Climatic and Topographic Controls on Soil Organic Matter Heterogeneity in Northeast China’s Black Soil Region: Implications for Sustainable Management
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Data Sources of Influencing Factors
2.4. Geodetector Model
Interactive Forms | Criterion | |
---|---|---|
Nonlinear attenuation: | ||
Single factor nonlinear attenuation: | ||
Double factor enhancement: | ||
Mutual independence: | ||
Nonlinear enhancement: | ||
2.5. Spatial Autocorrelation Analysis
3. Results
3.1. Spatial Distribution Characteristics of SOM in Northeast China
3.2. Spatial Autocorrelation of SOM in Northeast China
3.3. Drivers of SOM Spatial Distribution in Northeast China
3.4. Provincial Differences in Drivers of SOM Spatial Distribution
4. Discussion
4.1. Dominant Role of Climate Factors in Regional-Scale SOM Spatial Patterns
4.2. Divergent Drivers of SOM Spatial Differentiation: Unveiling Province-Specific Mechanisms
4.3. Implications for Black Soil Conservation and Agricultural Management
4.4. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neely, C.; Bunning, S.; Wilkes, A. Review of Evidence on Drylands Pastoral Systems and Climate Change; FAO: Rome, Italy, 2009. [Google Scholar]
- Kong, D.; Luo, C.; Liu, H. Integrative remote sensing and machine learning approaches for SOC and TN spatial distribution: Unveiling C: N ratio in Black Soil region. Soil Tillage Res. 2026, 255, 106809. [Google Scholar] [CrossRef]
- Meena, R.S. Significance of Soil Organic Matter to Soil Quality and Evaluation of Sustainability. In Sustainable Agriculture; Scientific Publishers: Jodhpur, India, 2019; pp. 357–381. [Google Scholar]
- Kong, D.; Chu, N.; Luo, C.; Liu, H. Analyzing spatial distribution and influencing factors of soil organic matter in cultivated land of northeast China: Implications for black soil protection. Land 2024, 13, 1028. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef]
- Dungait, J.A.; Hopkins, D.W.; Gregory, A.S.; Whitmore, A.P. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Change Biol. 2012, 18, 1781–1796. [Google Scholar] [CrossRef]
- Azadmard, B.; Mosaddeghi, M.R.; Ayoubi, S.; Chavoshi, E.; Raoof, M. Spatial variability of near-saturated soil hydraulic properties in Moghan plain, North-Western Iran. Arab. J. Geosci. 2018, 11, 452. [Google Scholar] [CrossRef]
- Marchetti, A.; Piccini, C.; Francaviglia, R.; Mabit, L. Spatial distribution of soil organic matter using geostatistics: A key indicator to assess soil degradation status in central Italy. Pedosphere 2012, 22, 230–242. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, S.; Wang, L.; Dai, X.; Zang, D.; Qi, B.; Meng, X.; Mei, X.; Luo, C.; Liu, H. Systematic identification of factors influencing the spatial distribution of soil organic matter in croplands within the black soil region of Northeastern China across multiple scales. Catena 2025, 249, 108633. [Google Scholar] [CrossRef]
- Zhang, B.; Niu, L.; Jia, T.; Yu, X.; She, D. Spatial variability of soil organic matter and total nitrogen and the influencing factors in Huzhu County of Qinghai Province, China. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2022, 72, 576–588. [Google Scholar] [CrossRef]
- Du, Z.; Gao, B.; Ou, C.; Du, Z.; Yang, J.; Batsaikhan, B.; Dorjgotov, B.; Yun, W.; Zhu, D. A quantitative analysis of factors influencing organic matter concentration in the topsoil of black soil in northeast China based on spatial heterogeneous patterns. ISPRS Int. J. Geo-Inf. 2021, 10, 348. [Google Scholar] [CrossRef]
- Hu, K.; Wang, S.; Li, H.; Huang, F.; Li, B. Spatial scaling effects on variability of soil organic matter and total nitrogen in suburban Beijing. Geoderma 2014, 226, 54–63. [Google Scholar] [CrossRef]
- Xie, E.; Zhang, Y.; Huang, B.; Zhao, Y.; Shi, X.; Hu, W.; Qu, M. Spatiotemporal variations in soil organic carbon and their drivers in southeastern China during 1981–2011. Soil Tillage Res. 2021, 205, 104763. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Z.; Zhao, M.; Song, X.; Liu, X.; Zhang, X. The quantified and major influencing factors on spatial distribution of soil organic matter in provincial-scale farmland—A case study of shandong province in Eastern China. Appl. Sci. 2023, 13, 3738. [Google Scholar] [CrossRef]
- Wu, X.; Cai, C.; Yuan, Z.; Li, D.; Zhou, J.; Huang, C. Contributions of climate and soil properties to geographic variations of soil organic matter across the East Asian monsoon region. Soil Tillage Res. 2023, 234, 105845. [Google Scholar] [CrossRef]
- Luo, C.; Zhang, W.; Zhang, X.; Liu, H. Mapping soil organic matter content using Sentinel-2 synthetic images at different time intervals in Northeast China. Int. J. Digit. Earth 2023, 16, 1094–1107. [Google Scholar] [CrossRef]
- Li, M.; Shi, X.; Shen, Z.; Yang, E.; Bao, H.; Ni, Y. Effect of hillslope aspect on landform characteristics and erosion rates. Environ. Monit. Assess. 2019, 191, 598. [Google Scholar] [CrossRef] [PubMed]
- Singh, S. Understanding the role of slope aspect in shaping the vegetation attributes and soil properties in Montane ecosystems. Trop. Ecol. 2018, 59, 417–430. [Google Scholar]
- von Lützow, M.; Kögel-Knabner, I. Temperature sensitivity of soil organic matter decomposition—What do we know? Biol. Fertil. Soils 2009, 46, 1–15. [Google Scholar] [CrossRef]
- Cui, Y.; Fang, L.; Deng, L.; Guo, X.; Han, F.; Ju, W.; Wang, X.; Chen, H.; Tan, W.; Zhang, X. Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region. Sci. Total Environ. 2019, 658, 1440–1451. [Google Scholar] [CrossRef]
- Delgado, A.; Gómez, J.A. The Soil: Physical, Chemical, and Biological Properties. In Principles of Agronomy for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2024; pp. 15–30. [Google Scholar]
- Pettorelli, N. The Normalized Difference Vegetation Index; Oxford University Press: Oxford, MS, USA, 2013. [Google Scholar]
- Zhao, M.; Tian, Y.; Dong, N.; Hu, Y.; Tian, G.; Lei, Y. Spatial and temporal dynamics of habitat quality in response to socioeconomic and landscape patterns in the context of urbanization: A case in Zhengzhou City, China. Nat. Conserv. 2022, 48, 185–212. [Google Scholar] [CrossRef]
- Bürgi, M.; Turner, M.G. Factors and processes shaping land cover and land cover changes along the Wisconsin River. Ecosystems 2002, 5, 184–201. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Li, F.; Nan, T.; Zhang, H.; Luo, K.; Xiang, K.; Peng, Y. Evaluating Ecological Vulnerability and Its Driving Mechanisms in the Dongting Lake Region from a Multi-Method Integrated Perspective: Based on Geodetector and Explainable Machine Learning. Land 2025, 14, 1435. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, D.; Gao, Y.; Zhang, Z.; Chang, Q. Examining the driving factors of SOM using a multi-scale GWR model augmented by geo-detector and GWPCA analysis. Agronomy 2022, 12, 1697. [Google Scholar] [CrossRef]
- Khan, M.T.; Supronienė, S.; Žvirdauskienė, R.; Aleinikovienė, J. Climate, Soil, and Microbes: Interactions Shaping Organic Matter Decomposition in Croplands. Agronomy 2025, 15, 1928. [Google Scholar] [CrossRef]
- Li, S.; Delgado-Baquerizo, M.; Ding, J.; Hu, H.; Huang, W.; Sun, Y.; Ni, H.; Kuang, Y.; Yuan, M.M.; Zhou, J. Intrinsic microbial temperature sensitivity and soil organic carbon decomposition in response to climate change. Glob. Change Biol. 2024, 30, e17395. [Google Scholar] [CrossRef]
- Feng, J.; Zeng, X.-M.; Zhang, Q.; Zhou, X.-Q.; Liu, Y.-R.; Huang, Q. Soil microbial trait-based strategies drive metabolic efficiency along an altitude gradient. ISME Commun. 2021, 1, 71. [Google Scholar] [CrossRef]
- Cruz-Paredes, C.; Tájmel, D.; Rousk, J. Can moisture affect temperature dependences of microbial growth and respiration? Soil Biol. Biochem. 2021, 156, 108223. [Google Scholar] [CrossRef]
- De Silva, S.; Kariyawasam Hetti Gamage, L.; Thapa, V.R. Impact of Drought on Soil Microbial Communities. Microorganisms 2025, 13, 1625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ding, Y.; He, Y.; Yan, S.; Jiang, X.; Guo, Y.; Ran, L. The Response and Attribution of Vegetation Productivity Sensitivity to Drought in Northwest China. SSRN 2025, SSRN 5346798. [Google Scholar]
- Wang, C.; Li, Z.; Chen, Y.; Li, Y.; Ouyang, L.; Zhu, J.; Sun, F.; Song, S.; Li, H. Changes in global heatwave risk and its drivers over one century. Earth’s Future 2024, 12, e2024EF004430. [Google Scholar] [CrossRef]
- Zhou, P.; Tian, L.; Graham, N.; Song, S.; Zhao, R.; Siddique, M.S.; Hu, Y.; Cao, X.; Lu, Y.; Elimelech, M. Spatial patterns and environmental functions of dissolved organic matter in grassland soils of China. Nat. Commun. 2024, 15, 6356. [Google Scholar] [CrossRef]
- Alvarez, R.; Lavado, R.S. Climate, organic matter and clay content relationships in the Pampa and Chaco soils, Argentina. Geoderma 1998, 83, 127–141. [Google Scholar] [CrossRef]
- Trujillo, W.; Fonte, S.J.; Schipanski, M.E.; Peterson, G.A. Managing Soil Organic Matter for Alleviating Drought Stress in Dryland Farming in North American Great Plains. In Soil Organic Carbon and Feeding the Future; CRC Press: Boca Raton, FL, USA, 2021; pp. 253–272. [Google Scholar]
- Fernández, D.S.; Puchulu, M.E.; Rostagno, C.M.; La Manna, L.; Becker, A.R.; Grumelli, M.d.T.; Schiavo, H.F. Agricultural land degradation in Argentina. In Impact of Agriculture on Soil Degradation I: Perspectives from Africa, Asia, America and Oceania; Springer: Cham, Switzerland, 2022; pp. 1–47. [Google Scholar]
- Lisetskii, F.N.; Buryak, Z.A.; Marinina, O.A.; Ukrainskiy, P.A.; Goleusov, P.V. Features of soil organic carbon transformations in the Southern area of the East European plain. Geosciences 2023, 13, 278. [Google Scholar] [CrossRef]
- Geremew, B.; Tadesse, T.; Bedadi, B.; Gollany, H.T.; Tesfaye, K.; Aschalew, A. Impact of land use/cover change and slope gradient on soil organic carbon stock in Anjeni watershed, Northwest Ethiopia. Environ. Monit. Assess. 2023, 195, 971. [Google Scholar] [CrossRef]
- Fang, Q.; Hong, H.; Algeo, T.J.; Huang, X.; Sun, A.; Churchman, G.J.; Chorover, J.; Chen, S.; Liu, Y. Microtopography-mediated hydrologic environment controls elemental migration and mineral weathering in subalpine surface soils of subtropical monsoonal China. Geoderma 2019, 344, 82–98. [Google Scholar] [CrossRef]
- Du, C.; Li, L.; Effah, Z. Effects of straw mulching and reduced tillage on crop production and environment: A review. Water 2022, 14, 2471. [Google Scholar] [CrossRef]
- King, A.E.; Blesh, J. Crop rotations for increased soil carbon: Perenniality as a guiding principle. Ecol. Appl. 2018, 28, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Singh, P.; Chauhan, S.; Choudhary, O. Landscape position and slope aspects impacts on soil organic carbon pool and biological indicators of a fragile ecosystem in high-altitude cold arid region. J. Soil Sci. Plant Nutr. 2022, 22, 2612–2632. [Google Scholar] [CrossRef]
- Sharma, S.; Bala, N.; Sharma, P.; Singh, J.; Bahel, S.; Katnoria, J.K. Integrated Remedial and Management Strategies for Sustaining Mountainous Soil. In Understanding Soils of Mountainous Landscapes; Elsevier: Amsterdam, The Netherlands, 2023; pp. 43–57. [Google Scholar]
- Arnhold, S.; Lindner, S.; Lee, B.; Martin, E.; Kettering, J.; Nguyen, T.T.; Koellner, T.; Ok, Y.S.; Huwe, B. Conventional and organic farming: Soil erosion and conservation potential for row crop cultivation. Geoderma 2014, 219, 89–105. [Google Scholar] [CrossRef]
- de Nijs, E.A.; Cammeraat, E.L. The stability and fate of Soil Organic Carbon during the transport phase of soil erosion. Earth-Sci. Rev. 2020, 201, 103067. [Google Scholar] [CrossRef]
- Wade, M.R.; Gurr, G.M.; Wratten, S.D. Ecological restoration of farmland: Progress and prospects. Philos. Trans. R. Soc. B—Biol. Sci. 2008, 363, 831–847. [Google Scholar] [CrossRef] [PubMed]
- Saturday, A. Restoration of degraded agricultural land: A review. J. Environ. Health Sci. 2018, 4, 44–51. [Google Scholar]
- Thapa, B.; Cassel, D.; Garrity, D.P. Ridge tillage and contour natural grass barrier strips reduce tillage erosion. Soil Tillage Res. 1999, 51, 341–356. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, J.; Manuel, D.-B.; De Beeck, M.O.; Shahbaz, M.; Chen, Y.; Deng, X.; Xu, Z.; Li, J.; Liu, Z. Rotation cropping and organic fertilizer jointly promote soil health and crop production. J. Environ. Manag. 2022, 315, 115190. [Google Scholar] [CrossRef] [PubMed]
- Campbell, E.E.; Paustian, K. Current developments in soil organic matter modeling and the expansion of model applications: A review. Environ. Res. Lett. 2015, 10, 123004. [Google Scholar] [CrossRef]
Code | Name | Resolution | Source |
---|---|---|---|
UI | Urbanization intensity index | 1 km | https://www.geodata.cn (accessed on 11 August 2025) |
NL | Nighttime light index | 500 m | https://www.geodata.cn (accessed on 11 August 2025) |
CEC | Cation exchange capacity | 250 m | https://www.geodata.cn (accessed on 11 August 2025) |
NDVI | Normalized difference vegetation index | 250 m | https://data.tpdc.ac.cn (accessed on 11 August 2025) |
DEM | Elevation | 30 m | https://earthengine.google.com (accessed on 11 August 2025) |
Slope | Slope | 30 m | https://earthengine.google.com (accessed on 11 August 2025) |
pH | Soil pH | 30 m | https://www.geodata.cn (accessed on 11 August 2025) |
POP | Population density | 100 m | https://www.geodata.cn (accessed on 11 August 2025) |
Temp | Mean annual temperature | 1 km | https://www.geodata.cn (accessed on 11 August 2025) |
Pre | Mean annual precipitation | 1 km | https://www.geodata.cn (accessed on 11 August 2025) |
vpd | Vapor pressure deficit | 4 km | https://www.climatologylab.org/ (accessed on 11 August 2025) |
pet | Potential evapotranspiration | 4 km | https://www.climatologylab.org/ (accessed on 11 August 2025) |
q | Runoff | 4 km | https://www.climatologylab.org/ (accessed on 11 August 2025) |
Soil | Soil moisture | 4 km | https://www.climatologylab.org/ (accessed on 11 August 2025) |
Srad | Solar radiation | 4 km | https://www.climatologylab.org/ (accessed on 11 August 2025) |
Index | Moran’s I | Expectation Index | z Score | p Value |
---|---|---|---|---|
Value | 0.730 | −0.003 | 34.334 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, D.; Chu, N.; Luo, C. Climatic and Topographic Controls on Soil Organic Matter Heterogeneity in Northeast China’s Black Soil Region: Implications for Sustainable Management. Agriculture 2025, 15, 1983. https://doi.org/10.3390/agriculture15181983
Kong D, Chu N, Luo C. Climatic and Topographic Controls on Soil Organic Matter Heterogeneity in Northeast China’s Black Soil Region: Implications for Sustainable Management. Agriculture. 2025; 15(18):1983. https://doi.org/10.3390/agriculture15181983
Chicago/Turabian StyleKong, Depiao, Nanchen Chu, and Chong Luo. 2025. "Climatic and Topographic Controls on Soil Organic Matter Heterogeneity in Northeast China’s Black Soil Region: Implications for Sustainable Management" Agriculture 15, no. 18: 1983. https://doi.org/10.3390/agriculture15181983
APA StyleKong, D., Chu, N., & Luo, C. (2025). Climatic and Topographic Controls on Soil Organic Matter Heterogeneity in Northeast China’s Black Soil Region: Implications for Sustainable Management. Agriculture, 15(18), 1983. https://doi.org/10.3390/agriculture15181983