Influence of Soil Physical and Hydraulic Properties on Cacao Productivity Under Agroforestry Systems in the Amazonian Piedmont
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Characterization of Soil Physical Properties
2.3. Soil Hydraulic Characteristics
2.4. Cocoa Productive and Yield Parameters
2.5. Data Analysis
3. Results
3.1. General Soil Characteristics in Cocoa-Based Agroforestry Systems in the Amazonian Piedmont
3.2. Soils in Cocoa-Based Agroforestry Systems in the Amazonian Piedmont
3.2.1. Sandy Loam with High Drainage and Productivity (HDP)
3.2.2. Sandy Clay Loam with Medium Structural Stability (MSS)
3.2.3. Sandy-Clay Loam with Low Structural Stability and Productivity (LSP)
3.3. Productivity and Its Relationship with Physical and Hydrological Variables in Amazonian Piedmont Soils
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramirez, L.D.; Parra, A.B.; Cuene, I.D. Estrategia para la Sostenibilidad de la Cadena de Cacao en Caquetá: Ruta Hacia la Acción Climática y la Construcción de paz; Centro Internacional de Agricultura Tropical (CIAT): Palmira, Colombia, 2023. [Google Scholar]
- González, S.R.; Moreno, A.P.; Yanes, M.T.; Medina, C.L.C.; Arango, P.C.Z. CACAO Agricultura Climáticamente Inteligente con Énfasis en Agroforestería; Editorial AGROSAVIA: Bogotá, Colombia, 2019; p. 78. [Google Scholar] [CrossRef]
- Somarriba, E. Sistemas Cacao-Plátano-Laurel: El Concepto; Serie Técnica Informe Técnico: Turrialba, Costa Rica, 1994. [Google Scholar]
- Barrezueta-Unda, S. Propiedades de algunos suelos cultivados con cacao en la provincia El Oro, Ecuador. Cienc. UAT Rev. En Internet 2019, 14, 155–166. [Google Scholar] [CrossRef]
- Orellana, R.; Méndez, R. Calidad del agroecosistema de producción de cacao (Theobroma cacao L.) en la finca Los Lirios municipio Sucre estado Portuguesa, Venezuela. Cienc. Tecnol. Agropecuaria 2020, 5, 3–8. [Google Scholar]
- Salazar, J.C.S.; Bieng, M.A.N.; Melgarejo, L.; Rienzo, J.A.D.; Casanoves, F. First typology of cacao (Theobroma cacao L.) systems in Colombian Amazonia, based on tree species richness, canopy structure and light availability. PLoS ONE 2018, 13, e0191003. [Google Scholar] [CrossRef]
- Hernández-Nuñez, H.E.; Suárez, J.C.; Andrade, H.J.; Acosta, J.R.S.; Núñez, R.D.; Gutiérrez, D.R.; Gutiérrez, G.A.; Gutiérrez-Montes, I.; Casanoves, F. Interactions between climate, shade canopy characteristics and cocoa production in Colombia. Front. Sustain. Food Syst. 2024, 8, 1295992. [Google Scholar] [CrossRef]
- Gamboa Tabares, J.A.; Rodríguez Ortiz, J.A.; Gamboa Tabares, A.; Durán Bautista, E.H.; Rojas Vargas, S. Evaluación agronómica de genotipos de Theobroma cacao L. en la Amazonia colombiana. Biotecnol. Sect. Agropecu. Agroind. 2020, 19, 244–255. [Google Scholar] [CrossRef]
- García-Lozano, J. Caracterización de las Respuestas Fisiológicas y Bioquímicas en Tres Clones de Cacao (Theobroma cacao L.) Sometidos a Diferentes Niveles de Déficit Hídrico. Doctoral Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2014. [Google Scholar]
- Polich, N. Redistribución del Agua en el Perfil del Suelo Bajo Siembra Directa: Influencia de las Propiedades Hidráulicas en Flujo no Saturado. Doctoral Thesis, Universidad Nacional de La Plata, Buenos Aires, Argentina, 2024. [Google Scholar]
- Reta, I.R.; Robles, E.L.; Calderon, C.A.; Pulido, S.B.; Favela, D.Á. Evaluación de las propiedades físicas e hidrológicas de un Vertisol con diferentes usos de suelo. Rev. Mex. Cienc. For. 2024, 15, 105–131. [Google Scholar]
- Souza, V.S.; da Silva Vanolli, B.; Schiebelbein, B.E.; de Souza Bortolo, L.; Carvalho, M.L.; Mendes, I.C.; Cherubin, M.R. Cover crops and soil health in Brazilian agricultural systems. In Soil Health and Sustainable Agriculture in Brazil; Wiley: Hoboken, NJ, USA, 2024; pp. 103–144. [Google Scholar]
- Sánchez, M.Á.; León, D.G.; Arce, S.M.; López, T.D.; Rodríguez, P.M. Manual Técnico del Cultivo de Cacao Prácticas Latinoamericanas; Instituto Interamericano de Cooperación para la Agricultura: San José, Costa Rica, 2017; Available online: http://www.iica.int (accessed on 1 September 2025).
- Mathura, N.; Arnold, W.; James, L.; Farrick, K.K. The impact of agricultural land cover change on soil hydraulic properties: Implications for runoff generation. Hydrol. Process 2025, 39, e70102. [Google Scholar] [CrossRef]
- Zamudio, A.; Carrascal, C.; Pulido, J.; Gallardo, E.; Avila, M.; Vargas, A. Métodos Analíticos Del Laboratorio de Suelos, 6th ed.; Instituto Geográfico Agustín Codazzi, Subdirección de Agrología: Bogotá, Colombia, 2006. [Google Scholar]
- Bouyoucus, G.I. Hydrometer method improved for making particle size analysis of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Bavel, C.H.M.v. Mean Weight-Diameter of Soil Aggregates as a Statistical Index of Aggregation. Soil Sci. Soc. Am. J. 1950, 14, 20–23. [Google Scholar] [CrossRef]
- Velasquez, E.; Lavelle, P.; Andrade, M. GISQ, a multifunctional indicator of soil quality. Soil Biol. Biochem. 2007, 39, 3066–3080. [Google Scholar] [CrossRef]
- Guimarães, R.M.L.; Ball, B.C.; Tormena, C.A. Improvements in the visual evaluation of soil structure. Soil Use Manag. 2011, 27, 395–403. [Google Scholar] [CrossRef]
- Tormena, C.A.; Karlen, D.L.; Logsdon, S.; Cherubin, M.R. Visual soil structure effects of tillage and corn stover harvest in Iowa. Soil Sci. Soc. Am. J. 2016, 80, 720–726. [Google Scholar] [CrossRef]
- Cherubin, M.R.; Franco, A.L.; Guimarães, R.M.; Tormena, C.A.; Cerri, C.E.; Karlen, D.L.; Cerri, C.C. Assessing soil structural quality under Brazilian sugarcane expansion areas using Visual Evaluation of Soil Structure (VESS). Soil Tillage Res. 2017, 173, 64–74. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Soil Quality Test Kit Guide; United States Department of Agriculture: Washington, DC, USA, 1999. [Google Scholar]
- Cornelis, W.M.; Ronsyn, J.; Meirvenne, M.; Van Hartmann, R. Evaluation of pedotransfer functions for predicting the soil moisture retention curve. Soil Sci. Soc. Am. J. 2001, 65, 638–648. [Google Scholar] [CrossRef]
- Schaap, M.G.; Leij, F.J.; Van Genuchten, M.T. rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 2001, 251, 163–176. [Google Scholar] [CrossRef]
- Vargas, A.; Somarriba, E.; Carballo, M. Dinámica poblacional del chinche (Monalonion dissimulatum Dist.) y daño de mazorcas en plantaciones orgánicas de cacao del Alto Beni, Bolivia. Agrofor. Las Am. 2005, 43, 72–76. [Google Scholar]
- Gil, J.G.R. Pérdidas económicas asociadas a la pudrición de la mazorca del cacao causada por Phytophthora spp. y Moniliophthora roreri (Cif y Par) Evans et al. en la hacienda Theobroma, Colombia. Rev. Prot. Veg. 2016, 31, 42–49. [Google Scholar]
- Jagoret, P.; Michel, I.; Ngnogué, H.T.; Lachenaud, P.; Snoeck, D.; Malézieux, E. Structural characteristics determine productivity in complex cocoa agroforestry systems. Agron. Sustain. Dev. 2017, 37, 60. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D. nlme: Linear and Nonlinear Mixed Effects Models; R Foundation: Vienna, Austria, 2018. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation: Vienna, Austria, 2013. [Google Scholar]
- Rienzo, J.A.D.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat Versión 2020. 2020. Available online: https://www.infostat.com.ar/ (accessed on 1 September 2025).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Moeys, J. soiltexture: Functions for Soil Texture Plot, Classification and Transformation; R Foundation: Vienna, Austria, 2024. [Google Scholar]
- Hamilton, N.E.; Ferry, M. ggtern: Ternary diagrams using ggplot2. J. Stat. Softw. Code Snippets 2018, 87, 1–17. [Google Scholar] [CrossRef]
- Dray, S.; Dufour, A.B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 2007, 22, 1–20. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses; R Foundation: Vienna, Austria, 2020. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation: Vienna, Austria, 2024. [Google Scholar]
- Garcia, G.A.G.; Gutiérrez-Montes, I.; Salazar, J.C.S.; Casanoves, F.; Suárez, D.R.G.; Hernández-Núñez, H.E.; Flora, C.B.; Sibelet, N. Contribution of local knowledge in cocoa (Theobroma cacao L.) to the well-being of cocoa families in Colombia: A response from the relationship. Agric. Hum. Values 2025, 42, 461–484. [Google Scholar]
- Zuidema, P.A.; Leffelaar, P.A.; Gerritsma, W.; Mommer, L.; Anten, N.P.R. A physiological production model for cocoa (Theobroma cacao): Model presentation, validation and application. Agric. Syst. 2005, 84, 195–225. [Google Scholar] [CrossRef]
- Lahive, F.; Hadley, P.; Daymond, A.J. The physiological responses of cacao to the environment and the implications for climate change resilience: A review. Agron. Sustain. Dev. 2019, 39, 5. [Google Scholar] [CrossRef]
- Gateau-Rey, L.; Tanner, E.V.J.; Rapidel, B.; Marelli, J.-P.; Royaert, S. Climate change could threaten cocoa production: Effects of 2015–16 El Niño-related drought on cocoa agroforests in Bahia, Brazil. PLoS ONE 2018, 13, e0200454. [Google Scholar] [CrossRef]
- Gama-Rodrigues, A.C.; Müller, M.W.; Gama-Rodrigues, E.F.; Mendes, F.A.T. Cacao-based agroforestry systems in the Atlantic Forest and Amazon Biomes: An ecoregional analysis of land use. Agric. Syst. 2021, 194, 103270. [Google Scholar] [CrossRef]
- Schwendenmann, L.; Veldkamp, E.; Moser, G.; Hölscher, D.; Köhler, M.; Clough, Y.; Anas, I.; Djajakirana, G.; Erasmi, S.; Hertel, D.; et al. Effects of an experimental drought on the functioning of a cacao agroforestry system, Sulawesi, Indonesia. Glob. Change Biol. 2010, 16, 1515–1530. [Google Scholar] [CrossRef]
- Ferreira, T.R.; Archilha, N.L.; Cássaro, F.A.; Pires, L.F. How can pore characteristics of soil aggregates from contrasting tillage systems affect their intrinsic permeability and hydraulic conductivity? Soil Tillage Res. 2023, 230, 105704. [Google Scholar] [CrossRef]
- Pereira, D.G.C.; Portugal, A.F.; Giustolin, T.A.; Maia, V.M.; Megda, M.X.V.; Kondo, M.K. Litter decomposition and nutrient release in different land use systems in the Brazilian semi-arid region. Catena 2023, 231, 107345. [Google Scholar] [CrossRef]
- Rupngam, T.; Messiga, A.J. Unraveling the interactions between flooding dynamics and agricultural productivity in a changing climate. Sustainability 2024, 16, 6141. [Google Scholar] [CrossRef]
- De Souza Júnior, J.O.; da Silveira, F.G.F.; da Silva Pereira, B.L.; Mateus-Rodríguez, J.F.; Baligar, V.C.; Ahnert, D. Edaphic and physiographic attributes and death of cacao trees in drought years. Agron. J. 2023, 115, 1069–1084. [Google Scholar] [CrossRef]
- De Lima, R.P.; Rolim, M.M.; Toledo, M.P.; Tormena, C.A.; da Silva, A.R.; e Silva, I.A.C.; Pedrosa, E.M. Texture and degree of compactness effect on the pore size distribution in weathered tropical soils. Soil Tillage Res. 2022, 215, 105215. [Google Scholar] [CrossRef]
- Duchene, O.; Capowiez, Y.; Vian, J.F.; Ducasse, V.; Cadiergues, A.; Lhuillery, T.; Peigné, J. Conservation tillage influences soil structure, earthworm communities and wheat root traits in a long-term organic cropping experiment. Plant Soil 2024, 503, 183–200. [Google Scholar]
- Bekele, E.; Abera, G.; Temesgen, H. Effects of agroforestry land use on soil physicochemical properties and soil quality in Gilgel Gibe I catchment, Southwestern Ethiopia. Environ. Dev. Sustain. 2025, 27, 5313–5336. [Google Scholar]
- Wang, Y.; Zhang, B.; Banwart, S.A. Reduced subsurface lateral flow in agroforestry system is balanced by increased water retention capacity. Adv. Agron. 2017, 142, 73–79. [Google Scholar] [CrossRef]
- Saputra, D.D.; Sari, R.R.; Hairiah, K.; Roshetko, J.M.; Suprayogo, D.; van Noordwijk, M. Can cocoa agroforestry restore degraded soil structure following conversion from forest to agricultural use? Agrofor. Syst. 2020, 94, 2261–2276. [Google Scholar] [CrossRef]
- Arévalo-Gardini, E.; Canto, M.; Alegre, J.; Loli, O.; Julca, A.; Baligar, V. Changes in Soil Physical and Chemical Properties in Long Term Improved Natural and Traditional Agroforestry Management Systems of Cacao Genotypes in Peruvian Amazon. PLoS ONE 2015, 10, e0132147. [Google Scholar] [CrossRef]
- Heming, N.M.; Schroth, G.; Talora, D.C.; Faria, D. Cabruca agroforestry systems reduce vulnerability of cacao plantations to climate change in southern Bahia. Agron. Sustain. Dev. 2022, 42, 48. [Google Scholar] [CrossRef]
- Niether, W.; Armengot, L.; Andres, C.; Schneider, M.; Gerold, G. Shade trees and tree pruning alter throughfall and microclimate in cocoa (Theobroma cacao L.) production systems. Ann. For. Sci. 2018, 75, 38. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Y.; Cao, Q.; Shen, Y.; Zhang, B. Modeling the coupling processes of evapotranspiration and soil water balance in agroforestry systems. Agric. Water Manag. 2021, 250, 106839. [Google Scholar] [CrossRef]
- Lozano-Baez, S.E.; Cooper, M.; Meli, P.; Ferraz, S.F.B.; Rodrigues, R.R.; Sauer, T.J. Land restoration by tree planting in the tropics and subtropics improves soil infiltration, but some critical gaps still hinder conclusive results. For. Ecol. Manag. 2019, 444, 89–95. [Google Scholar] [CrossRef]
- Sarto, M.V.M.; Borges, W.L.B.; Bassegio, D.; Nunes, M.R.; Rice, C.W.; Rosolem, C.A. Deep soil water content and forage production in a tropical agroforestry system. Agriculture 2022, 12, 359. [Google Scholar] [CrossRef]
- François, M.; Pontes, M.C.G.; da Silva, A.; Mariano-Neto, E. Impacts of cacao agroforestry systems on climate change, soil conservation, and water resources: A review. Water Policy 2023, 25, 564–581. [Google Scholar] [CrossRef]
- Leite, J.O.; Zevallos, A.C.C. Rainwater, water table and soil moisture in a hillslope. In Proceedings of the International Conference on Rain, Water and Cistern Systems, Keelung, Taiwan, 4–10 August 1991; pp. 381–386. [Google Scholar]
- Moser, G.; Leuschner, C.; Hertel, D.; Hölscher, D.; Köhler, M.; Leitner, D.; Michalzik, B.; Prihastanti, E.; Tjitrosemito, S.; Schwendenmann, L. Response of cocoa trees (Theobroma cacao) to a 13-month desiccation period in Sulawesi, Indonesia. Agrofor. Syst. 2010, 79, 171–187. [Google Scholar] [CrossRef]
Parameters | Variables | Acronym | MSS | HDP | LSP | General | p-Value | |
---|---|---|---|---|---|---|---|---|
Physical | Sand | S | 69.49 ± 1.15 a | 71.2 ± 1.42 a | 53.39 ± 0.88 b | 66.22 ± 0.96 | <0.0001 | *** |
Clay | C | 20.57 ± 1.01 b | 19.14 ± 1.01 b | 22.62 ± 0.67 a | 20.62 ± 0.59 | 0.0128 | ** | |
Silt | Si | 9.95 ± 0.66 b | 9.67 ± 0.74 b | 23.99 ± 0.75 a | 13.17 ± 0.69 | <0.0001 | *** | |
Weighted mean diameter | WMD | 0.84 ± 0.05 a | 0.95 ± 0.04 a | 0.47 ± 0.04 b | 0.79 ± 0.03 | <0.0001 | *** | |
Structural stability of aggregates | SSA | 84.75 ± 0.95 b | 88.5 ± 0.97 a | 63.08 ± 2.79 c | 80.79 ± 1.24 | <0.0001 | *** | |
Aggregate aggregation index | AAI | 2.05 ± 0.13 a | 2.08 ± 0.12 a | 1.78 ± 0.11 a | 2 ± 0.07 | 0.0852 | ns | |
Macro-aggregates | MaG | 22.12 ± 0.98 b | 24.95 ± 0.94 a | 12.27 ± 1.16 c | 20.66 ± 0.74 | <0.0001 | *** | |
Meso-aggregates | MeG | 11.94 ± 0.68 a | 10.45 ± 0.64 b | 12.97 ± 0.43 a | 11.73 ± 0.39 | 0.0056 | ** | |
Micro-aggregates | MiG | 6.07 ± 0.39 b | 4.62 ± 0.39 c | 14.77 ± 1.11 a | 7.67 ± 0.52 | <0.0001 | *** | |
Root aggregates % | RA | 5.57 ± 0.53 b | 6.05 ± 0.71 b | 8.46 ± 0.93 a | 6.39 ± 0.44 | 0.0232 | * | |
Physical aggregates % | PA | 3.71 ± 0.61 a | 5.04 ± 0.97 a | 2.69 ± 0.54 a | 3.87 ± 0.43 | 0.093 | ns | |
Biogenic aggregates % | BA | 28.57 ± 2.32 b | 23.23 ± 2.52 b | 53.08 ± 3.01 a | 32.72 ± 1.82 | <0.0001 | *** | |
Organic aggregates % | OA | 1.78 ± 0.13 a | 1.69 ± 0.15 a | 1.37 ± 0.12 b | 1.65 ± 0.08 | 0.034 | * | |
Non aggregates % | NA% | 60.41 ± 2.61 a | 63.97 ± 3.01 a | 34.4 ± 2.57 b | 55.36 ± 1.94 | 0.023 | * | |
Visual Evaluation of Soil Structure | VESS | 2.62 ± 0.05 b | 2.69 ± 0.07 b | 2.92 ± 0.06 a | 2.71 ± 0.03 | 0.0011 | *** | |
Hydric | Bulk density | BD | 1.26 ± 0.03 b | 1.11 ± 0.03 c | 1.61 ± 0.02 a | 1.34 ± 0.02 | <0.0001 | *** |
Real density | RD | 2.53 ± 0.01 a | 2.54 ± 0.01 a | 2.52 ± 0.01 a | 2.53 ± 0.01 | 0.7121 | ns | |
Total porosity | TP | 50.26 ± 1.11 b | 56.04 ± 1.21 a | 36.29 ± 0.68 c | 48.72 ± 0.93 | <0.0001 | *** | |
Penetration resistance | PR | 217.87 ± 6.12 b | 201.27 ± 6.12 b | 264.48 ± 9.71 a | 223.82 ± 4.59 | <0.0001 | *** | |
Residual volumetric water content | Tr | 0.14 ± 0.0008 a | 0.14 ± 0.00096 a | 0.13 ± 0.00043 b | 0.13 ± 0.00062 | <0.0001 | *** | |
Saturated volumetric water content | Ts | 0.49 ± 0.0028 a | 0.49 ± 0.0029 a | 0.47 ± 0.0022 b | 0.49 ± 0.0018 | <0.0001 | *** | |
Relationship between matrix pressure and water content | a | 0.01 ± 0.00011 a | 0.01 ± 0.0001 a | 0.01 ± 0.0002 b | 0.01 ± 0.00014 | <0.0001 | *** | |
Shape of the water retention curve | n | 1.22 ± 0.0017 b | 1.22 ± 0.0019 b | 1.26 ± 0.0031 a | 1.23 ± 0.0021 | <0.0001 | *** | |
Saturated hydraulic conductivity | Ks | 19.73 ± 0.53 a | 20.45 ± 0.62 a | 14.45 ± 0.44 b | 18.71 ± 0.39 | <0.0001 | *** | |
Gravimetric humidity | HG | 28.13 ± 0.51 b | 30.98 ± 0.66 a | 22.16 ± 0.38 c | 27.53 ± 0.44 | <0.0001 | *** | |
Infiltration | Infil | 2.49 ± 0.06 a | 2.44 ± 0.02 a | 2.33 ± 0.03 b | 2.44 ± 0.03 | 0.0014 | *** | |
Structural stability index | St | 3.11 ± 0.21 a | 3.32 ± 0.21 a | 2.82 ± 0.16 a | 3.11 ± 0.12 | 0.1779 | ns | |
Soil erodibility | K | 0.16 ± 0.0047 b | 0.16 ± 0.01 b | 0.23 ± 0.0041 a | 0.18 ± 0.004 | <0.0001 | *** | |
Field capacity | FC | 53.12 ± 1.32 a | 57.05 ± 1.42 a | 38.32 ± 0.92 b | 50.83 ± 1.01 | <0.0001 | *** | |
Productive | Pod fresh weight | PFW | 1008.69 ± 51.13 b | 1705.16 ± 72.64 a | 689.48 ± 14.43 c | 1144.28 ± 48.26 | <0.0001 | *** |
Pod length | PL | 20.31 ± 0.2 b | 22.36 ± 0.26 a | 21.01 ± 0.29 b | 21.09 ± 0.16 | <0.0001 | *** | |
Pod diameter | PD | 86.64 ± 0.75 b | 97.22 ± 0.84 a | 88.74 ± 1.07 b | 90.33 ± 0.65 | <0.0001 | *** | |
Weight of grain plus placenta | WGPP | 159.65 ± 4.46 c | 236.71 ± 5.55 a | 206.94 ± 8.48 b | 194.09 ± 4.53 | <0.0001 | *** | |
Weight of grains per pod | WGP | 143.17 ± 3.62 c | 211.88 ± 4.8 a | 185.69 ± 7.11 b | 173.96 ± 3.91 | <0.0001 | *** | |
Dry grain weight | WGD | 57.27 ± 1.45 c | 84.75 ± 1.92 a | 74.28 ± 2.84 b | 69.59 ± 1.56 | <0.0001 | *** | |
Number of grains per pod | NGP | 39.12 ± 0.59 b | 44.13 ± 0.94 a | 44.74 ± 0.99 a | 41.96 ± 0.51 | <0.0001 | *** | |
Pod husk weight | PHW | 865.52 ± 51.7 b | 1493.28 ± 71.88 a | 503.79 ± 9.93 c | 970.32 ± 47.04 | <0.0001 | *** | |
Grain index | GI | 1.46 ± 0.03 c | 1.93 ± 0.04 a | 1.65 ± 0.04 b | 1.65 ± 0.03 | <0.0001 | *** | |
Pod index | PI | 18.05 ± 0.45 a | 12.03 ± 0.29 c | 14.12 ± 0.65 b | 15.3 ± 0.36 | <0.0001 | *** | |
Harvest index1 | HI1 | 0.46 ± 0.04 c | 1.07 ± 0.1 a | 0.76 ± 0.09 b | 0.71 ± 0.05 | <0.0001 | *** | |
Grain yield1 | Yield1 | 372.86 ± 30.97 c | 863.82 ± 84.43 a | 618.16 ± 74.53 b | 579.14 ± 38.97 | <0.0001 | *** | |
Harvest index2 | HI2 | 0.71 ± 0.06 b | 1.39 ± 0.09 a | 0.79 ± 0.07 b | 0.93 ± 0.05 | <0.0001 | *** | |
Grain yield2 | Yield2 | 571.13 ± 47.15 b | 1129.07 ± 71.37 a | 640.31 ± 55.33 b | 756.18 ± 40.12 | <0.0001 | *** |
Parameters | Acronym | General | MSS | HDP | LSP |
---|---|---|---|---|---|
Physical | S | 0.36 *** | 0.34 ** | 0.45 ** | 0.27 |
C | −0.31 *** | −0.33 ** | −0.33 * | −0.002 | |
Si | −0.24 ** | −0.09 | −0.44 * | −0.31 | |
WMD | 0.32 *** | 0.16 | 0.37 * | 0.11 | |
SSA | 0.25** | −0.07 | 0.63 *** | 0.07 | |
AAI | 0.07 | −0.26 * | 0.35 * | 0.22 | |
MaG | 0.31 *** | 0.08 | 0.51 *** | 0.12 | |
MeG | −0.27 *** | −0.13 | −0.38 * | −0.16 | |
MiG | −0.25 ** | 0.06 | −0.63 *** | −0.07 | |
RA% | −0.12 | 0.02 | −0.25 | −0.24 | |
PA% | −0.05 | −0.22 | −0.15 | −0.08 | |
BA% | −0.27 *** | −0.24 | −0.23 | 0.0017 | |
OA% | −0.04 | −0.14 | 0.08 | −0.1 | |
NA% | 0.29 *** | 0.27 * | 0.29 | 0.1 | |
VESS | −0.26 *** | −0.26 | −0.42 * | −0.38 * | |
Hydric | BD | −0.34 *** | −0.07 | −0.41 ** | −0.06 |
RD | 0.21* | 0.19 | 0.45* | 0.02 | |
TP | 0.37 *** | 0.16 | 0.52 *** | 0.09 | |
PR | −0.31 *** | −0.29 * | −0.44 ** | 0.15 | |
Tr | 0.37 *** | 0.35 ** | 0.49 *** | 0.29 | |
Ts | 0.34 *** | 0.34 ** | 0.33 * | 0.13 | |
a | 0.22 * | 0.13 | 0.29 | 0.36 | |
n | −0.27 *** | −0.26 | −0.42 ** | −0.35 | |
Ks | 0.36 *** | 0.38 *** | 0.38 * | 0.19 | |
HG | 0.28 *** | −0.17 | 0.35 * | 0.08 | |
Infil | −0.05 | −0.13 | 0.28 | −0.15 | |
St | 0.02 | −0.25 | 0.38 * | −0.26 | |
K | −0.24 ** | −0.11 | −0.37 * | −0.32 | |
FC | 0.19 * | −0.11 | 0.17 | 0.13 | |
Productive | PFW | 0.45 *** | −0.14 | 0.38 * | 0.55 *** |
PL | 0.37 *** | 0.16 | 0.07 | 0.17 | |
PD | 0.48 *** | −0.01 | 0.33 | 0.42 * | |
WGPP | 0.49 *** | 0.25 | 0.09 | 0.43 * | |
WGP | 0.48 *** | 0.18 | 0.16 | 0.46 ** | |
WGD | 0.48 *** | 0.18 | 0.14 | 0.46 ** | |
NGP | 0.29 *** | 0.07 | 0.18 | 0.33 | |
PHW | 0.42 *** | −0.15 | 0.38 * | 0.47 ** | |
GI | 0.46 *** | 0.19 | −0.11 | 0.46 ** | |
PI | −0.45 *** | −0.17 | −0.08 | −0.44 * | |
HI1 | 0.18 * | −0.06 | −0.47 *** | 0.64 *** | |
Yield1 | 0.18 * | −0.06 | −0.47 *** | 0.64 *** | |
HI2 | 1 *** | 1 *** | 1 *** | 1 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buriticá, F.; Vanegas, J.I.; Suárez, J.C. Influence of Soil Physical and Hydraulic Properties on Cacao Productivity Under Agroforestry Systems in the Amazonian Piedmont. Agriculture 2025, 15, 1973. https://doi.org/10.3390/agriculture15181973
Buriticá F, Vanegas JI, Suárez JC. Influence of Soil Physical and Hydraulic Properties on Cacao Productivity Under Agroforestry Systems in the Amazonian Piedmont. Agriculture. 2025; 15(18):1973. https://doi.org/10.3390/agriculture15181973
Chicago/Turabian StyleBuriticá, Fabio, José Iván Vanegas, and Juan Carlos Suárez. 2025. "Influence of Soil Physical and Hydraulic Properties on Cacao Productivity Under Agroforestry Systems in the Amazonian Piedmont" Agriculture 15, no. 18: 1973. https://doi.org/10.3390/agriculture15181973
APA StyleBuriticá, F., Vanegas, J. I., & Suárez, J. C. (2025). Influence of Soil Physical and Hydraulic Properties on Cacao Productivity Under Agroforestry Systems in the Amazonian Piedmont. Agriculture, 15(18), 1973. https://doi.org/10.3390/agriculture15181973