Establishing the Effects of Climate and Soil on the Nutritional Composition of an Array of Faba Bean Varieties Grown in Two Different Zones of Andalusia, Spain
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sample Type
2.3. Nutritional Analysis
2.4. Statistical Analysis
3. Results
3.1. Environmental Influence on Nutritional Traits: Correlation Patterns
3.2. Exploring Nutritional Differences Across Sites and Conditions
3.3. Multivariate Relationships Between Climate Factors and Faba Bean Nutrient Composition
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
T | Temperature |
R | Rainfall |
K | Potassium |
Ca | Calcium |
Mg | Magnesium |
Zn | Zinc |
P | Phosphorus |
Fe | Iron |
Mn | Manganese |
B | Boron |
TPC | Total polyphenol content |
TA | Tannins |
S | Saponins |
CCA | Canonical correspondence analysis |
PERMANOVA | Permutational multivariate analysis of variance |
CARs | Carotenoids |
PA | Phenolic acids |
GHG | Greenhouse emissions |
N | Nitrogen |
BNF | Biological nitrogen fixation |
Ha | Hectare |
EC | European Commission |
EU | European Union |
M | Million |
pH | Potential of hydrogen |
C | Celsius |
mm | Millimeters |
CSIC | Spanish National Research Council |
S1/S2 | Season 1/2 |
L1/L2 | Location 1/2 |
Avg. Tmax/Tmin | Average temperature maximum/minimum |
OEVV | General Subdirectorate of Agricultural Means of Production and Spanish Plant Variety Office |
PC | Protein concentration |
ICP-OES | Inductively coupled plasma optical emission spectrometry |
GY | Grain yield |
CC | Correlation coefficient |
Df | Degrees of freedom |
F | F-statistic |
Pr(>F) | P-value |
ROS | Reactive oxygen species |
PGPB | Plant growth-promoting bacteria |
References
- Ferreira, H.; Vasconcelos, M.; Gil, A.M.; Oliveira, B.; Varandas, E.; Vilela, E.; Say, K.; Silveira, J.; Pinto, E. Impact of a daily legume-based meal on dietary and nutritional intake in a group of omnivorous adults. Nutr. Bull. 2023, 48, 190–202. [Google Scholar] [CrossRef]
- Nishida, H.; Shimoda, Y.; Win, K.T.; Imaizumi-Anraku, H. Rhizosphere frame system enables nondestructive live-imaging of legume-rhizobium interactions in the soil. J. Plant Res. 2023, 136, 769–780. [Google Scholar] [CrossRef]
- Villegas-Fernández, Á.M.; Rubiales, D. Phenotyping Data of Legumes-Cereals Intercropping Data. Available online: http://hdl.handle.net/10261/354290 (accessed on 27 August 2025).
- Mínguez, M.I.; Rubiales, D. Faba bean. In Crop Physiology Case Histories for Major Crops; Academic Press: Cambridge, MA, USA, 2021; pp. 452–481. [Google Scholar]
- Ayala-Rodríguez, V.A.; López-Hernández, A.A.; López-Cabanillas Lomelí, M.; González-Martínez, B.E.; Vázquez-Rodríguez, J.A. Nutritional quality of protein flours of fava bean (Vicia faba L.) and in vitro digestibility and bioaccesibility. Food Chem. X 2022, 14, 100303. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.C.; Marinangeli, C.P.F.; Pigat, S.; Bompola, F.; Campbell, J.; Pan, Y.; Curran, J.M.; Cai, D.J.; Jaconis, S.Y.; Rumney, J. Pulse Intake Improves Nutrient Density among US Adult Consumers. Nutrients 2021, 13, 2668. [Google Scholar] [CrossRef]
- FAOSTAT. FAOSTAT Database: Crops and Livestock Products. 2023. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 29 January 2025).
- Rubiales, D.; Annicchiarico, P.; Vaz Patto, M.C.; Julier, B. Legume Breeding for the Agroecological Transition of Global Agri-Food Systems: A European Perspective. Front. Plant Sci. 2021, 12, 782574. [Google Scholar] [CrossRef]
- Kezeya, B.; Muel, F.; Mergenthaler, M. The Market of Grain Legumes in Spain: Results of the EU-Project LegValue. 2021. Available online: https://www.legumehub.eu/is_article/the-market-of-grain-legumes-in-spain/ (accessed on 27 March 2025).
- Montgomery, D.R.; Biklé, A.; Archuleta, R.; Brown, P.; Jordan, J. Soil health and nutrient density: Preliminary comparison of regenerative and conventional farming. PeerJ 2022, 10, e12848. [Google Scholar] [CrossRef]
- Kao, P.T.; Darch, T.; McGrath, S.P.; Kendall, N.R.; Buss, H.L.; Warren, H.; Lee, M.R.F. Factors influencing elemental micronutrient supply from pasture systems for grazing ruminants. Adv. Agron. 2020, 164, 161–229. [Google Scholar] [CrossRef]
- Dancausa Millán, M.G.; Millán Vázquez de la Torre, M.G. Quality Food Products as a Tourist Attraction in the Province of Córdoba (Spain). Int. J. Environ. Res. Public Health 2022, 19, 12754. [Google Scholar] [CrossRef]
- Calleja-Cabrera, J.; Boter, M.; Oñate-Sánchez, L.; Pernas, M. Root Growth Adaptation to Climate Change in Crops. Front. Plant Sci. 2020, 11, 544. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Burke, M.B. Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation. Environ. Res. Lett. 2008, 3, 034007. [Google Scholar] [CrossRef]
- Barilli, E.; Luna, P.; Flores, F.; Rubiales, D. Agronomic Performance of Faba Bean in Mediterranean Environments. Agronomy 2025, 15, 412. [Google Scholar] [CrossRef]
- Saskatchewan Pulse Growers: Faba Beans Seeding. Available online: https://saskpulse.com/growing-pulses/faba-beans/faba-beans-seeding/ (accessed on 20 August 2025).
- Ministerio de Agricultura, Pesca y Alimentación. Oficina Española de Variedades Vegetales, Catálogos Nacionales y Comunitarios. Available online: https://servicio.mapa.gob.es/germenwai/BusRegVar.aspx?id=es (accessed on 8 July 2025).
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Marinova, D.; Ribarova, F.; Atanassova, M. Total phenolics and flavonoids in Bulgarian fruits and vegetables. J. Univ. Chem. Technol. Metall. 2005, 40, 255–260. [Google Scholar]
- Sánchez Vioque, R.; Cantón Prado, I.; Flores Gil, F.; Giménez Alvear, M.J.; De los Mozos Pascual, M.; Rodríguez Conde, M.F. Contents of total protein, L-canavanine and condensed tannins of the one-flowered vetch (Vicia articulata Hornem.) collection of the Bank of Plant Germplasm of Cuenca (Spain). Genet. Resour. Crop. Evol. 2008, 55, 949–957. [Google Scholar] [CrossRef]
- R Core Team: R: A Language and Environment for Statistical Computing. (Version 4.6.0). 2024. Available online: https://www.R-project.org/ (accessed on 1 April 2025).
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix, (Version 0.92); 2021. Available online: https://github.com/taiyun/corrplot (accessed on 23 April 2025).
- Wickham, H. Data Analysis in ggplot2. Use R! Version 3.5.2; Springer: Austin, TX, USA, 2016; pp. 189–201.
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B. Vegan: Community Ecology Package. R Package, (Version 2.7-1); 2022. Available online: https://cran.rproject.org/package=vegan (accessed on 23 April 2025).
- Hamzah Saleem, M.; Usman, K.; Rizwan, M.; Al Jabri, H.; Alsafran, M. Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Front. Plant Sci. 2022, 13, 1033092. [Google Scholar] [CrossRef]
- Fekadu, E.; Kibret, K.; Melese, A.; Bedadi, B. Yield of faba bean (Vicia faba L.) as affected by lime, mineral P, farmyard manure, compost and rhizobium in acid soil of Lay Gayint District, northwestern highlands of Ethiopia. Agric. Food Secur. 2018, 7, 16. [Google Scholar] [CrossRef]
- Zhou, R.; Hyldgaard, B.; Yu, X.; Rosenqvist, E.; Ugarte, R.M.; Yu, S.; Wu, Z.; Ottosen, C.-O.; Zhao, T. Phenotyping of faba beans (Vicia faba L.) under cold and heat stresses using chlorophyll fluorescence. Euphytica 2018, 214, 68. [Google Scholar] [CrossRef]
- Bogale, G.A.; Maja, M.M.; Gebreyohannes, G.H. Modelling the impacts of climate change on faba bean (Vicia faba L.) production in Welmera area, central Ethiopia. Heliyon 2021, 7, e08176. [Google Scholar] [CrossRef]
- Maslin, M.; Ramnath, R.D.; Welsh, G.I.; Sisodiya, S.M. Understanding the health impacts of the climate crisis. Future Healthc. J. 2025, 12, 100240. [Google Scholar] [CrossRef] [PubMed]
- Cedar Lake Ventures, Inc. Weather Spark. Available online: https://weatherspark.com/h/m/35285/2025/4/Historical-Weather-in-April-2025-in-C%C3%B3rdoba-Spain#Figures-Temperature (accessed on 23 April 2025).
- Bešlo, D.; Golubić, N.; Rastija, V.; Agić, D.; Karnaš, M.; Šubarić, D.; Lučić, B. Antioxidant Activity, Metabolism, and Bioavailability of Polyphenols in the Diet of Animals. Antioxidants 2023, 12, 1141. [Google Scholar] [CrossRef]
- Laddomada, B.; Blanco, A.; Mita, G.; D’Amico, L.; Singh, R.P.; Ammar, K.; Crossa, J.; Guzmán, C. Drought and Heat Stress Impacts on Phenolic Acids Accumulation in Durum Wheat Cultivars. Foods 2021, 10, 2142. [Google Scholar] [CrossRef]
- Alhaithloul, H.A.S.; Galal, F.H.; Seufi, A.M. Effect of extreme temperature changes on phenolic, flavonoid contents and antioxidant activity of tomato seedlings (Solanum lycopersicum L.). PeerJ 2021, 9, e11193. [Google Scholar] [CrossRef]
- Bian, Z.; Wang, Y.; Zhang, X.; Li, T.; Grundy, S.; Yang, Q.; Cheng, R. A Review of Environment Effects on Nitrate Accumulation in Leafy Vegetables Grown in Controlled Environments. Foods 2020, 9, 732. [Google Scholar] [CrossRef] [PubMed]
- Roriz, M.; Pereira, S.I.A.; Castro, P.M.L.; Carvalho, S.M.P.; Vasconcelos, M.W. Impact of soybean-associated plant growth-promoting bacteria on plant growth modulation under alkaline soil conditions. Heliyon 2023, 9, e14620. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Singh, S.; Chaudhary, A.; Sharma, A.; Kumar, G. Overview of biofertilizers in crop production and stress management for sustainable agriculture. Front. Plant Sci. 2022, 13, 930340. [Google Scholar] [CrossRef]
- Pereira, M.P.; Santos, C.; Gomes, A.; Vasconcelos, M.W. Cultivar variability of iron uptake mechanisms in rice (Oryza sativa L.). Plant Physiol. Biochem. 2014, 85, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Montejano-Ramírez, V.; Valencia-Cantero, E. Cross-Talk between Iron Deficiency Response and Defense Establishment in Plants. Int. J. Mol. Sci. 2023, 24, 6236. [Google Scholar] [CrossRef]
- Vert, G.; Grotz, N.; Dédaldéchamp, F.; Gaymard, F.; Guerinot, M.L.; Briat, J.-F.; Curie, C. IRT1, an Arabidopsis Transporter Essential for Iron Uptake from the Soil and for Plant Growth. Plant Cell. 2002, 14, 1223–1233. [Google Scholar] [CrossRef]
- Sita, K.; Sehgal, A.; HanumanthaRao, B.; Nair, R.M.; Vara Prasad, P.V.; Kumar, S.; Gaur, P.M.; Farooq, M.; Siddique, K.H.M.; Varshney, R.K.; et al. Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to Reproductive Growth Stage and Strategies to Improve Heat Tolerance. Front. Plant Sci. 2017, 8, 01658. [Google Scholar] [CrossRef]
- Heckathorn, S.A.; Giri, A.; Mishra, S.; Bista, D. Heat Stress and Roots. In Climate Change and Plant Abiotic Stress Tolerance; Wiley: Weinheim, Germany, 2013; pp. 109–136. [Google Scholar]
- DeCarlo, K.F.; Caylor, K.K. Effects of crack morphology on soil carbon flux dynamics in a dryland vertisol. Geoderma 2020, 375, 114478. [Google Scholar] [CrossRef]
- Kochiieru, M.; Feiza, V.; Feiziene, D.; Lamorski, K.; Deveikyte, I.; Seibutis, V.; Pranaitiene, S. Long-term contrasting tillage in Cambisol: Effect on water-stable aggregates, macropore network and soil chemical properties. Int. Agrophys. 2023, 37, 59–67. [Google Scholar] [CrossRef]
- Seyedsadr, S.; Šípek, V.; Jačka, L.; Sněhota, M.; Beesley, L.; Pohořelý, M.; Kovář, M.; Trakal, L. Biochar considerably increases the easily available water and nutrient content in low-organic soils amended with compost and manure. Chemosphere 2022, 293, 133586. [Google Scholar] [CrossRef] [PubMed]
- Mecha, E.; Erny, G.L.; Guerreiro, A.C.L.; Feliciano, R.P.; Barbosa, I.; Bento da Silva, A.; Leitão, S.T.; Veloso, M.M.; Rubiales, D.; Rodriguez-Mateos, A.; et al. Metabolomics profile responses to changing environments in a common bean (Phaseolus vulgaris L.) germplasm collection. Food Chem. 2022, 370, 131003. [Google Scholar] [CrossRef] [PubMed]
- Safdar, L.B.; Foulkes, M.J.; Kleiner, F.H.; Searle, I.R.; Bhosale, R.A.; Fisk, I.D.; Boden, S.A. Challenges facing sustainable protein production: Opportunities for cereals. Plant Commun. 2023, 4, 100716. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Zhu, J.-K. Developing naturally stress-resistant crops for a sustainable agriculture. Nat. Plants 2018, 4, 989–996. [Google Scholar] [CrossRef]
Location 1: Córdoba | Location 2: Almodóvar del Rio | |||
---|---|---|---|---|
S1 (2017–2018) | S2 (2018–2019) | S1 (2017–2018) | S2 (2018–2019) | |
Avg. Tmax/Tmin | Avg. Tmax/Tmin | Avg. Tmax/Tmin | Avg. Tmax/Tmin | |
Temperature °C | 20.2/7.3 | 23.8/8.6 | 21.5/8.2 | 23.3/8.3 |
Rainfall (mm) | 405 | 218 | 490 | 268 |
Grain yield (Avg. per ha) | 3672. 38 | 3613.25 | 3732.27 | 3695.94 |
Type of soil | Vertisol | Fluvisol | ||
Soil pH | 7–7.8 | 8–8.3 |
Accession | Type | Flower Color | Origin | Reference |
---|---|---|---|---|
Navio6 | Minor type | normal | Advanced breeding line derived from Tunisian XBJ90.03-16-1-1-1 | [8] |
Prothabon | Minor type | normal | Minor type, commercial variety | [17] |
Omeya | Minor type | normal | Minor type, selected from Baraca × VF1273 a sister line of cv. Joya | [17] |
Arrechana | Minor type | normal | Minor type, selected from 135 | [17] |
Joya | Minor type | normal | Minor type, selected from Baraca × VF1273 a sister line of cv. Omeya | [17] |
Quijote | Minor type | normal | Advanced breeding line derived from Tunisian XBJ90.04-6-2-1-1 | [8] |
Df | ChiSquare | F | Pr (>F) | |
---|---|---|---|---|
Yield (kg per ha) | 1 | 0.0017056 | 6.9571 | 0.001 *** |
Temperature | 1 | 0.0013148 | 7.4845 | 0.001 *** |
Rainfall | 1 | 0.0025170 | 14.3283 | 0.001 *** |
Location | 1 | 0.0004347 | 2.4743 | 0.016 * |
Residual | 71 | 0.0124724 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osorio, J.; Fortunato, G.; Barilli, E.; Rubiales, D.; Pinto, E.; Vasconcelos, M.W. Establishing the Effects of Climate and Soil on the Nutritional Composition of an Array of Faba Bean Varieties Grown in Two Different Zones of Andalusia, Spain. Agriculture 2025, 15, 1909. https://doi.org/10.3390/agriculture15181909
Osorio J, Fortunato G, Barilli E, Rubiales D, Pinto E, Vasconcelos MW. Establishing the Effects of Climate and Soil on the Nutritional Composition of an Array of Faba Bean Varieties Grown in Two Different Zones of Andalusia, Spain. Agriculture. 2025; 15(18):1909. https://doi.org/10.3390/agriculture15181909
Chicago/Turabian StyleOsorio, Jazmín, Gianuario Fortunato, Eleonora Barilli, Diego Rubiales, Elisabete Pinto, and Marta W. Vasconcelos. 2025. "Establishing the Effects of Climate and Soil on the Nutritional Composition of an Array of Faba Bean Varieties Grown in Two Different Zones of Andalusia, Spain" Agriculture 15, no. 18: 1909. https://doi.org/10.3390/agriculture15181909
APA StyleOsorio, J., Fortunato, G., Barilli, E., Rubiales, D., Pinto, E., & Vasconcelos, M. W. (2025). Establishing the Effects of Climate and Soil on the Nutritional Composition of an Array of Faba Bean Varieties Grown in Two Different Zones of Andalusia, Spain. Agriculture, 15(18), 1909. https://doi.org/10.3390/agriculture15181909