Super-Resolution Point Cloud Completion for Large-Scale Missing Data in Cotton Leaves
Abstract
1. Introduction
2. Materials and Methods
2.1. Cotton Leaf Dataset
2.2. Super-Resolution Point Cloud Completion Network
2.2.1. Point Cloud Completion
2.2.2. Point Cloud Reshaping
2.2.3. Loss Freeze Program
2.3. Evaluation Measures
2.3.1. Chamfer Distance
2.3.2. Earth Mover’s Distance
2.3.3. F-Score
3. Results
3.1. Training Visualization
3.2. Cotton Leaf Completion for Missing Shapes
3.2.1. Completion Results for 75% Missing Data
3.2.2. Completion Results for 50% Missing Data
3.3. Cotton Leaf Completion for Sparse Point Cloud
3.4. Ablation Study
3.5. Robustness Test
4. Discussion
4.1. Quantitative and Quality Analysis
4.2. Loss Function Freezing Strategy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Li, K.; Gao, Y.; Feng, D.; Zheng, C.; Cao, C.; Sun, J.; Dang, H.; Hamani, A.K. Evaluation of saline water irrigation on cotton growth and yield using the AquaCrop crop simulation model. Agric. Water Manag. 2022, 261, 107355. [Google Scholar] [CrossRef]
- Shuchun, M.; Yabing, L.; Zhanbiao, W.; Xiaoyu, Z.; Pengcheng, L.; Huiyun, X. Cotton Production in China; Wiley: Hoboken, NJ, USA, 2019; pp. 175–191. [Google Scholar] [CrossRef]
- Arekhi, E.; Ghasemi Bezdi, K.; Ajam Norozei, H.; Faghani, E. The effect of growth regulators on biochemical properties, yield, and fiber quality of different cultivars of cotton (Gossypium hirsutum) under different irrigation intervals. J. Plant Growth Regul. 2023, 42, 5574–5586. [Google Scholar] [CrossRef]
- Li, P.S.; Lu, Y.D.; Yu, G.; Zhang, Q.P.; Liu, T.F.; Wang, T.H.; Yang, M.F.; Xiang, D.; Tian, J.S.; Zhang, W.F. The Regional Distribution of Raw Cotton Quality in xinjiang Based on Notarized Inspection Data for Cotton. Sci. Agric. Sin. 2025, 58, 58–74. [Google Scholar] [CrossRef]
- Tan, S.; Wang, Q.; Zhang, J.; Chen, Y.; Shan, Y.; Xu, D. Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in southern Xinjiang, China. Agric. Water Manag. 2018, 196, 99–113. [Google Scholar] [CrossRef]
- Pabuayon, I.L.; Sun, Y.; Guo, W.; Ritchie, G.L. High-throughput phenotyping in cotton: A review. J. Cotton Res. 2019, 2, 18. [Google Scholar] [CrossRef]
- Xu, R.; Li, C.; Paterson, A.H. Multispectral imaging and unmanned aerial systems for cotton plant phenotyping. PLoS ONE 2019, 14, e0205083. [Google Scholar] [CrossRef]
- Yuniarti, A.; Suciati, N. A review of deep learning techniques for 3D reconstruction of 2D images. In Proceedings of the 2019 12th International Conference on Information & Communication Technology and System (ICTS), Surabaya, Indonesia, 18 July 2019; IEEE: New York, NY, USA, 2019; pp. 327–331. [Google Scholar] [CrossRef]
- Munir, M.; Chattha, M.A.; Dengel, A.; Ahmed, S. A comparative analysis of traditional and deep learning-based anomaly detection methods for streaming data. In Proceedings of the 2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019; IEEE: New York, NY, USA, 2019; pp. 561–566. [Google Scholar] [CrossRef]
- Wang, P.; Fan, E.; Wang, P. Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognit. Lett. 2021, 141, 61–67. [Google Scholar] [CrossRef]
- Shah, D.; Gopan, K.G.; Sinha, N. An investigation of the multi-dimensional (1D vs. 2D vs. 3D) analyses of EEG signals using traditional methods and deep learning-based methods. Front. Signal Process. 2022, 2, 936790. [Google Scholar] [CrossRef]
- Engel, N.; Belagiannis, V.; Dietmayer, K. Point transformer. IEEE Access 2021, 9, 134826–134840. [Google Scholar] [CrossRef]
- Jiang, J.; Li, L.; Wang, M. Research on plant stem complement based on L1-medial skeleton extraction. J. Nanjing For. Univ. 2022, 46, 40–50. [Google Scholar] [CrossRef]
- Zeng, A.; Song, S.; Nießner, M.; Fisher, M.; Xiao, J.; Funkhouser, T. 3dmatch: Learning local geometric descriptors from RGB-D reconstructions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1802–1811. [Google Scholar] [CrossRef]
- Qiu, Q.; Sun, N.; Bai, H.; Wang, N.; Fan, Z.; Wang, Y.; Meng, Z.; Li, B.; Cong, Y. Field-based high-throughput phenotyping for maize plant using 3D LiDAR point cloud generated with a “Phenomobile”. Front. Plant Sci. 2019, 10, 554. [Google Scholar] [CrossRef]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. [Google Scholar] [CrossRef]
- Xiao, H.; Xu, H.; Li, Y.; Kang, W. Multi-dimensional graph interactional network for progressive point cloud completion. IEEE Trans. Instrum. Meas. 2022, 72, 1–2. [Google Scholar] [CrossRef]
- Wang, J.; Chakraborty, R.; Stella, X.Y. Transformer for 3D point clouds. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 4419–4431. [Google Scholar] [CrossRef]
- Pan, L.; Liu, L.; Condon, A.G.; Estavillo, G.M.; Coe, R.A.; Bull, G.; Stone, E.A.; Petersson, L.; Rolland, V. Biomass prediction with 3D point clouds from LiDAR. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 4–8 January 2022; pp. 1330–1340. [Google Scholar]
- Xie, H.; Yao, H.; Zhou, S.; Mao, J.; Zhang, S.; Sun, W. Grnet: Gridding residual network for dense point cloud completion. In European Conference on Computer Vision; Springer International Publishing: Cham, Germany, 2020; pp. 365–381. [Google Scholar] [CrossRef]
- Huang, Z.; Yu, Y.; Xu, J.; Ni, F.; Le, X. Pf-net: Point fractal network for 3d point cloud completion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 7662–7670. [Google Scholar] [CrossRef]
- Wen, X.; Xiang, P.; Han, Z.; Cao, Y.P.; Wan, P.; Zheng, W.; Liu, Y.S. Pmp-net: Point cloud completion by learning multi-step point moving paths. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19–25 June 2021; IEEE: New York, NY, USA, 2021; pp. 7443–7452. [Google Scholar] [CrossRef]
- Wen, X.; Xiang, P.; Han, Z.; Cao, Y.P.; Wan, P.; Zheng, W.; Liu, Y.S. PMP-Net++: Point cloud completion by transformer-enhanced multi-step point moving paths. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 852–867. [Google Scholar] [CrossRef]
- Xiang, P.; Wen, X.; Liu, Y.S.; Cao, Y.P.; Wan, P.; Zheng, W.; Han, Z. Snowflakenet: Point cloud completion by snowflake point deconvolution with skip-transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; IEEE: New York, NY, USA, 2021; pp. 5499–5509. [Google Scholar] [CrossRef]
- Dinesh, C.; Cheung, G.; Bajić, I.V. 3D point cloud super-resolution via graph total variation on surface normals. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 4390–4394. [Google Scholar] [CrossRef]
- Levin, D. The approximation power of moving least-squares. Math. Comput. 1998, 67, 1517–1531. [Google Scholar] [CrossRef]
- Wang, X.; Hu, J.; Guo, L.; Zhang, D.; Qin, H.; Hao, A. Feature-preserving, mesh-free empirical mode decomposition for point clouds and its applications. Comput. Aided Geom. Des. 2018, 59, 1–16. [Google Scholar] [CrossRef]
- Kumbar, A.; Anvekar, T.; Vikrama, T.A.; Tabib, R.A.; Mudenagudi, U. Tp-node: Topology-aware progressive noising and denoising of point clouds towards upsampling. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 2272–2282. [Google Scholar] [CrossRef]
- Field, D.A. Laplacian Smoothing Delaunay triangulations. Commun. Appl. Numer. Methods 1988, 4, 709–712. [Google Scholar] [CrossRef]
- Balasubramanian, M.; Schwartz, E.L. The isomap algorithm and topological stability. Science 2002, 295, 7. [Google Scholar] [CrossRef]
- Ward, C.M.; Harguess, J.; Crabb, B.; Parameswaran, S. Image quality assessment for determining efficacy and limitations of Super-Resolution Convolutional Neural Network (SRCNN). Appl. Digit. Image Process. XL 2017, 10396, 19–30. [Google Scholar] [CrossRef]
- Vint, D.; Di Caterina, G.; Soraghan, J.J.; Lamb, R.A.; Humphreys, D. Evaluation of performance of VDSR super resolution on real and synthetic images. In Proceedings of the 2019 Sensor Signal Processing for Defence Conference (SSPD), Brighton, UK, 9–10 May 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Talab, M.A.; Awang, S.; Najim, S.A. Super-low resolution face recognition using integrated efficient sub-pixel convolutional neural network (ESPCN) and convolutional neural network (CNN). In Proceedings of the 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Selangor, Malaysia, 29 June 2019; pp. 331–335. [Google Scholar] [CrossRef]
- Yu, L.; Li, X.; Fu, C.W.; Cohen-Or, D.; Heng, P.A. Pu-net: Point cloud upsampling network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 2790–2799. [Google Scholar] [CrossRef]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Huang, K. Point Cloud Super Resolution with Adversarial Residual Graph Networks. arxiv 2019, arXiv:1908.02111. [Google Scholar] [CrossRef]
- Li, R.; Li, X.; Fu, C.W.; Cohen-Or, D.; Heng, P.A. Pu-gan: A point cloud upsampling adversarial network. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 November–2 December 2019; pp. 7203–7212. [Google Scholar] [CrossRef]
- Yu, F.; Koltun, V.; Funkhouser, T. Dilated Residual Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 636–644. [Google Scholar] [CrossRef]
- Kathariya, B.; Akthar, A.; Li, Z.; Van Der Auwera, G. PointCU: Multiscale Sparse Convolutional Learning for Point Cloud Color Upsampling. In Proceedings of the 2024 IEEE International Conference on Visual Communications and Image Processing (VCIP), Tokyo, Japan, 8–11 December 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Wu, X.; Lao, Y.; Jiang, L.; Liu, X.; Zhao, H. Point Transformer V2: Grouped Vector Attention and Partition-based Pooling. arXiv 2022, arXiv:2210.05666. [Google Scholar] [CrossRef]
- Wen, X.; Li, T.; Han, Z.; Liu, Y.S. Point Cloud Completion by Skip-attention Network with Hierarchical Folding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1936–1945. [Google Scholar] [CrossRef]
- Wang, X.; Ang, M.H.; Lee, G.H. Point cloud completion by learning shape priors. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 10719–10726. [Google Scholar] [CrossRef]
- Yuan, W.; Khot, T.; Held, D.; Mertz, C.; Hebert, M. PCN: Point Completion Network. In Proceedings of the 2018 International Conference on 3D Vision (3DV), Verona, Italy, 5–8 September 2018; pp. 728–737. [Google Scholar] [CrossRef]
- Sener, O.; Koltun, V. Multi-Task Learning as Multi-Objective Optimization. in: Advances in neural information processing systems. arXiv 2018, arXiv:1810.04650. [Google Scholar] [CrossRef]
- Chen, Z.; Badrinarayanan, V.; Lee, C.Y.; Rabinovich, A. Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks. Int. Conf. Mach. Learn. 2018, 80, 794–803. [Google Scholar] [CrossRef]
- Liu, S.; Johns, E.; Davison, A.J. End-to-end multi-task learning with attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 1871–1880. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Q. An overview of multi-task learning. Natl. Sci. Rev. 2018, 5, 30–43. [Google Scholar] [CrossRef]
- Gong, T.; Lee, T.; Stephenson, C.; Renduchintala, V.; Padhy, S.; Ndirango, A.; Keskin, G.; Elibol, O.H. A comparison of loss weighting strategies for multi task learning in deep neural networks. IEEE Access 2019, n7, 141627–141632. [Google Scholar] [CrossRef]
- Kendall, A.; Gal, Y.; Cipolla, R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7482–7491. [Google Scholar] [CrossRef]
- Xiao, Y.; Tian, Z.; Yu, J.; Zhang, Y.; Liu, S.; Du, S.; Lan, X. A review of object detection based on deep learning. Multimed. Tools Appl. 2020, 79, 23729–23791. [Google Scholar] [CrossRef]
Means | EMD | F-Score | ||
---|---|---|---|---|
GRNet [20] | 99.9812 | 60.6202 | 0.0629 | 0.1158 |
PF-Net [21] | 49.1054 | 7.7551 | 0.0885 | 0.0765 |
PMP-Net [22] | 47.2924 | 6.5268 | 0.0731 | 0.0285 |
PMP-Net++ [23] | 57.2051 | 9.3005 | 0.0935 | 0.01 |
SnowflakeNet [24] | 56.1553 | 9.8552 | 0.0536 | 0.0131 |
PointTR v2 [40] | 45.1987 | 6.6914 | 0.1022 | 0.0519 |
Ours | 24.5246 | 1.5396 | 0.0404 | 0.1192 |
Means | EMD | F-Score | ||
---|---|---|---|---|
GRNet [20] | 57.9596 | 26.4345 | 0.0466 | 0.1794 |
PF-Net [21] | 53.9436 | 9.4655 | 0.0802 | 0.0857 |
PMP-Net [22] | 41.7531 | 5.2057 | 0.0808 | 0.0764 |
PMP-Net++ [23] | 47.9835 | 6.6025 | 0.0820 | 0.0230 |
SnowflakeNet [24] | 32.2416 | 3.7345 | 0.0553 | 0.1858 |
PointTR v2 [40] | 42.2060 | 5.8453 | 0. 1407 | 0. 0119 |
Ours | 37.0253 | 4.6137 | 0.0533 | 0.1329 |
Means | EMD | F-Score | ||
---|---|---|---|---|
GRNet [20] | 108.1170 | 83.9074 | 0.0975 | 0.0291 |
PF-Net [21] | 34.6940 | 3.4182 | 0.0513 | 0.1004 |
PMP-Net [22] | 39.5188 | 4.4992 | 0.0764 | 0.0139 |
PMP-Net++ [23] | 44.6338 | 5.5138 | 0.0795 | 0.0048 |
SnowflakeNet [24] | 26.6929 | 1.7999 | 0.0206 | 0.0900 |
PointTR v2 [40] | 25.2929 | 2.3216 | 0.3493 | 0.0787 |
Ours | 28.7565 | 2.1111 | 0.1780 | 0.0869 |
ID 1 | Upsample | Reshape | Frozen | F1 | EMD | ||
---|---|---|---|---|---|---|---|
1 | √ | × | × | 45.6528 | 6.7480 | 0.0838 | 0.0669 |
2 | × | √ | × | 31.583 | 2.6188 | 0.0763 | 0.0458 |
3 | × | √ | √ | 30.7775 | 2.5197 | 0.0848 | 0.0488 |
4 | √ | √ | × | 27.0097 | 1.8167 | 0.0893 | 0.0410 |
5 | √ | √ | √ | 26.3892 | 1.8116 | 0.1711 | 0.0404 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, H.; Yin, Z.; Shi, M.; Pan, J.; Si, C. Super-Resolution Point Cloud Completion for Large-Scale Missing Data in Cotton Leaves. Agriculture 2025, 15, 1989. https://doi.org/10.3390/agriculture15181989
Geng H, Yin Z, Shi M, Pan J, Si C. Super-Resolution Point Cloud Completion for Large-Scale Missing Data in Cotton Leaves. Agriculture. 2025; 15(18):1989. https://doi.org/10.3390/agriculture15181989
Chicago/Turabian StyleGeng, Hui, Zhiben Yin, Mingdeng Shi, Junzhang Pan, and Chunjing Si. 2025. "Super-Resolution Point Cloud Completion for Large-Scale Missing Data in Cotton Leaves" Agriculture 15, no. 18: 1989. https://doi.org/10.3390/agriculture15181989
APA StyleGeng, H., Yin, Z., Shi, M., Pan, J., & Si, C. (2025). Super-Resolution Point Cloud Completion for Large-Scale Missing Data in Cotton Leaves. Agriculture, 15(18), 1989. https://doi.org/10.3390/agriculture15181989