A Novel Framework for Predicting Daily Reference Evapotranspiration Using Interpretable Machine Learning Techniques
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Datasets
2.2. Machine Learning Models
2.2.1. Artificial Neural Network (ANN)
2.2.2. Random Forest (RF)
2.2.3. XGBoost
2.2.4. CatBoost
2.2.5. Support Vector Machine (SVM)
2.3. Models’ Hyperparameter Settings
2.4. Input Combinations
2.5. SHAP: SHapley Additive exPlanations
2.6. Evaluation Indices
3. Results and Discussion
3.1. Coolidge Station
3.2. Maricopa Station
3.3. Queen Creek Station
3.4. Overall Discussion
4. Conclusions, Recommendations, and Outlooks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elshikha, D.E.; Attalah, S.; Waller, P.; Hunsaker, D.J.; Thorp, K.R.; Bautista, E.; Williams, C.; Wall, G.W.; Orr, E.; Elsadek, E.A. Can OpenET Transform Irrigation Management in the Southwestern, U.S.? College of Agriculture, Life, and Environmental Sciences, University of Arizona: Tucson, AZ, USA, 2025. [Google Scholar]
- Bennett, K.E.; Talsma, C.; Boero, R. Concurrent Changes in Extreme Hydroclimate Events in the Colorado River Basin. Water 2021, 13, 978. [Google Scholar] [CrossRef]
- Holdren, G.C.; Turner, K. Characteristics of Lake Mead, Arizona–Nevada. Lake Reserv. Manag. 2010, 26, 230–239. [Google Scholar] [CrossRef]
- Castle, S.L.; Reager, J.T.; Thomas, B.F.; Purdy, A.J.; Lo, M.-H.; Famiglietti, J.S.; Tang, Q. Remote Detection of Water Management Impacts on Evapotranspiration in the Colorado River Basin. Geophys. Res. Lett. 2016, 43, 5089–5097. [Google Scholar] [CrossRef]
- Elsadek, E.A.; Attalah, S.; Waller, P.; Norton, R.; Hunsaker, D.J.; Williams, C.; Thorp, K.R.; Orr, E.; Elshikha, D.E.M. Simulating Water Use and Yield for Full and Deficit Flood-Irrigated Cotton in Arizona, USA. Agronomy 2025, 15, 2023. [Google Scholar] [CrossRef]
- Thorp, K.R.; Calleja, S.; Pauli, D.; Thompson, A.L.; Elshikha, D.E. Agronomic Outcomes of Precision Irrigation Management Technologies with Varying Complexity. J. ASABE 2022, 65, 135–150. [Google Scholar] [CrossRef]
- Elshikha, D.E.; Attalah, S.; Elsadek, E.A.; Waller, P.; Thorp, K.; Sanyal, D.; Bautista, E.; Norton, R.; Hunsaker, D.; Williams, C.; et al. The Impact of Gravity Drip and Flood Irrigation on Development, Water Productivity, and Fiber Yield of Cotton in Semi-Arid Conditions of Arizona. In Proceedings of the 2024 ASABE Annual International Meeting, Anaheim, CA, USA, 28–31 July 2024; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2024; pp. 1–16. [Google Scholar]
- Elshikha, D.E.M.; Wang, G.; Waller, P.M.; Hunsaker, D.J.; Dierig, D.; Thorp, K.R.; Thompson, A.; Katterman, M.E.; Herritt, M.T.; Bautista, E.; et al. Guayule Growth and Yield Responses to Deficit Irrigation Strategies in the U.S. Desert. Agric. Water Manag. 2023, 277, 108093. [Google Scholar] [CrossRef]
- Elsadek, E.A.; Zhang, K.; Hamoud, Y.A.; Mousa, A.; Awad, A.; Abdallah, M.; Shaghaleh, H.; Hamad, A.A.A.; Jamil, M.T.; Elbeltagi, A. Impacts of Climate Change on Rice Yields in the Nile River Delta of Egypt: A Large-Scale Projection Analysis Based on CMIP6. Agric. Water Manag. 2024, 292, 108673. [Google Scholar] [CrossRef]
- Elsadek, E.A. Study on the In-Field Water Balance and the Projected Impacts of Climate Change on Rice Yields in the Nile River Delta. Ph.D. Thesis, Hohai University, Nanjing, China, 2023. [Google Scholar]
- Elsadek, E.A.; Elshikha, D.E.M.; Awad, A.; Hamoud, Y.A.; Elsheikha, A.M.; Williams, C.; Orr, E.; Shaghaleh, H.; Hamad, A.A.A.; Thorp, K.R.; et al. Projecting Rice Water Footprint for Different Shared Socioeconomic Pathways under Arid Climate Conditions. Irrig. Sci. 2025, 43, 955–969. [Google Scholar] [CrossRef]
- Elsadek, E.; Zhang, K.; Mousa, A.; Ezaz, G.T.; Tola, T.L.; Shaghaleh, H.; Hamad, A.A.A.; Alhaj Hamoud, Y. Study on the In-Field Water Balance of Direct-Seeded Rice with Various Irrigation Regimes under Arid Climatic Conditions in Egypt Using the AquaCrop Model. Agronomy 2023, 13, 609. [Google Scholar] [CrossRef]
- Adeyemi, O.; Grove, I.; Peets, S.; Norton, T. Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation. Sustainability 2017, 9, 353. [Google Scholar] [CrossRef]
- Abioye, E.A.; Abidin, M.S.Z.; Mahmud, M.S.A.; Buyamin, S.; Ishak, M.H.I.; Rahman, M.K.I.A.; Otuoze, A.O.; Onotu, P.; Ramli, M.S.A. A Review on Monitoring and Advanced Control Strategies for Precision Irrigation. Comput. Electron. Agric. 2020, 173, 105441. [Google Scholar] [CrossRef]
- Volk, J.M.; Huntington, J.L.; Melton, F.S.; Allen, R.; Anderson, M.; Fisher, J.B.; Kilic, A.; Ruhoff, A.; Senay, G.B.; Minor, B.; et al. Assessing the Accuracy of OpenET Satellite-Based Evapotranspiration Data to Support Water Resource and Land Management Applications. Nat. Water 2024, 2, 193–205. [Google Scholar] [CrossRef]
- Melton, F.S.; Huntington, J.; Grimm, R.; Herring, J.; Hall, M.; Rollison, D.; Erickson, T.; Allen, R.; Anderson, M.; Fisher, J.B.; et al. OpenET: Filling a Critical Data Gap in Water Management for the Western United States. JAWRA J. Am. Water Resour. Assoc. 2022, 58, 971–994. [Google Scholar] [CrossRef]
- Wanniarachchi, S.; Sarukkalige, R. A Review on Evapotranspiration Estimation in Agricultural Water Management: Past, Present, and Future. Hydrology 2022, 9, 123. [Google Scholar] [CrossRef]
- French, A.N.; Sanchez, C.A.; Hunsaker, D.J.; Anderson, R.G.; Saber, M.N.; Wisniewski, E.H. Lettuce Evapotranspiration and Crop Coefficients Using Eddy Covariance and Remote Sensing Observations. Irrig. Sci. 2024, 42, 1245–1272. [Google Scholar] [CrossRef]
- Bawazir, A.S.; Luthy, R.; King, J.P.; Tanzy, B.F.; Solis, J. Assessment of the Crop Coefficient for Saltgrass under Native Riparian Field Conditions in the Desert Southwest. Hydrol. Process. 2014, 28, 6163–6171. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Shiri, J.; Marti, P.; Karimi, S.; Landeras, G. Data Splitting Strategies for Improving Data Driven Models for Reference Evapotranspiration Estimation among Similar Stations. Comput. Electron. Agric. 2019, 162, 70–81. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Katipoğlu, O.M.; Kartal, V.; Danandeh Mehr, A.; Berhail, S.; Elsadek, E.A. Advanced Reference Crop Evapotranspiration Prediction: A Novel Framework Combining Neural Nets, Bee Optimization Algorithm, and Mode Decomposition. Appl. Water Sci. 2024, 14, 256. [Google Scholar] [CrossRef]
- Raja, P.; Sona, F.; Surendran, U.; Srinivas, C.V.; Kannan, K.; Madhu, M.; Mahesh, P.; Annepu, S.K.; Ahmed, M.; Chandrasekar, K.; et al. Performance Evaluation of Different Empirical Models for Reference Evapotranspiration Estimation over Udhagamandalm, The Nilgiris, India. Sci. Rep. 2024, 14, 12429. [Google Scholar] [CrossRef] [PubMed]
- Celestin, S.; Qi, F.; Li, R.; Yu, T.; Cheng, W. Evaluation of 32 Simple Equations against the Penman–Monteith Method to Estimate the Reference Evapotranspiration in the Hexi Corridor, Northwest China. Water 2020, 12, 2772. [Google Scholar] [CrossRef]
- Ferreira, L.B.; da Cunha, F.F. New Approach to Estimate Daily Reference Evapotranspiration Based on Hourly Temperature and Relative Humidity Using Machine Learning and Deep Learning. Agric. Water Manag. 2020, 234, 106113. [Google Scholar] [CrossRef]
- Sowmya, M.R.; Kumar, M.B.S.; Ambat, S.K. Comparison of Deep Neural Networks for Reference Evapotranspiration Prediction Using Minimal Meteorological Data. In Proceedings of the 2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA), Cochin, India, 2–4 July 2020; pp. 27–33. [Google Scholar]
- Bellido-Jiménez, J.A.; Estévez, J.; García-Marín, A.P. New Machine Learning Approaches to Improve Reference Evapotranspiration Estimates Using Intra-Daily Temperature-Based Variables in a Semi-Arid Region of Spain. Agric. Water Manag. 2021, 245, 106558. [Google Scholar] [CrossRef]
- Kaya, Y.Z.; Zelenakova, M.; Üneş, F.; Demirci, M.; Hlavata, H.; Mesaros, P. Estimation of Daily Evapotranspiration in Košice City (Slovakia) Using Several Soft Computing Techniques. Theor. Appl. Climatol. 2021, 144, 287–298. [Google Scholar] [CrossRef]
- Chia, M.Y.; Huang, Y.F.; Koo, C.H.; Fung, K.F. Recent Advances in Evapotranspiration Estimation Using Artificial Intelligence Approaches with a Focus on Hybridization Techniques—A Review. Agronomy 2020, 10, 101. [Google Scholar] [CrossRef]
- Duval, D.; Bickel, A.K.; Frisvold, G. County Agricultural Economy Profiles for Southern Arizona. Available online: https://mapazdashboard.arizona.edu/article/county-agricultural-economy-profiles-southern-arizona (accessed on 27 June 2025).
- Migoya, C. With Colorado River Water Cuts, Some Pinal Farmers Drill Wells. For Others, Fields Sit Dry. Available online: https://www.azcentral.com/story/news/local/arizona-environment/2023/02/08/cap-water-cuts-increase-disparities-among-pinal-county-farmers/69827876007/ (accessed on 26 August 2025).
- Duval, D.; Montanía, C.V.; Quintero, J.H. Arizona County Agricultural Economy Profiles; College of Agriculture, Life, and Environmental Sciences, University of Arizona: Tucson, AZ, USA, 2022. [Google Scholar]
- Nabhan, G.P.; Richter, B.D.; Riordan, E.C.; Tornbom, C. Toward Water-Resilient Agriculture in Arizona: Future Scenarios Addressing Water Scarcity; Lincoln Institute of Land Policy: Cambridge, MA, USA, 2023. [Google Scholar]
- Abdallah, M.; Mohammadi, B.; Zaroug, M.A.H.; Omer, A.; Cheraghalizadeh, M.; Eldow, M.E.E.; Duan, Z. Reference Evapotranspiration Estimation in Hyper-Arid Regions via D-Vine Copula Based-Quantile Regression and Comparison with Empirical Approaches and Machine Learning Models. J. Hydrol. Reg. Stud. 2022, 44, 101259. [Google Scholar] [CrossRef]
- Mehdizadeh, S.; Mohammadi, B.; Pham, Q.B.; Duan, Z. Development of Boosted Machine Learning Models for Estimating Daily Reference Evapotranspiration and Comparison with Empirical Approaches. Water 2021, 13, 3489. [Google Scholar] [CrossRef]
- Bisoyi, N.; Gupta, H.; Padhy, N.P.; Chakrapani, G.J. Prediction of Daily Sediment Discharge Using a Back Propagation Neural Network Training Algorithm: A Case Study of the Narmada River, India. Int. J. Sediment Res. 2019, 34, 125–135. [Google Scholar] [CrossRef]
- Kumar, M.; Raghuwanshi, N.S.; Singh, R. Artificial Neural Networks Approach in Evapotranspiration Modeling: A Review. Irrig. Sci. 2011, 29, 11–25. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient Boosting with Categorical Features Support. arXiv 2018, arXiv:1810.11363. [Google Scholar] [CrossRef]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased Boosting with Categorical Features. In Proceedings of the Advances in Neural Information Processing Systems, 32nd International Conference on Neural Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018; Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2018; Volume 31. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Wang, L. Support Vector Machines: Theory and Applications; Springer Science & Business Media: Boston, NY, USA, 2005; Volume 177, ISBN 3540243887. [Google Scholar]
- Muraina, I. Ideal Dataset Splitting Ratios in Machine Learning Algorithms: General Concerns for Data Scientists and Data Analysts. In Proceedings of the 7th International Mardin Artuklu Scientific Research Conference, Mardin, Turkey, 10–12 December 2021; pp. 496–504. [Google Scholar]
- Štrumbelj, E.; Kononenko, I. Explaining Prediction Models and Individual Predictions with Feature Contributions. Knowl. Inf. Syst. 2014, 41, 647–665. [Google Scholar] [CrossRef]
- Antwarg, L.; Miller, R.M.; Shapira, B.; Rokach, L. Explaining Anomalies Detected by Autoencoders Using Shapley Additive Explanations. Expert Syst. Appl. 2021, 186, 115736. [Google Scholar] [CrossRef]
- Jamieson, P.D.; Porter, J.R.; Wilson, D.R. A Test of the Computer Simulation Model ARCWHEAT1 on Wheat Crops Grown in New Zealand. Field Crops Res. 1991, 27, 337–350. [Google Scholar] [CrossRef]
- Brisson, N.; Ruget, F.; Gate, P.; Lorgeou, J.; Nicoullaud, B.; Tayot, X.; Plenet, D.; Jeuffroy, M.-H.; Bouthier, A.; Ripoche, D.; et al. STICS: A Generic Model for Simulating Crops and Their Water and Nitrogen Balances. II. Model Validation for Wheat and Maize. Agronomie 2002, 22, 69–92. [Google Scholar] [CrossRef]
- Mattar, M.A. Using Gene Expression Programming in Monthly Reference Evapotranspiration Modeling: A Case Study in Egypt. Agric. Water Manag. 2018, 198, 28–38. [Google Scholar] [CrossRef]
- Mehdizadeh, S.; Behmanesh, J.; Khalili, K. Using MARS, SVM, GEP and Empirical Equations for Estimation of Monthly Mean Reference Evapotranspiration. Comput. Electron. Agric. 2017, 139, 103–114. [Google Scholar] [CrossRef]
- Droogers, P.; Allen, R.G. Estimating Reference Evapotranspiration Under Inaccurate Data Conditions. Irrig. Drain. Syst. 2002, 16, 33–45. [Google Scholar] [CrossRef]
- Wang, S.; Lian, J.; Peng, Y.; Hu, B.; Chen, H. Generalized Reference Evapotranspiration Models with Limited Climatic Data Based on Random Forest and Gene Expression Programming in Guangxi, China. Agric. Water Manag. 2019, 221, 220–230. [Google Scholar] [CrossRef]
- Huang, G.; Wu, L.; Ma, X.; Zhang, W.; Fan, J.; Yu, X.; Zeng, W.; Zhou, H. Evaluation of CatBoost Method for Prediction of Reference Evapotranspiration in Humid Regions. J. Hydrol. 2019, 574, 1029–1041. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Z.; Zheng, J. CatBoost: A New Approach for Estimating Daily Reference Crop Evapotranspiration in Arid and Semi-Arid Regions of Northern China. J. Hydrol. 2020, 588, 125087. [Google Scholar] [CrossRef]
- Kişi, O.; Cimen, M. Evapotranspiration Modelling Using Support Vector Machines/Modélisation de l’évapotranspiration à l’aide de ‘Support Vector Machines’. Hydrol. Sci. J. 2009, 54, 918–928. [Google Scholar] [CrossRef]
- Wen, X.; Si, J.; He, Z.; Wu, J.; Shao, H.; Yu, H. Support-Vector-Machine-Based Models for Modeling Daily Reference Evapotranspiration With Limited Climatic Data in Extreme Arid Regions. Water Resour. Manag. 2015, 29, 3195–3209. [Google Scholar] [CrossRef]
- Rai, P.; Kumar, P.; Al-Ansari, N.; Malik, A. Evaluation of Machine Learning versus Empirical Models for Monthly Reference Evapotranspiration Estimation in Uttar Pradesh and Uttarakhand States, India. Sustainability 2022, 14, 5771. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, Z.; Jiang, H.; Sun, S. Estimating Daily Reference Evapotranspiration Based on Limited Meteorological Data Using Deep Learning and Classical Machine Learning Methods. J. Hydrol. 2020, 591, 125286. [Google Scholar] [CrossRef]
- Fan, J.; Yue, W.; Wu, L.; Zhang, F.; Cai, H.; Wang, X.; Lu, X.; Xiang, Y. Evaluation of SVM, ELM and Four Tree-Based Ensemble Models for Predicting Daily Reference Evapotranspiration Using Limited Meteorological Data in Different Climates of China. Agric. For. Meteorol. 2018, 263, 225–241. [Google Scholar] [CrossRef]
- Ferreira, L.B.; da Cunha, F.F.; Fernandes Filho, E.I. Exploring Machine Learning and Multi-Task Learning to Estimate Meteorological Data and Reference Evapotranspiration across Brazil. Agric. Water Manag. 2022, 259, 107281. [Google Scholar] [CrossRef]
- Agrawal, Y.; Kumar, M.; Ananthakrishnan, S.; Kumarapuram, G. Evapotranspiration Modeling Using Different Tree Based Ensembled Machine Learning Algorithm. Water Resour. Manag. 2022, 36, 1025–1042. [Google Scholar] [CrossRef]
- Feng, Y.; Cui, N.; Gong, D.; Zhang, Q.; Zhao, L. Evaluation of Random Forests and Generalized Regression Neural Networks for Daily Reference Evapotranspiration Modelling. Agric. Water Manag. 2017, 193, 163–173. [Google Scholar] [CrossRef]
Parameter | Station | Statistics | |||||
---|---|---|---|---|---|---|---|
Mean | Standard Deviation | Minimum | Maximum | Standard Error | Range | ||
Tmax, °C | Coolidge | 30.2 | 8.5 | 5.8 | 48.7 | 0.1 | 42.9 |
Maricopa | 30.4 | 8.8 | 5.8 | 48.0 | 0.1 | 42.2 | |
Queen Creek | 29.8 | 8.6 | 5.7 | 47.9 | 0.1 | 42.2 | |
Tmin, °C | Coolidge | 10.8 | 8.4 | −10 | 31.1 | 0.1 | 41.1 |
Maricopa | 12.7 | 8.9 | −8.7 | 32.5 | 0.1 | 41.2 | |
Queen Creek | 12.1 | 8.3 | −17.3 | 32.2 | 0.1 | 49.5 | |
Tave, °C | Coolidge | 20.4 | 8.3 | −1.0 | 37.6 | 0.1 | 38.6 |
Maricopa | 21.5 | 8.9 | 0.1 | 39.2 | 0.1 | 39.1 | |
Queen Creek | 21.1 | 8.4 | −0.6 | 38.4 | 0.1 | 39.0 | |
Pr, mm | Coolidge | 0.4 | 2.3 | 0.0 | 51.0 | 0.01 | 51.0 |
Maricopa | 0.4 | 2.5 | 0.0 | 56.9 | 0.01 | 56.9 | |
Queen Creek | 0.5 | 2.9 | 0.0 | 73.4 | 0.01 | 73.4 | |
RHmax, % | Coolidge | 77.3 | 16.1 | 17.0 | 100.3 | 0.2 | 83.3 |
Maricopa | 69.1 | 19.5 | 19.2 | 100 | 0.2 | 80.8 | |
Queen Creek | 71.9 | 17.4 | 16.9 | 100.2 | 0.2 | 83.3 | |
RHmin, % | Coolidge | 18.6 | 12.3 | 1.4 | 97.0 | 0.1 | 95.6 |
Maricopa | 18.2 | 12.1 | 0.1 | 91.0 | 0.1 | 90.9 | |
Queen Creek | 18.8 | 12.1 | 1.8 | 93.0 | 0.1 | 91.2 | |
RHave, % | Coolidge | 45.1 | 17.6 | 7.4 | 100.0 | 0.2 | 92.6 |
Maricopa | 40.5 | 18.4 | 8.5 | 98.0 | 0.2 | 89.5 | |
Queen Creek | 42.1 | 17.7 | 6.1 | 100.0 | 0.2 | 93.9 | |
U2, m·s−1 | Coolidge | 1.8 | 0.8 | 0.0 | 8.0 | 0.01 | 8.0 |
Maricopa | 1.8 | 0.8 | 0.2 | 7.6 | 0.01 | 7.5 | |
Queen Creek | 1.7 | 0.7 | 0.0 | 6.6 | 0.01 | 6.6 | |
Ra, MJ·m−2·day−1 | Coolidge | 30.6 | 8.5 | 0.0 | 41.5 | 0.1 | 41.5 |
Maricopa | 30.6 | 8.4 | 17.8 | 41.5 | 0.1 | 23.7 | |
Queen Creek | 30.6 | 8.5 | 0.0 | 41.5 | 0.1 | 41.5 | |
Rs, MJ·m−2·day−1 | Coolidge | 20.6 | 7.1 | 1.2 | 34.3 | 0.1 | 33.1 |
Maricopa | 20.7 | 7.1 | 1.2 | 33.8 | 0.1 | 32.6 | |
Queen Creek | 20.2 | 7.0 | 0.3 | 32.6 | 0.1 | 32.3 | |
ETo, mm·day−1 | Coolidge | 5.0 | 2.4 | 0.3 | 12.5 | 0.01 | 12.2 |
Maricopa | 5.2 | 2.6 | 0.4 | 12.8 | 0.01 | 12.3 | |
Queen Creek | 5.0 | 2.3 | 0.3 | 12.6 | 0.01 | 12.2 |
Model | Hyperparameters | Default | Tuned |
---|---|---|---|
ANN | hidden_layer_sizes | 100, | 100, 50 |
activation | ‘relu’ | ‘relu’ | |
solver | ‘adam’ | ‘adam’ | |
alpha (L2 penalty) | 0.0001 | 0.0001 | |
learning_rate | ‘constant’ | ‘constant’ | |
learning_rate_init | 0.001 | 0.001 | |
max_iter | 200 | 1000 | |
batch_size | ‘auto’ | ‘auto’ | |
random_state | None | 42 | |
RF | n_estimators | 100 | 100 |
max_depth | None | None | |
min_samples_split | 2 | 2 | |
min_samples_leaf | 1 | 1 | |
max_features | ‘sqrt’ | ‘sqrt’ | |
bootstrap | True | True | |
random_state | None | 42 | |
XGBoost | booster | ‘gbtree’ | ‘gbtree’ |
learning_rate | 0.3 | 0.1 | |
max_depth | 6 | 6 | |
n_estimators | 100 | 100 | |
subsample | 1 | 1 | |
colsample_bytree | 1 | 1 | |
gamma | 0 | 0 | |
reg_alpha | 0 | 0 | |
reg_lambda | 1 | 1 | |
random_state | None | 42 | |
CatBoost | iterations | 1000 | 1000 |
learning_rate | Auto tuned | Auto tuned | |
depth | 6 | 6 | |
l2_leaf_reg | 3 | 3 | |
loss_function | RMSE | RMSE | |
bootstrap_type | ‘Bayesian’ | ‘Bayesian’ | |
random_strength | 1 | 1 | |
bagging_temperature | 1 | 1 | |
random_state | None | 42 | |
SVM | kernel | ‘rbf’ | ‘rbf’ |
C | 1.0 | 1.0 | |
epsilon | 0.1 | 0.1 | |
gamma | ‘scale’ | ‘scale’ | |
degree | 3 | 3 | |
coef0 | 0.0 | 0.0 | |
random_state | None | 42 |
Model (No. of Inputs) | Input Combination | ||||
---|---|---|---|---|---|
ANN10 | RF10 | XGBoost10 | CatBoost10 | SVM10 | Tmax, Tmin, Tave, Pr, RHmax, RHmin, RHave, U2, Ra, Rs |
ANN8 | RF8 | XGBoost8 | CatBoost8 | SVM8 | Tmax, Tmin, Tave, Pr, RHave, U2, Ra, Rs |
ANN7 | RF7 | XGBoost7 | CatBoost7 | SVM7 | Tmax, Tmin, Tave, Pr, RHave, U2, Rs |
ANN6 | RF6 | XGBoost6 | CatBoost6 | SVM6 | Tmax, Tmin, Tave, Pr, RHave, U2 |
ANN5 | RF5 | XGBoost5 | CatBoost5 | SVM5 | Tmax, Tmin, Tave, Pr, RHave |
ANN4 | RF4 | XGBoost4 | CatBoost4 | SVM4 | Tmax, Tmin, Tave, RHave |
ANN3 | RF3 | XGBoost3 | CatBoost3 | SVM3 | Tmax, Tmin, Tave |
Model | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
R2 | MAE, mm | RMSEn, % | Se, % | R2 | MAE, mm | RMSEn, % | Se, % | |
Tmax, Tmin, Tave, Pr, RHmax, RHmin, RHave, U2, Ra, Rs | ||||||||
ANN10 | 0.999 | 0.048 | 1.340 | 0.941 | 0.999 | 0.049 | 1.403 | 0.983 |
SVM10 | 0.999 | 0.052 | 1.750 | 1.032 | 0.998 | 0.056 | 2.238 | 1.123 |
RF10 | 0.999 | 0.045 | 1.359 | 0.895 | 0.994 | 0.115 | 3.485 | 2.295 |
XGBoost10 | 0.999 | 0.063 | 1.634 | 1.255 | 0.997 | 0.100 | 2.842 | 1.999 |
CatBoost10 | 1.000 | 0.031 | 0.788 | 0.609 | 0.999 | 0.045 | 1.305 | 0.890 |
Tmax, Tmin, Tave, Pr, RHave, U2, Ra, Rs | ||||||||
ANN8 | 0.999 | 0.055 | 1.527 | 1.089 | 0.999 | 0.060 | 1.685 | 1.191 |
SVM8 | 0.998 | 0.056 | 1.956 | 1.098 | 0.997 | 0.062 | 2.474 | 1.229 |
RF8 | 0.999 | 0.046 | 1.378 | 0.912 | 0.994 | 0.120 | 3.546 | 2.389 |
XGBoost8 | 0.999 | 0.069 | 1.790 | 1.357 | 0.996 | 0.110 | 3.097 | 2.189 |
CatBoost8 | 0.999 | 0.044 | 1.152 | 0.869 | 0.999 | 0.062 | 1.836 | 1.243 |
Tmax, Tmin, Tave, Pr, RHave, U2, Rs | ||||||||
ANN7 | 0.996 | 0.103 | 2.905 | 2.047 | 0.996 | 0.107 | 3.110 | 2.142 |
SVM7 | 0.996 | 0.102 | 3.115 | 2.025 | 0.994 | 0.109 | 3.575 | 2.173 |
RF7 | 0.999 | 0.054 | 1.556 | 1.066 | 0.992 | 0.143 | 4.146 | 2.867 |
XGBoost7 | 0.997 | 0.093 | 2.494 | 1.848 | 0.993 | 0.139 | 3.910 | 2.775 |
CatBoost7 | 0.998 | 0.082 | 2.252 | 1.625 | 0.996 | 0.105 | 3.059 | 2.099 |
Tmax, Tmin, Tave, Pr, RHave, U2 | ||||||||
ANN6 | 0.957 | 0.373 | 9.726 | 7.381 | 0.954 | 0.381 | 10.125 | 7.615 |
SVM6 | 0.954 | 0.373 | 10.063 | 7.379 | 0.951 | 0.382 | 10.491 | 7.646 |
RF6 | 0.992 | 0.154 | 4.083 | 3.042 | 0.948 | 0.406 | 10.811 | 8.107 |
XGBoost6 | 0.970 | 0.306 | 8.036 | 6.048 | 0.949 | 0.400 | 10.676 | 7.991 |
CatBoost6 | 0.969 | 0.314 | 8.242 | 6.222 | 0.953 | 0.383 | 10.258 | 7.647 |
Tmax, Tmin, Tave, Pr, RHave | ||||||||
ANN5 | 0.901 | 0.564 | 14.701 | 11.153 | 0.903 | 0.563 | 14.718 | 11.249 |
SVM5 | 0.896 | 0.573 | 15.071 | 11.343 | 0.899 | 0.569 | 14.973 | 11.371 |
RF5 | 0.984 | 0.227 | 5.957 | 4.495 | 0.889 | 0.601 | 15.753 | 12.025 |
XGBoost5 | 0.929 | 0.481 | 12.451 | 9.515 | 0.892 | 0.591 | 15.484 | 11.812 |
CatBoost5 | 0.927 | 0.489 | 12.583 | 9.678 | 0.897 | 0.579 | 15.145 | 11.573 |
Tmax, Tmin, Tave, RHave | ||||||||
ANN4 | 0.901 | 0.566 | 14.685 | 11.197 | 0.902 | 0.567 | 14.748 | 11.325 |
SVM4 | 0.896 | 0.575 | 15.077 | 11.367 | 0.899 | 0.569 | 14.991 | 11.367 |
RF4 | 0.984 | 0.229 | 5.980 | 4.529 | 0.887 | 0.608 | 15.889 | 12.149 |
XGBoost4 | 0.929 | 0.482 | 12.427 | 9.531 | 0.892 | 0.593 | 15.518 | 11.848 |
CatBoost4 | 0.928 | 0.489 | 12.554 | 9.679 | 0.896 | 0.580 | 15.180 | 11.586 |
Tmax, Tmin, Tave | ||||||||
ANN3 | 0.850 | 0.686 | 18.105 | 13.574 | 0.850 | 0.683 | 18.284 | 13.649 |
SVM3 | 0.846 | 0.694 | 18.302 | 13.725 | 0.849 | 0.687 | 18.355 | 13.731 |
RF3 | 0.977 | 0.268 | 7.116 | 5.292 | 0.832 | 0.727 | 19.327 | 14.525 |
XGBoost3 | 0.892 | 0.589 | 15.359 | 11.658 | 0.839 | 0.714 | 18.901 | 14.280 |
CatBoost3 | 0.886 | 0.605 | 15.737 | 11.971 | 0.846 | 0.701 | 18.524 | 14.011 |
Model | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
R2 | MAE, mm | RMSEn, % | Se, % | R2 | MAE, mm | RMSEn, % | Se, % | |
Tmax, Tmin, Tave, Pr, RHmax, RHmin, RHave, U2, Ra, Rs | ||||||||
ANN10 | 1.000 | 0.040 | 1.063 | 0.762 | 0.999 | 0.044 | 1.224 | 0.848 |
SVM10 | 0.999 | 0.051 | 1.816 | 0.977 | 0.998 | 0.057 | 2.250 | 1.101 |
RF10 | 0.999 | 0.045 | 1.346 | 0.859 | 0.995 | 0.114 | 3.521 | 2.219 |
XGBoost10 | 0.999 | 0.059 | 1.506 | 1.137 | 0.997 | 0.101 | 2.879 | 1.955 |
CatBoost10 | 1.000 | 0.030 | 0.729 | 0.568 | 0.999 | 0.043 | 1.227 | 0.833 |
Tmax, Tmin, Tave, Pr, RHave, U2, Ra, Rs | ||||||||
ANN8 | 0.999 | 0.051 | 1.393 | 0.987 | 0.999 | 0.055 | 1.587 | 1.063 |
SVM8 | 0.999 | 0.055 | 1.956 | 1.054 | 0.998 | 0.062 | 2.530 | 1.196 |
RF8 | 0.999 | 0.046 | 1.356 | 0.876 | 0.995 | 0.118 | 3.607 | 2.294 |
XGBoost8 | 0.999 | 0.063 | 1.625 | 1.220 | 0.997 | 0.104 | 2.988 | 2.015 |
CatBoost8 | 1.000 | 0.041 | 1.055 | 0.792 | 0.999 | 0.060 | 1.730 | 1.155 |
Tmax, Tmin, Tave, Pr, RHave, U2, Rs | ||||||||
ANN7 | 0.997 | 0.102 | 2.723 | 1.964 | 0.997 | 0.103 | 2.832 | 1.995 |
SVM7 | 0.996 | 0.103 | 3.051 | 1.977 | 0.995 | 0.106 | 3.510 | 2.061 |
RF7 | 0.999 | 0.055 | 1.559 | 1.060 | 0.994 | 0.139 | 4.014 | 2.704 |
XGBoost7 | 0.998 | 0.092 | 2.406 | 1.763 | 0.995 | 0.131 | 3.601 | 2.534 |
CatBoost7 | 0.998 | 0.081 | 2.139 | 1.552 | 0.997 | 0.104 | 2.890 | 2.014 |
Tmax, Tmin, Tave, Pr, RHave, U2 | ||||||||
ANN6 | 0.966 | 0.364 | 9.247 | 7.006 | 0.962 | 0.379 | 9.767 | 7.361 |
SVM6 | 0.961 | 0.376 | 9.862 | 7.239 | 0.959 | 0.382 | 10.131 | 7.416 |
RF6 | 0.994 | 0.154 | 4.006 | 2.960 | 0.957 | 0.404 | 10.457 | 7.848 |
XGBoost6 | 0.974 | 0.308 | 7.977 | 5.926 | 0.959 | 0.394 | 10.194 | 7.660 |
CatBoost6 | 0.974 | 0.314 | 8.059 | 6.046 | 0.962 | 0.381 | 9.853 | 7.401 |
Tmax, Tmin, Tave, Pr, RHave | ||||||||
ANN5 | 0.904 | 0.609 | 15.438 | 11.719 | 0.904 | 0.610 | 15.597 | 11.848 |
SVM5 | 0.900 | 0.619 | 15.778 | 11.899 | 0.899 | 0.619 | 15.957 | 12.025 |
RF5 | 0.985 | 0.243 | 6.204 | 4.677 | 0.896 | 0.633 | 16.232 | 12.294 |
XGBoost5 | 0.931 | 0.517 | 13.063 | 9.948 | 0.899 | 0.623 | 15.982 | 12.095 |
CatBoost5 | 0.929 | 0.526 | 13.224 | 10.119 | 0.901 | 0.619 | 15.841 | 12.025 |
Tmax, Tmin, Tave, RHave | ||||||||
ANN4 | 0.903 | 0.613 | 15.506 | 11.797 | 0.904 | 0.611 | 15.568 | 11.858 |
SVM4 | 0.899 | 0.619 | 15.798 | 11.913 | 0.900 | 0.617 | 15.898 | 11.976 |
RF4 | 0.984 | 0.244 | 6.219 | 4.689 | 0.894 | 0.637 | 16.354 | 12.368 |
XGBoost4 | 0.932 | 0.518 | 13.014 | 9.954 | 0.897 | 0.629 | 16.121 | 12.207 |
CatBoost4 | 0.929 | 0.531 | 13.300 | 10.213 | 0.900 | 0.622 | 15.921 | 12.089 |
Tmax, Tmin, Tave | ||||||||
ANN3 | 0.851 | 0.757 | 19.217 | 14.557 | 0.850 | 0.759 | 19.457 | 14.747 |
SVM3 | 0.845 | 0.772 | 19.592 | 14.842 | 0.845 | 0.769 | 19.781 | 14.939 |
RF3 | 0.975 | 0.302 | 7.826 | 5.801 | 0.830 | 0.795 | 20.737 | 15.450 |
XGBoost3 | 0.888 | 0.659 | 16.695 | 12.680 | 0.841 | 0.777 | 20.018 | 15.089 |
CatBoost3 | 0.883 | 0.673 | 17.033 | 12.952 | 0.846 | 0.767 | 19.718 | 14.904 |
Model | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
R2 | MAE, mm | RMSEn, % | Se, % | R2 | MAE, mm | RMSEn, % | Se, % | |
Tmax, Tmin, Tave, Pr, RHmax, RHmin, RHave, U2, Ra, Rs | ||||||||
ANN10 | 0.999 | 0.062 | 1.240 | 0.833 | 0.999 | 0.072 | 1.450 | 0.932 |
SVM10 | 0.999 | 0.086 | 1.733 | 1.004 | 0.997 | 0.134 | 2.705 | 1.138 |
RF10 | 0.999 | 0.063 | 1.277 | 0.827 | 0.994 | 0.181 | 3.662 | 2.235 |
XGBoost10 | 0.999 | 0.071 | 1.432 | 1.087 | 0.996 | 0.147 | 2.985 | 1.906 |
CatBoost10 | 1.000 | 0.038 | 0.759 | 0.588 | 0.999 | 0.073 | 1.479 | 0.877 |
Tmax, Tmin, Tave, Pr, RHave, U2, Ra, Rs | ||||||||
ANN8 | 0.999 | 0.074 | 1.488 | 1.007 | 0.999 | 0.086 | 1.748 | 1.092 |
SVM8 | 0.998 | 0.092 | 1.856 | 1.049 | 0.996 | 0.142 | 2.879 | 1.186 |
RF8 | 0.999 | 0.065 | 1.316 | 0.854 | 0.994 | 0.186 | 3.756 | 2.339 |
XGBoost8 | 0.999 | 0.080 | 1.604 | 1.210 | 0.996 | 0.152 | 3.069 | 2.016 |
CatBoost8 | 0.999 | 0.055 | 1.100 | 0.826 | 0.999 | 0.092 | 1.863 | 1.165 |
Tmax, Tmin, Tave, Pr, RHave, U2, Rs | ||||||||
ANN7 | 0.996 | 0.141 | 2.834 | 2.013 | 0.996 | 0.157 | 3.182 | 2.218 |
SVM7 | 0.996 | 0.156 | 3.148 | 2.043 | 0.993 | 0.203 | 4.107 | 2.300 |
RF7 | 0.999 | 0.076 | 1.520 | 1.041 | 0.991 | 0.225 | 4.564 | 3.042 |
XGBoost7 | 0.997 | 0.122 | 2.450 | 1.779 | 0.993 | 0.202 | 4.092 | 2.775 |
CatBoost7 | 0.998 | 0.114 | 2.296 | 1.655 | 0.995 | 0.163 | 3.299 | 2.244 |
Tmax, Tmin, Tave, Pr, RHave, U2 | ||||||||
ANN6 | 0.949 | 0.526 | 10.591 | 8.200 | 0.946 | 0.544 | 11.010 | 8.469 |
SVM6 | 0.942 | 0.560 | 11.284 | 8.305 | 0.940 | 0.573 | 11.596 | 8.455 |
RF6 | 0.991 | 0.220 | 4.421 | 3.343 | 0.937 | 0.590 | 11.954 | 9.041 |
XGBoost6 | 0.963 | 0.447 | 8.996 | 6.883 | 0.939 | 0.581 | 11.760 | 8.919 |
CatBoost6 | 0.962 | 0.456 | 9.175 | 7.058 | 0.943 | 0.562 | 11.371 | 8.651 |
Tmax, Tmin, Tave, Pr, RHave | ||||||||
ANN5 | 0.897 | 0.746 | 15.019 | 11.580 | 0.893 | 0.765 | 15.499 | 11.854 |
SVM5 | 0.894 | 0.758 | 15.260 | 11.601 | 0.892 | 0.769 | 15.580 | 11.781 |
RF5 | 0.984 | 0.298 | 5.998 | 4.535 | 0.883 | 0.801 | 16.219 | 12.284 |
XGBoost5 | 0.927 | 0.627 | 12.629 | 9.672 | 0.890 | 0.779 | 15.774 | 11.950 |
CatBoost5 | 0.926 | 0.632 | 12.729 | 9.816 | 0.892 | 0.771 | 15.606 | 11.803 |
Tmax, Tmin, Tave, RHave | ||||||||
ANN4 | 0.899 | 0.564 | 14.873 | 11.366 | 0.894 | 0.580 | 15.461 | 11.750 |
SVM4 | 0.893 | 0.578 | 15.305 | 11.643 | 0.892 | 0.584 | 15.632 | 11.835 |
RF4 | 0.983 | 0.227 | 6.039 | 4.570 | 0.881 | 0.612 | 16.339 | 12.398 |
XGBoost4 | 0.927 | 0.484 | 12.659 | 9.743 | 0.887 | 0.598 | 15.937 | 12.103 |
CatBoost4 | 0.926 | 0.489 | 12.742 | 9.842 | 0.890 | 0.590 | 15.752 | 11.950 |
Tmax, Tmin, Tave | ||||||||
ANN3 | 0.865 | 0.853 | 17.187 | 13.142 | 0.862 | 0.872 | 17.655 | 13.489 |
SVM3 | 0.862 | 0.865 | 17.418 | 13.187 | 0.860 | 0.877 | 17.759 | 13.469 |
RF3 | 0.978 | 0.348 | 7.018 | 5.269 | 0.846 | 0.919 | 18.603 | 14.184 |
XGBoost3 | 0.902 | 0.729 | 14.689 | 11.217 | 0.854 | 0.896 | 18.143 | 13.814 |
CatBoost3 | 0.896 | 0.749 | 15.087 | 11.534 | 0.857 | 0.887 | 17.957 | 13.681 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsadek, E.A.; Ali, M.A.H.; Williams, C.; Thorp, K.R.; Elshikha, D.E.M. A Novel Framework for Predicting Daily Reference Evapotranspiration Using Interpretable Machine Learning Techniques. Agriculture 2025, 15, 1985. https://doi.org/10.3390/agriculture15181985
Elsadek EA, Ali MAH, Williams C, Thorp KR, Elshikha DEM. A Novel Framework for Predicting Daily Reference Evapotranspiration Using Interpretable Machine Learning Techniques. Agriculture. 2025; 15(18):1985. https://doi.org/10.3390/agriculture15181985
Chicago/Turabian StyleElsadek, Elsayed Ahmed, Mosaad Ali Hussein Ali, Clinton Williams, Kelly R. Thorp, and Diaa Eldin M. Elshikha. 2025. "A Novel Framework for Predicting Daily Reference Evapotranspiration Using Interpretable Machine Learning Techniques" Agriculture 15, no. 18: 1985. https://doi.org/10.3390/agriculture15181985
APA StyleElsadek, E. A., Ali, M. A. H., Williams, C., Thorp, K. R., & Elshikha, D. E. M. (2025). A Novel Framework for Predicting Daily Reference Evapotranspiration Using Interpretable Machine Learning Techniques. Agriculture, 15(18), 1985. https://doi.org/10.3390/agriculture15181985