Dynamic Modeling of Agricultural Fresh and Dry Biomass Under Variable Nutrient Supply
Abstract
1. Introduction
1.1. Modeling in Agriculture
1.2. Research Objectives
2. Materials and Methods
2.1. Experimental Configuration
2.2. Foundational Modeling
2.3. Modeling Dry Mass in Dynamic μ
2.4. Modeling DM with Localized Variable Nutrient Concentrations
2.5. Multi-Nutrient Models
2.6. Choosing How to Model: The Fit to μ Approach vs. the Fit to Mass Approach
2.7. Reliant vs. Simultaneous Multi-Nutrient Models
2.8. Modeling Fresh Mass
2.9. Peak Biomass Harvest Period (via Dynamic μ)
2.10. Validating Models
3. Results
3.1. Foundational Monod and Dynamic µ Models (Fit to Mass)
3.2. Integrated Dry Mass Models
3.3. Comparison Against Alternative Biomass Models
3.4. Harvest Period, as Influenced by Nutrients
3.5. Validation Treatments: Dry and Fresh Mass
3.6. Biomass Estimation from Wastewater
4. Discussion
4.1. Relative Growth Rates: An Improper Analysis of the Fit to Mass Approach
4.2. Integrated Dry Mass: A Correct Analysis of the Fit to Mass Approach
4.3. Integrated Dry Mass: Interpreting Relative Differences
4.4. Peak Biomass Harvest Date
4.5. Biomass Model Validation
4.6. Biomass Estimation from Wastewater
4.7. Applying Models to Estimate Profit
4.8. Model Limitations and Practical Applications
4.9. Future Research Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michaelis, L.; Menten, M.L. Die kinetik der invertinwirkung. Biochem. Z. 1913, 49, 333–369. [Google Scholar] [CrossRef]
- Johnson, K.A.; Goody, R.S. The original Michaelis constant: Translation of the 1913 Michaelis-Menten paper. Biochemistry 2011, 50, 8264–8269. [Google Scholar] [CrossRef]
- Hsu, S.B.; Hubbell, S.; Waltman, P. A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms. SIAM J. Appl. Math. 1977, 32, 366–383. [Google Scholar] [CrossRef]
- Button, D.K. Kinetics of nutrient-limited transport and microbial growth. Microbiol. Rev. 1985, 49, 270–297. [Google Scholar] [CrossRef] [PubMed]
- Monod, J. The growth of bacterial cultures. Annu. Rev. Microbiol. 1949, 3, 371–394. [Google Scholar] [CrossRef]
- Zinn, M.; Witholt, B.; Egli, T. Dual nutrient limited growth: Models, experimental observations, and applications. J. Biotechnol. 2004, 113, 263–279. [Google Scholar] [CrossRef] [PubMed]
- Bader, F.G. Analysis of double-substrate limited growth. Biotechnol. Bioeng. 1978, 20, 183–202. [Google Scholar] [CrossRef] [PubMed]
- Rittmann, B.E.; Mccarty, P.L. Model of steady-state-biofilm kinetics. Biotechnol. Bioeng. 1980, 22, 2343–2357. [Google Scholar] [CrossRef]
- Briggs, G.E.; Haldane, J.B.S. A note on the kinetics of enzyme action. Bot. Biochem. Lab. 1925, 19, 338. [Google Scholar] [CrossRef] [PubMed]
- Andrew, J.F. Dynamic model of the anaerobic digestion process. J. Sanit. Eng. Div. 1969, 95, 95–116. [Google Scholar] [CrossRef]
- Kaiser, G. Microbiology; LibreTexts: Cantonsville, MD, USA, 2025. [Google Scholar]
- Steil, A. Vegetable Harvest Guide. Available online: https://yardandgarden.extension.iastate.edu/how-to/vegetable-harvest-guide (accessed on 5 June 2025).
- Brechner, M.; Both, A.J. Hydroponic lettuce handbook. Cornell Control. Environ. Agric. 1996, 834, 504–509. [Google Scholar]
- Both, A.J.; Albright, L.D.; Langhans, R.W.; Reiser, R.A.; Vinzant, B.G. Hydroponic lettuce production influenced by integrated supplemental light levels in a controlled environment agriculture facility: Experimental results. Acta Hortic. 1994, 418, 45–52. [Google Scholar] [CrossRef]
- Tei, F.; Scaife, A.; Aikman, D.P. Growth of lettuce, onion, and red beet. 1. Growth analysis, light interception, and radiation use efficiency. Ann. Bot. 1996, 78, 633–643. [Google Scholar] [CrossRef]
- Gavhane, K.P.; Hasan, M.; Singh, D.K.; Kumar, S.N.; Sahoo, R.N.; Alam, W. Determination of optimal daily light integral (DLI) for indoor cultivation of iceberg lettuce in an indigenous vertical hydroponic system. Sci. Rep. 2023, 13, 10923. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.L.; Jacobs, M.; Dijkstra, J.; van Laar, H.; Cant, J.P.; Tulpan, D.; Ferguson, N. Review: Synergy between mechanistic modelling and data-driven models for modern animal production systems in the era of big data. Animal 2020, 14, s223–s237. [Google Scholar] [CrossRef]
- Seginer, I.; Buwalda, F.; van Straten, G. Nitrate concentration in greenhouse lettuce: A modeling study. Acta Hortic. 1998, 456, 189–197. [Google Scholar] [CrossRef]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.G.; Meinke, H.; Hochman, Z.; et al. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef]
- Van Evert, F.K.; Campbell, G.S. CropSyst: A collection of object-oriented simulation models of agricultural systems. Agron. J. 1994, 86, 325–331. [Google Scholar] [CrossRef]
- Baker, R.E.; Peña, J.M.; Jayamohan, J.; Jérusalem, A. Mechanistic models versus machine learning, a fight worth fighting for the biological community? Biol. Lett. 2018, 14, 20170660. [Google Scholar] [CrossRef]
- Dream, R. Mechanistic modeling: Biotechnology manufacturing. Am. Pharm. Rev. 2025, 28, 26–37. [Google Scholar]
- Gherman, I.M.; Abdallah, Z.S.; Pang, W.; Gorochowski, T.E.; Grierson, C.S.; Marucci, L. Bridging the gap between mechanistic biological models and machine learning surrogates. PLoS Comput. Biol. 2023, 19, e1010988. [Google Scholar] [CrossRef]
- Mathieu, J.; Linker, R.; Levine, L.; Albright, L.; Both, A.J.; Spanswick, R.; Wheeler, R.; Wheeler, E.; DeVilliers, D.; Langhans, R. Evaluation of the NICOLET model for simulation of short-term hydroponic lettuce growth and nitrate uptake. Biosyst. Eng. 2006, 95, 323–337. [Google Scholar] [CrossRef]
- Ioslovich, I.; Seginer, I.; Baskin, A. Fitting the nicolet lettuce growth model to plant-spacing experimental data. Biosyst. Eng. 2002, 83, 361–371. [Google Scholar] [CrossRef]
- Juárez-Maldonado, A.; De-Alba-Romenus, K.; Ramírez-Sosa, M.I.M.; Benavides-Mendoza, A.; Robledo-Torres, V. An experimental validation of NICOLET B3 mathematical model for lettuce growth in the southeast region of Coahuila Mexico by dynamic simulation. In Proceedings of the 2010 7th International Conference on Electrical Engineering Computing Science and Automatic Control, Tuxtla Gutierrez, Mexico, 8–10 September 2010; pp. 128–133. [Google Scholar] [CrossRef]
- Silberbush, M.; Ben-Asher, J.; Ephrath, J.E. A model for nutrient and water flow and their uptake by plants grown in a soilless culture. Plant Soil 2005, 271, 309–319. [Google Scholar] [CrossRef]
- Rengel, Z. Mechanistic simulation models of nutrient uptake: A review. Plant Soil 1993, 152, 161–173. [Google Scholar] [CrossRef]
- Swiader, J.M.; Freiji, F.G. Characterizing nitrate uptake in lettuce using very-sensitive ion chromatography. J. Plant Nutr. 1996, 19, 15–27. [Google Scholar] [CrossRef]
- Steingrobe, B.; Schenk, M.K. Simulation of the maximum nitrate inflow (Imax) of lettuce (Lactuca sativa L.) grown under fluctuating climatic conditions in the greenhouse. Plant Soil 1993, 155–156, 163–166. [Google Scholar] [CrossRef]
- Wang, B.; Shen, Q. Effects of ammonium on the root architecture and nitrate uptake kinetics of two typical lettuce genotypes grown in hydroponic systems. J. Plant Nutr. 2012, 35, 1497–1508. [Google Scholar] [CrossRef]
- Zhang, K.; Burns, I.G.; Turner, M.K. Derivation of a dynamic model of the kinetics of nitrogen uptake throughout the growth of lettuce: Calibration and validation. J. Plant Nutr. 2008, 31, 1440–1460. [Google Scholar] [CrossRef]
- Pommerening, A.; Muszta, A. Methods of modelling relative growth rate. For. Ecosyst. 2015, 2, 5. [Google Scholar] [CrossRef]
- Holsteijn Van, H.M.C. Growth of Lettuce II: Quantitative Analysis of Growth; Veenman: Wageningen, The Netherlands, 1980; pp. 1–24. [Google Scholar]
- Albornoz, F.; Lieth, J.H. Daily macronutrient uptake patterns in relation to plant age in hydroponic lettuce. J. Plant Nutr. 2016, 39, 1357–1364. [Google Scholar] [CrossRef]
- Edwards, J.H.; Barber, S.A. Nitrogen uptake characteristics of corn roots at low N concentration as influenced by plant age 1. Agron. J. 1976, 68, 17–19. [Google Scholar] [CrossRef]
- Sharkey, A.; Altman, A.; Sun, Y.; Igou, T.K.S.; Chen, Y. Characterizing the temporally dynamic nature of relative growth rates: A kinetic analysis on nitrogen-, phosphorus-, and potassium-limited growth. Agriculture 2025, 15, 1641. [Google Scholar] [CrossRef]
- Mattson, N.S.; Peters, C. A recipe for hydroponic success. Insid. Grow. 2014, 2014, 16–19. [Google Scholar]
- Uchida, R.; Silva, J.A. Essential nutrients for plant growth: Nutrient functions and deficiency symptoms. In Plant Nutrient Management in Hawaii’s Soils, Approaches for Tropical and Subtropical Agriculture; College of Tropical Agriculture and Human Resources: Honolulu, HI, USA, 2000; pp. 31–55. ISBN 978-1-929325-08-5. [Google Scholar]
- Sambo, P.; Nicoletto, C.; Giro, A.; Pii, Y.; Valentinuzzi, F.; Mimmo, T.; Lugli, P.; Orzes, G.; Mazzetto, F.; Astolfi, S.; et al. Hydroponic solutions for soilless production systems: Issues and opportunities in a smart agriculture perspective. Front. Plant Sci. 2019, 10, 923. [Google Scholar] [CrossRef]
- Li, W.-W.; Yu, H.; Rittmann, B.E. Reuse water pollutants. Nature 2015, 528, 29–31. [Google Scholar] [CrossRef]
- Chojnacka, K.; Witek-Krowiak, A.; Moustakas, K.; Skrzypczak, D.; Mikula, K.; Loizidou, M. A transition from conventional irrigation to fertigation with reclaimed wastewater: Prospects and challenges. Renew. Sustain. Energy Rev. 2020, 130, 109959. [Google Scholar] [CrossRef]
- Saliu, T.D.; Oladoja, N.A. Nutrient recovery from wastewater and reuse in agriculture: A review. Environ. Chem. Lett. 2021, 19, 2299–2316. [Google Scholar] [CrossRef]
- Sharkey, A.; Altman, A.; Cohen, A.R.; Groh, T.; Igou, T.K.S.; Ferrarezi, R.S.; Chen, Y. Modeling Bibb lettuce nitrogen uptake and biomass productivity in vertical hydroponic agriculture. Agriculture 2024, 14, 1358. [Google Scholar] [CrossRef]
- Modarelli, G.C.; Paradiso, R.; Arena, C.; De Pascale, S.; Van Labeke, M.C. High light intensity from blue-red LEDs enhance photosynthetic performance, plant growth, and optical properties of red lettuce in controlled environment. Horticulturae 2022, 8, 114. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Muloiwa, M.; Nyende-Byakika, S.; Dinka, M. Comparison of unstructured kinetic bacterial growth models. S. Afr. J. Chem. Eng. 2020, 33, 141–150. [Google Scholar] [CrossRef]
- Teissier, G. Growth of bacterial populations and the available substrate concentration. Rev. Sci. Instrum. 1942, 3208, 209–214. [Google Scholar]
- Richards, F.J. A flexible growth function for empirical use. J. Exp. Bot. 1959, 10, 290–301. [Google Scholar] [CrossRef]
- Gompertz, B. Expressive of the law of human mortality and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. 1825, 115, 513–585. [Google Scholar] [CrossRef]
- Zeide, B. Analysis of growth equations. For. Sci. 1993, 39, 594–616. [Google Scholar] [CrossRef]
- Madigan, M.T.; Martinko, J.M.; Bender, K.S.; Buckley, D.H.; Stahl, D.A. Brock Biology of Micro-Organisms, 14th ed.; Pearson: London, UK, 1992; ISBN 9780321897398. [Google Scholar]
- Pepper, I.L.; Gerba, C.P.; Gentry, T.J. Environmental Microbiology, 3rd ed.; Wiley: Hoboken, NJ, USA, 2014; ISBN 9780123946263. [Google Scholar]
- Hydroponic Lettuce: What to Know. Available online: https://risegardens.com/blogs/communitygarden/hydroponic-lettuce-what-to-know-s25 (accessed on 1 July 2025).
- Jung, D.H.; Kim, D.; Yoon, H.I.; Moon, T.W.; Park, K.S.; Son, J.E. Modeling the canopy photosynthetic rate of romaine lettuce (Lactuca sativa L.) grown in a plant factory at varying CO2 concentrations and growth stages. Hortic. Environ. Biotechnol. 2016, 57, 487–492. [Google Scholar] [CrossRef]
- Martínez-Moreno, A.; Carmona, J.; Martínez, V.; Garcia-Sánchez, F.; Mestre, T.C.; Navarro-Pérez, V.; Cámara-Zapata, J.M. Reducing nitrate accumulation through the management of nutrient solution in a floating system lettuce (Lactuca sativa L.). Sci. Hortic. 2024, 336, 113377. [Google Scholar] [CrossRef]
- Hasan, M.R.; Tahsin, A.K.M.M.; Islam, M.N.; Ali, M.A.; Uddain, J. Growth and yield of lettuce (Lactuca sativa L.) influenced as nitrogen fertilizer and plant spacing. IOSR J. Agric. Vet. Sci. 2017, 10, 62–71. [Google Scholar] [CrossRef]
- Lee, A.C.; Liao, F.S.; Lo, H.F. Temperature, daylength, and cultivar interact to affect the growth and yield of lettuce grown in high tunnels in subtropical regions. HortScience 2015, 50, 1412–1418. [Google Scholar] [CrossRef]
- Steen, I.; Agro, K. Phosphorus availability in the 21st century—Management of a non-renewable resource. Phosphorus Potassium 1998, 217, 25–31. [Google Scholar]
- Snyder, C.S.; Bruulsema, T.W.; Jensen, T.L.; Fixen, P.E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 2009, 133, 247–266. [Google Scholar] [CrossRef]
- Gellings, C.W.; Parmenter, K.E. Energy efficiency in fertilizer production and use. Effic. Use Conserv. Energy 2016, 2, 123–136. [Google Scholar]
- Batstone, D.J.; Hülsen, T.; Mehta, C.M.; Keller, J. Platforms for energy and nutrient recovery from domestic wastewater: A review. Chemosphere 2015, 140, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Beman, J.M.; Arrigo, K.R.; Matson, P.A. Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature 2005, 434, 211–214. [Google Scholar] [CrossRef]
- Akinnawo, S.O. Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environ. Chall. 2023, 12, 100733. [Google Scholar] [CrossRef]
- Smith, V.H.; Schindler, D.W. Eutrophication science: Where do we go from here? Trends Ecol. Evol. 2009, 24, 201–207. [Google Scholar] [CrossRef]
- Smith, A.; Bullard, T.; Saetta, D.; Haarmann, K.; Akepeu, N.; Yeh, D.; Fischer, J.; Roberson, L. Using effluent from a hybrid anaerobic membrane bioreactor treating fecal waste for hydroponic fertigation of pak choi. In Proceedings of the 2023 International Conference on Environmental Systems, Calgary, AB, Canada, 16–20 July 2023. [Google Scholar]
- Enriquez, J.P. Food self-sufficiency: Opportunities and challenges for the current food system. Biomed. J. Sci. Tech. Res. 2020, 31, 23984–23989. [Google Scholar] [CrossRef]
- Van Ginkel, S.W.; Igou, T.; Chen, Y. Energy, water and nutrient impacts of California-grown vegetables compared to controlled environmental agriculture systems in Atlanta, GA. Resour. Conserv. Recycl. 2017, 122, 319–325. [Google Scholar] [CrossRef]
- Silberbush, M.; Ben-Asher, J. Simulation study of nutrient uptake by plants from soilless cultures as affected by salinity buildup and transpiration. Plant Soil 2001, 233, 59–69. [Google Scholar] [CrossRef]
- Scaife, M.A.A. The early relative growth rates of six lettuce cultivars as affected by temperature. Ann. Appl. Biol. 1973, 74, 119–128. [Google Scholar] [CrossRef]
- Paine, C.E.T.; Marthews, T.R.; Vogt, D.R.; Purves, D.; Rees, M.; Hector, A.; Turnbull, L.A. How to fit nonlinear plant growth models and calculate growth rates: An update for ecologists. Methods Ecol. Evol. 2012, 3, 245–256. [Google Scholar] [CrossRef]
- Burns, I.G.; Broadley, M.R.; Seginer, I.; Burns, A.; Escobar-gutie, A.J.; White, P.J. The nitrogen and nitrate economy of butterhead lettuce (Lactuca sativa var. capitata L.). J. Exp. Bot. 2003, 54, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
Equation # | Equation Title | Model Equation |
---|---|---|
(S1) | Foundational Monod | |
(S2) | Lifetime Average Nutrient Concentration | |
(S3) | Relative Growth Rate | |
(S4) | Dry Mass, via foundational Monod | |
(S5) | Relative Growth Rate, as a function of dry mass, via foundational Monod | |
(S6) | Dynamic μ |
Dry Mass | 0.334 | 1.833 | 0.064 | 0.293 | −0.0119 | 14.000 |
Fresh Mass | 0.356 | 1.493 | 0.058 | 0.363 | −0.0107 | 11.123 |
Model | Integrated Equation | Equation Structure | RMSE |
---|---|---|---|
SMND μ | 0.55256 | ||
RMND μ | 0.72461 | ||
Monod * | 2.7066 | ||
Haldane * | 2.9436 | ||
Tessier * | 2.5377 | ||
Exponential | 1.5452 | ||
Gompertz | 1.5384 | ||
Richards | 1.5385 | ||
Weibull | 1.5382 | ||
Power Law | 1.5392 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharkey, A.; Altman, A.; Sun, Y.; Chen, Y. Dynamic Modeling of Agricultural Fresh and Dry Biomass Under Variable Nutrient Supply. Agriculture 2025, 15, 1927. https://doi.org/10.3390/agriculture15181927
Sharkey A, Altman A, Sun Y, Chen Y. Dynamic Modeling of Agricultural Fresh and Dry Biomass Under Variable Nutrient Supply. Agriculture. 2025; 15(18):1927. https://doi.org/10.3390/agriculture15181927
Chicago/Turabian StyleSharkey, Andrew, Asher Altman, Yuming Sun, and Yongsheng Chen. 2025. "Dynamic Modeling of Agricultural Fresh and Dry Biomass Under Variable Nutrient Supply" Agriculture 15, no. 18: 1927. https://doi.org/10.3390/agriculture15181927
APA StyleSharkey, A., Altman, A., Sun, Y., & Chen, Y. (2025). Dynamic Modeling of Agricultural Fresh and Dry Biomass Under Variable Nutrient Supply. Agriculture, 15(18), 1927. https://doi.org/10.3390/agriculture15181927