scholar] [CrossRef]
- Ficke, A.; Grieu, C.; Brurberg, M.B.; Brodal, G. The role of precipitation, and petal and leaf infections in Sclerotinia stem rot of spring oilseed Brassica crops in Norway. Eur. J. Plant Pathol. 2018, 152, 885–900. [Google Scholar] [CrossRef]
- Zamani-Noor, N.; Jedryczka, M. Inoculum and inoculation techniques: Key steps in studying pathogenicity and resistance to Sclerotinia stem rot in oilseed rape. Front. Plant Sci. 2025, 16, 1610049. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Smyth, F.; Barbetti, M.J.; Sivasithamparam, K. Relationship between Brassica napus seedling and adult plant responses to Leptosphaeria maculans is determined by plant growth stage at inoculation and temperature regime. Field Crops Res. 2006, 96, 428–437. [Google Scholar] [CrossRef]
- Kamvar, Z.N.; Amaradasa, B.S.; Jhala, R.; McCoy, S.; Steadman, J.R.; Everhart, S.E. Population structure and phenotypic variation of Sclerotinia sclerotiorum from dry bean (Phaseolus vulgaris) in the United States. PeerJ 2017, 5, e4152. [Google Scholar] [CrossRef]
- Otto-Hanson, L.; Steadman, J.R.; Higgins, R.; Eskridge, K.M. Variation in Sclerotinia sclerotiorum bean isolates from multisite resistance screening locations. Plant Dis. 2011, 95, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Attanayake, R.N.; Carter, P.A.; Jiang, D.; Del Río-Mendoza, L.; Chen, W. Sclerotinia sclerotiorum populations infecting canola from China and the United States are genetically and phenotypically distinct. Phytopathology 2013, 103, 750–761. [Google Scholar] [CrossRef] [PubMed]
- Aldrich-Wolfe, L.; Travers, S.; Nelson, B.D., Jr. Genetic variation of Sclerotinia sclerotiorum from multiple crops in the North Central United States. PLoS ONE 2015, 10, e0139188. [Google Scholar] [CrossRef]
- Lehner, M.S.; de Paula Júnior, T.J.; Del Ponte, E.M.; Mizubuti, E.S.G.; Pethybridge, S.J. Independently founded populations of Sclerotinia sclerotiorum from a tropical and a temperate region have similar genetic structure. PLoS ONE 2017, 12, e0173915. [Google Scholar] [CrossRef] [PubMed]
- Poudel, R.S.; Belay, K.; Nelson, B., Jr.; Brueggeman, R.; Underwood, W. Population and genome-wide association studies of Sclerotinia sclerotiorum isolates collected from diverse host plants throughout the United States. Front. Microbiol. 2023, 14, 1251003. [Google Scholar] [CrossRef]
- Gambhir, N.; Kamvar, Z.N.; Higgins, R.; Amaradasa, B.S.; Everhart, S.E. Spontaneous and fungicide-induced genomic variation in Sclerotinia sclerotiorum. Phytopathology 2021, 111, 160–169. [Google Scholar] [CrossRef]
- Álvarez, F.; Arena, M.; Auteri, D.; Leite, S.B.; Binaglia, M.; Castoldi, A.F.; Chiusolo, A.; Colagiorgi, A.; Colas, M.; Crivellente, F.; et al. Peer review of the pesticide risk assessment of the active substance fludioxonil. EFSA J. 2024, 22, e9047. [Google Scholar] [CrossRef]
- Jørgensen, L.N.; Heick, T.M. Azole use in agriculture, horticulture, and wood preservation—Is it indispensable? Front. Cell. Infect. Microbiol. 2021, 11, 730297. [Google Scholar] [CrossRef]
- Cools, H.J.; Fraaije, B.A. Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control. Pest Manag. Sci. 2013, 69, 150–155. [Google Scholar] [CrossRef]
- Blake, J.J.; Gosling, P.; Fraaije, B.A.; Burnett, F.J.; Knight, S.M.; Kildea, S.; Paveley, N.D. Changes in field dose-response curves for demethylation inhibitor (DMI) and quinone outside inhibitor (QoI) fungicides against Zymoseptoria tritici, related to laboratory sensitivity phenotyping and genotyping assays. Pest Manag. Sci. 2018, 74, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Fountaine, J.M.; Fraaije, B.A. Development of QoI Resistant Alleles in Populations of Ramularia Collo-Cygni; Fountaine, J.M., Fraaije, B.A., Eds.; The Second European Ramularia Workshop: Edinburgh, Scotland, 2009. [Google Scholar]
Commercial Product | Active Substance (a.s.) | a.s. Content | Mode of Action a | Formulation b | Manufacturer | Location |
---|---|---|---|---|---|---|
Amistar | azoxystrobin | 250 gL−1 | QoI | SC | Syngenta Agro | Maintal, Germany |
Cantus | boscalid | 500 g kg−1 | SDHI | WDG | BASF SE | Ludwigshafen, Germany |
Caramba | metconazole | 60 g L−1 | DMI | EC | BASF SE | Ludwigshafen Germany |
Geoxe | fludioxonil | 500 g kg−1 | Inhibitor of MAP | WDG | Syngenta Agro | Maintal, Germany |
Orius | tebuconazole | 250 g L−1 | DMI | EC | Nufarm Deutschland | Köln, Germany |
Proline | prothioconazole | 250 g L−1 | DMI | EC | Bayer Crop Science | Monheim, Ger-many |
Revystar | mefentrifluconazole | 100 g L−1 | DMI | EC | BASF SE | Ludwigshafen, Germany |
Independent Variables | d.f. | F-Value | p |
---|---|---|---|
Isolate | 61 | 15.63 | 0.001 * |
Cultivar | 4 | 38.21 | 0.002 * |
Isolate × Cultivar | 244 | 12.34 | 0.041 * |
Isolate No. | Relative Stem Lesion Length (%) ± SD | ||||||
---|---|---|---|---|---|---|---|
Winter Rapeseed Cultivars | |||||||
Avatar | Bender | Crocodile | Kicker | PT303 | Mean | ||
Scl 001/20 | 16.5 ± 3.6 | 13.6 ± 8.3 | 13.6 ± 8.9 | 13.8 ± 5.4 | 15.5 ± 3.6 | 14.6 ± 5.9 | bcd |
Scl 002/20 | 19.4 ± 3.1 | 17.1 ± 3.7 | 10.3 ± 0.4 | 11.0 ± 2.7 | 13.7 ± 3.8 | 14.3 ± 2.8 | bc |
Scl 003/20 | 4.0 ± 2.4 | 4.2 ± 0.7 | 14.1 ± 1.8 | 12.9 ± 0.8 | 5.3 ± 2.2 | 8.1 ± 1.5 | a |
Scl 004/20 | 9.9 ± 5.3 | 13.0 ± 7.7 | 9.1 ± 4.3 | 16.1 ± 3.1 | 9.6 ± 2.9 | 11.5 ± 6.4 | abc |
Scl 005/20 | 21.9 ± 4.1 | 14.8 ± 4.8 | 17.4 ± 2.04 | 17.4 ± 5.9 | 17.2 ± 7.5 | 17.8 ± 4.6 | ef |
Scl 006/20 | 17.4 ±8.8 | 15.9 ± 5.7 | 19.5 ± 2.3 | 23.4 ± 7.7 | 16.7 ± 8.8 | 18.6 ± 6.7 | fg |
Scl 007/20 | 10.1 ± 7.4 | 8.2 ± 6.8 | 9.3 ± 5.5 | 10.1 ± 8.1 | 8.7 ± 5.9 | 9.3 ± 6.7 | ab |
Scl 008/20 | 18.3 ± 8.4 | 17.3 ± 8.6 | 21.9 ± 6.5 | 17.5 ± 5.4 | 14.9 ± 2.8 | 18.0 ± 6.3 | f |
Scl 009/20 | 28.0 ± 8.2 | 15.7 ± 9.9 | 12.6 ± 2.3 | 9.5 ± 5.4 | 8.6 ± 7.2 | 14.9 ± 6.6 | bcd |
Scl 010/20 | 28.3 ± 2.0 | 21.5 ± 5.5 | 9.6 ± 2.9 | 15.9 ± 5.5 | 13.1 ± 1.0 | 17.7 ± 3.4 | ef |
Scl 011/20 | 14.0 ± 7.7 | 19.6 ± 9.7 | 11.4 ± 3.7 | 12.5 ± 8.4 | 16.6 ± 8.8 | 14.8 ± 7.7 | bcd |
Scl 012/20 | 16.9 ± 1.4 | 16.5 ± 1.4 | 15.9 ± 2.8 | 15.8 ± 1.1 | 6.0 ± 1.6 | 14.2 ± 1.7 | bc |
Scl 013/20 | 14.0 ± 6.8 | 20.2 ± 3.2 | 13.4 ± 4.0 | 18.1 ± 3.6 | 15.0 ± 5.0 | 16.1 ± 4.5 | d |
Scl 014/20 | 19.3 ± 8.4 | 14.5 ± 1.1 | 14.6 ± 6.8 | 10.0 ± 3.9 | 9.5 ± 3.5 | 13.6 ± 4.7 | b |
Scl 015/20 | 10.4 ± 6.9 | 14.3 ± 3.8 | 14.6 ± 8.3 | 5.3 ± 2.6 | 11.9 ± 5.9 | 11.3 ± 5.5 | abc |
Scl 016/20 | 16.4 ± 6.3 | 13.8 ± 5.1 | 13.3 ± 2.8 | 14.4 ± 3.2 | 12.4 ± 4.9 | 14.1 ± 4.5 | bc |
Scl 017/20 | 16.2 ± 8.5 | 12.7 ± 4.5 | 19.8 ± 7.6 | 11.0 ± 2.4 | 17.1 ± 10.1 | 15.4 ± 6.6 | bcd |
Scl 018/20 | 27.9 ± 11.8 | 25.0 ± 7.5 | 27.1 ± 9.7 | 26.3 ± 3.7 | 21.3 ± 5.7 | 25.5 ± 7.7 | lm |
Scl 019/20 | 26.4 ± 6.6 | 17.6 ± 3.9 | 13.9 ± 8.5 | 14.0 ± 6.3 | 8.9 ± 7.5 | 16.1 ± 6.6 | d |
Scl 020/20 | 17.4 ± 9.9 | 17.8 ± 4.2 | 19.9 ± 5.3 | 12.8 ± 4.5 | 14.5 ± 2.6 | 16.5 ± 5.3 | de |
Scl 021/20 | 18.9 ± 5.5 | 15.8 ± 2.9 | 11.3 ± 6.2 | 18.2 ± 3.0 | 8.3 ± 3.8 | 14.5 ± 4.3 | bcd |
Scl 022/20 | 28.3 ± 11.9 | 15.5 ± 10.4 | 18.9 ± 16.1 | 20.5 ± 14.6 | 12.6 ± 6.9 | 19.1 ± 12.0 | g |
Scl 023/20 | 19.7 ± 7.1 | 18.3 ± 12.1 | 24.7 ± 6.0 | 11.9 ± 10.2 | 19.2 ± 13.4 | 18.8 ± 12.0 | fg |
Scl 024/20 | 18.2 ± 11.4 | 13.6 ± 16.5 | 18.9 ± 1.8 | 17.7 ± 8.1 | 7.4 ± 9.6 | 15.2 ± 9.0 | c |
Scl 025/20 | 18.6 ± 6.4 | 14.2 ± 8.7 | 13.8 ± 5.7 | 17.2 ± 5.7 | 16.6 ± 9.6 | 16.1 ± 7.2 | d |
Scl 026/20 | 25.8 ± 8.5 | 12.2 ± 10.2 | 18.7 ± 5.8 | 15.0 ± 5.3 | 13.8 ± 4.3 | 17.1 ± 6.8 | e |
Scl 027/20 | 25.0 ± 5.2 | 15.9 ± 13.0 | 17.7 ± 7.6 | 14.2 ± 11.8 | 10.1 ± 4.1 | 16.6 ± 8.4 | de |
Scl 028/20 | 27.5 ± 5.4 | 14.3 ± 13.9 | 22.5 ± 7.5 | 20.1 ± 11.2 | 11.8 ± 6.4 | 19.2 ± 8.4 | g |
Scl 029/20 | 16.1 ± 15.0 | 19.5 ± 6.2 | 25.8 ± 18.3 | 26.0 ± 13.9 | 12.6 ± 5.6 | 20.0 ± 11.8 | h |
Scl 030/20 | 19.6 ± 10.2 | 16.3 ± 5.9 | 17.4 ± 11.2 | 12.7 ± 8.8 | 12.1 ± 6.1 | 15.6 ± 8.4 | cd |
Scl 033/20 | 19.0 ± 5.5 | 16.5 ± 5.2 | 14.1 ± 10.5 | 22.7 ± 9.5 | 14.3 ± 6.2 | 17.3 ± 7.4 | e |
Scl 034/20 | 18.0 ± 6.5 | 23.8 ± 10.8 | 17.2 ± 7.3 | 25.0 ± 5.2 | 13.7 ± 10.0 | 19.5 ± 8.0 | gh |
Scl 035/20 | 15.2 ± 3.1 | 22.6 ± 11.7 | 18.1 ± 8.6 | 16.6 ± 6.6 | 12.5 ± 5.8 | 17.0 ± 7.2 | e |
Scl 036/20 | 15.5 ± 9.5 | 25.0 ± 20.0 | 23.1 ± 7.2 | 22.8 ± 10.1 | 18.3 ± 7.6 | 20.9 ± 10.9 | i |
Scl 037/20 | 21.3 ± 5.6 | 25.6 ± 6.5 | 20.4 ± 12.0 | 22.7 ± 4.9 | 21.0 ± 8.6 | 22.2 ± 7.5 | k |
Scl 038/20 | 26.2 ± 10.5 | 19.2 ± 8.4 | 22.3 ± 6.5 | 15.2 ± 3.6 | 18.6 ± 4.5 | 20.3 ± 6.7 | hi |
Scl 039/20 | 18.4 ± 6.2 | 22.2 ± 8.5 | 24.3 ± 8.2 | 23.0 ± 7.6 | 19.7 ± 6.5 | 21.5 ± 7.4 | j |
Scl 040/20 | 24.1 ± 12.4 | 24.5 ± 7.4 | 21.8 ± 8.3 | 21.6 ± 10.4 | 22.0 ± 6.7 | 22.8 ± 9.0 | l |
Scl 041/20 | 17.2 ± 5.8 | 22.4 ± 5.2 | 14.0 ± 7.5 | 19.1 ± 11.9 | 18.4 ± 5.3 | 18.2 ± 7.1 | f |
Scl 001/21 | 13.8 ± 4.7 | 12.1 ± 2.8 | 17.5 ± 7.9 | 8.3 ± 4.3 | 10.3 ± 2.4 | 12.4 ± 4.4 | abcd |
Scl 002/21 | 14.9 ± 5.5 | 9.4 ± 3.4 | 17.4 ± 6.8 | 10.5 ± 3.1 | 9.6 ± 3.0 | 12.4 ± 4.4 | abcd |
Scl 003/21 | 15.5 ± 5.8 | 10.8 ± 4.3 | 15.1 ± 5.4 | 14.6 ± 5.2 | 10.8 ± 4.1 | 13.4 ± 5.0 | b |
Scl 004/21 | 16.1 ± 6.1 | 12.2 ± 5.2 | 12.7 ± 4.0 | 18.7 ± 7.4 | 11.9 ± 5.2 | 14.3 ± 5.6 | bc |
Scl 005/21 | 17.6 ± 7.3 | 18.9 ± 2.4 | 15.2 ± 2.2 | 12.7 ± 5.5 | 13.7 ± 4.9 | 15.6 ± 4.4 | cd |
Scl 006/21 | 13.9 ± 5.4 | 10.2 ± 4.2 | 14.5 ± 3.8 | 13.4 ± 7.4 | 10.3 ± 2.8 | 12.4 ± 4.7 | abcd |
Scl 007/21 | 14.2 ± 6.1 | 7.9 ± 5.6 | 15.0 ± 6.4 | 18.0 ± 3.6 | 10.7 ± 8.4 | 13.2 ± 6.0 | b |
Scl 008/21 | 20.6 ± 10.4 | 16.5 ± 4.1 | 24.3 ± 10.3 | 18.0 ± 3.9 | 16.2 ± 6.0 | 19.1 ± 6.9 | g |
Scl 009/21 | 15.5 ± 5.0 | 10.7 ± 8.3 | 19.5 ± 6.1 | 15.5 ± 4.0 | 12.9 ± 4.5 | 14.8 ± 5.6 | bcd |
Scl 010/21 | 16.5 ± 8.5 | 9.3 ± 6.4 | 16.0 ± 1.8 | 19.7 ± 3.9 | 10.1 ± 5.2 | 14.3 ± 5.2 | bc |
Scl 011/21 | 16.1 ± 4.6 | 16.7 ± 6.0 | 24.9 ± 10.9 | 15.9 ± 3.6 | 15.1 ± 8.0 | 17.7 ± 6.6 | ef |
Scl 012/21 | 18.0 ± 5.6 | 14.1 ± 6.7 | 16.7 ± 5.8 | 11.0 ± 2.4 | 16.3 ± 5.1 | 15.2 ± 5.1 | c |
Scl 013/21 | 15.5 ± 3.7 | 14.3 ± 4.1 | 18.1 ± 6.4 | 14.5 ± 7.2 | 12.6 ± 5.0 | 15.0 ± 5.3 | c |
Scl 014/21 | 17.5 ± 7.2 | 16.3 ± 5.0 | 15.6 ± 9.2 | 15.2 ± 7.4 | 10.4 ± 2.8 | 15.0 ± 6.3 | c |
Scl 015/21 | 11.7 ± 3.3 | 14.0 ± 4.3 | 7.7 ± 7.0 | 11.4 ± 6.7 | 12.6 ± 4.5 | 11.5 ± 5.2 | abc |
Scl 001/22 | 16.7 ± 3.6 | 16.1 ± 3.8 | 20.1 ± 5.1 | 19.5 ± 7.1 | 17.9 ± 8.8 | 18.1 ± 5.7 | f |
Scl 002/22 | 15 ± 3.9 | 13.5 ± 5.3 | 18.7 ± 3.7 | 21.3 ± 5.6 | 18.6 ± 4.3 | 17.4 ± 4.6 | e |
Scl 003/22 | 11.3 ± 4.4 | 9.8 ± 4.2 | 14.8 ± 3.4 | 13.1 ± 5.3 | 13.1 ± 6.4 | 12.4 ± 4.7 | abcd |
Scl 004/22 | 13.8 ± 4.7 | 16.6 ± 3.5 | 24.8 ± 3.9 | 18.6 ± 5.9 | 17.3 ± 6.2 | 18.2 ± 4.8 | f |
Scl 005/22 | 12.7 ± 3.8 | 12.7 ± 5.4 | 12.6 ± 5.4 | 17.9 ± 6.2 | 14.8 ± 4.8 | 14.1 ± 5.1 | bc |
Scl 006/22 | 17.2 ± 2.6 | 17.6 ± 4.3 | 28.7 ± 6.1 | 26.7 ± 6.7 | 22.4 ± 6.8 | 22.5 ± 5.3 | kl |
Scl 007/22 | 17.4 ± 3.3 | 20.3 ± 3.7 | 27.2 ± 6.6 | 22.3 ± 7.2 | 18.8 ± 9.2 | 21.2 ± 6.0 | ij |
Scl 008/22 | 24.4 ± 6.9 | 21.1 ± 6.3 | 22.1 ± 5.4 | 25.4 ± 8.4 | 16.2 ± 5.1 | 21.8 ± 6.4 | jk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamani-Noor, N.; Daneshbakhsh, D.; Berger, B. Molecular Identification, Pathogenicity, and Fungicide Sensitivity of Sclerotinia spp. Isolates Associated with Sclerotinia Stem Rot in Rapeseed in Germany. Agriculture 2025, 15, 1994. https://doi.org/10.3390/agriculture15191994
Zamani-Noor N, Daneshbakhsh D, Berger B. Molecular Identification, Pathogenicity, and Fungicide Sensitivity of Sclerotinia spp. Isolates Associated with Sclerotinia Stem Rot in Rapeseed in Germany. Agriculture. 2025; 15(19):1994. https://doi.org/10.3390/agriculture15191994
Chicago/Turabian StyleZamani-Noor, Nazanin, Dorsa Daneshbakhsh, and Beatrice Berger. 2025. "Molecular Identification, Pathogenicity, and Fungicide Sensitivity of Sclerotinia spp. Isolates Associated with Sclerotinia Stem Rot in Rapeseed in Germany" Agriculture 15, no. 19: 1994. https://doi.org/10.3390/agriculture15191994
APA StyleZamani-Noor, N., Daneshbakhsh, D., & Berger, B. (2025). Molecular Identification, Pathogenicity, and Fungicide Sensitivity of Sclerotinia spp. Isolates Associated with Sclerotinia Stem Rot in Rapeseed in Germany. Agriculture, 15(19), 1994. https://doi.org/10.3390/agriculture15191994