Use of Cellulose from Waste Paper to Improve the Water Capacity of Soils Within the Circular Economy
Abstract
1. Introduction
- I.
- Innovative use of waste cardboard (WCC) as a cellulose source for agriculture: Utilisation of fibrous cellulose prepared from waste cardboard using a simple, low-cost, and environmentally friendly technology. This approach supports circular economy principles and offers a practical solution for converting common municipal waste into a valuable soil amendment.
- II.
- Comparative analysis of physical and structural properties: the research provides a detailed comparison between cellulose derived from WCC and commercially available microcrystalline cellulose, highlighting how production processes influence water retention capabilities.
- III.
- First systematic evaluation of WCC’s impact on WHC across diverse soil types: Unlike previous studies that focused on cellulose derivatives or paper sludge [19,20,21], this work is the first to quantify the effect of direct WCC application on soils with varying texture, type, and organic matter content. Laboratory results show that even a modest 1% addition of WCC leads to a statistically significant increase in WHC (average of 8.2 ± 1.6%), demonstrating its potential to enhance soil resilience against drought.
2. Materials and Methods
2.1. Materials
2.1.1. Soil Samples
2.1.2. Cellulose
2.2. Methods
2.2.1. Sampling of Soil and Preparation for Soil Analysis
2.2.2. Methods Used for Soil Analysis
2.2.3. Methods for Cellulose Analysis
3. Results and Discussion
3.1. Cellulose
3.1.1. FTIR Analysis
Wavenumber (cm−1) | Vibrations/Functional Groups | Occurrence | Reference |
---|---|---|---|
896 | Vibrations of β-glycosidic bonds | RFC | [32,33,34] |
1030 | C–O (polysaccharides) → C–O bond vibrations in polysaccharides | WCC, RFC | [32,33,34] |
1105 | C–O (primary alcohol—C6) → C–O stretching vibration of the primary alcohol group at carbon position 6 | WCC, RFC | [32,33] |
1160 | C–O–C (β-1,4 glycosidic bond) → C–O–C stretching vibration of the β-1,4 glycosidic linkage | WCC, RFC | [32,33,34,36] |
1600 | C=C (aromatic vibrations—lignin) → C=C stretching vibrations of aromatic rings in lignin | WCC | [32,35] |
1730 | C=O (carboxyl / ester) → C=O stretching vibration of carboxyl and ester groups | WCC | [32,34,35] |
2340–2360 | CO2 asymmetric stretch (contamination/fillers) → Asymmetric stretching vibration of CO2 (indicative of contamination or filler presence) | WCC | [34,35,36] |
2900 | C–H (aliphatic chain) → C–H stretching vibrations of aliphatic chains | WCC, RFC | [32,33] |
3300–3340 | O–H (hydroxyl groups) → O–H stretching vibration of hydroxyl functional groups | WCC, RFC | [32,33,36] |
3.1.2. Crystallinity of Cellulose
3.1.3. Water-Holding Capacity of Cellulose
3.2. Soils
3.2.1. Soil Texture
3.2.2. Soil Organic Matter and Water-Holding Capacity
3.2.3. Soil Texture and WHC
3.2.4. Cation Exchange Capacity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATR | Attenuated total reflectance |
AWHC | Available water-holding capacity |
CEC | Cation exchange capacity |
CMC | Carboxymethyl cellulose |
CNFs | Cellulose nanofibres |
CrI | Crystallinity index of cellulose |
FTIR | Fourier-transform infrared spectroscopy |
NRCS | Natural Resources Conservation Service |
OAS | Organic analytical standard |
RFC | Reference cellulose |
SEM | Scanning electron microscopy |
SOC | Soil organic carbon |
SOM | Soil organic matter |
TD-GC-MS | Thermal desorption–Gas chromatography–Mass spectrometry |
USDA | United States Department of Agriculture |
WCC | Waste carton-extracted cellulose |
WHC | Water-holding capacity |
References
- Kang, M.W.; Yibeltal, M.; Kim, Y.H.; Oh, S.J.; Lee, J.C.; Kwon, E.E.; Lee, S.S. Enhancement of Soil Physical Properties and Soil Water Retention with Biochar-Based Soil Amendments. Sci. Total Environ. 2022, 836, 155746. [Google Scholar] [CrossRef]
- Bednář, M.; Pavelková, R.; Netopil, P.; Šarapatka, B. Czech Farmers’ Perspectives on Sustainable Agriculture and Water Management: Implications for Climate Change Adaptation. Agric. Water Manag. 2025, 313, 109470. [Google Scholar] [CrossRef]
- Blažka, P.; Fischer, Z. Moisture, Water Holding, Drying and Wetting in Forest Soils. Open J. Soil Sci. 2014, 4, 174–184. [Google Scholar] [CrossRef]
- Werner, W.J.; Sanderman, J.; Melillo, J.M. Decreased Soil Organic Matter in a Long-term Soil Warming Experiment Lowers Soil Water Holding Capacity and Affects Soil Thermal and Hydrological Buffering. J. Geophys. Res. Biogeosciences 2020, 125, e2019JG005158. [Google Scholar] [CrossRef]
- Lin, H.; Duan, X.; Dong, Y.; Zhong, R.; Rong, L.; Huang, J. Responses of Soil Water-Holding Capacity to Environmental Changes in Alpine Ecosystems across the Southern Tibetan Plateau in the Past 35–40 Years. Catena 2023, 222, 106840. [Google Scholar] [CrossRef]
- Nelson, J.T.; Adjuik, T.A.; Moore, E.B.; VanLoocke, A.D.; Ramirez Reyes, A.; McDaniel, M.D. A Simple, Affordable, Do-It-Yourself Method for Measuring Soil Maximum Water Holding Capacity. Commun. Soil Sci. Plant Anal. 2024, 55, 1190–1204. [Google Scholar] [CrossRef]
- Paradelo, R.; Basanta, R.; Barral, M.T. Water-Holding Capacity and Plant Growth in Compost-Based Substrates Modified with Polyacrylamide, Guar Gum or Bentonite. Sci. Hortic. 2019, 243, 344–349. [Google Scholar] [CrossRef]
- Adhikari, S.; Timms, W.; Mahmud, M.A.P. Optimising Water Holding Capacity and Hydrophobicity of Biochar for Soil Amendment—A Review. Sci. Total Environ. 2022, 851, 158043. [Google Scholar] [CrossRef]
- Fu, F.; Luo, J.; Zhao, L.; Yang, F.; Wang, N. Impact of Cellulose and Lignin on Restoration of Vegetation and Soil Chemical Properties for Saline-Alkali Soil of Songnen Plain. PLoS ONE 2024, 19, e0296366. [Google Scholar] [CrossRef] [PubMed]
- Sujatha, E.R.; Kannan, G. An Investigation on the Potential of Cellulose for Soil Stabilization. Sustainability 2022, 14, 16277. [Google Scholar] [CrossRef]
- Ishak, M.I.S.; Al Manasir, Y.; Nor Ashikin, N.S.S.; Md Yusuff, M.S.; Zuknik, M.; Abdul Khalil, H.P.S. Application of Cellulosic Fiber in Soil Erosion Mitigation: Prospect and Challenges. BioResources 2021, 16, 4474–4522. [Google Scholar]
- Owji, R.; Habibagahi, G.; Nikooee, E.; Afzali, S.F. Wind Erosion Control Using Carboxymethyl Cellulose: From Sand Bombardment Performance to Microfabric Analysis. Aeolian Res. 2021, 50, 100696. [Google Scholar] [CrossRef]
- Ang, J.F. Water Retention Capacity and Viscosity Effect of Powdered Cellulose. J. Food Sci. 1991, 56, 1682–1684. [Google Scholar] [CrossRef]
- Mat Zain, N.F.; Mohamad Yusop, S.; Ahmad, I. Preparation and Characterization of Cellulose and Nanocellulose from Pomelo (Citrus Grandis) Albedo. J. Nutr. Food Sci. 2015, 5, 34213. [Google Scholar] [CrossRef]
- Shao, F.; Zeng, S.; Wang, Q.; Tao, W.; Wu, J.; Su, L.; Yan, H.; Zhang, Y.; Lin, S. Synergistic Effects of Biochar and Carboxymethyl Cellulose Sodium (CMC) Applications on Improving Water Retention and Aggregate Stability in Desert Soils. J. Environ. Manag. 2023, 331, 117305. [Google Scholar] [CrossRef]
- Zheng, M.; Mu, W.; Wang, Q.; Zhang, J.; Bai, Y.; Sun, Y.; Lu, Z.; Wei, X. Case Study on the Effects of Sodium Carboxymethyl Cellulose and Biostimulants on Physiological and Photosynthetic Characteristics, Yield, and Quality of Apples. Agronomy 2024, 14, 1403. [Google Scholar] [CrossRef]
- Barajas-Ledesma, R.M.; Hossain, L.; Wong, V.N.L.; Patti, A.F.; Garnier, G. Effect of the Counter-Ion on Nanocellulose Hydrogels and Their Superabsorbent Structure and Properties. J. Colloid Interface Sci. 2021, 599, 140–148. [Google Scholar] [CrossRef]
- Ngo, A.T.; Mori, Y.; Bui, L.T. Effects of Cellulose Nanofibers on Soil Water Retention and Aggregate Stability. Environ. Technol. Innov. 2024, 35, 103650. [Google Scholar] [CrossRef]
- Räty, M.; Termonen, M.; Soinne, H.; Nikama, J.; Rasa, K.; Järvinen, M.; Lappalainen, R.; Auvinen, H.; Keskinen, R. Improving Coarse-Textured Mineral Soils with Pulp and Paper Mill Sludges: Functional Considerations at Laboratory Scale. Geoderma 2023, 438, 116617. [Google Scholar] [CrossRef]
- Rasa, K.; Tähtikarhu, M.; Miettinen, A.; Kähärä, T.; Uusitalo, R.; Mikkola, J.; Hyväluoma, J. A Large One-Time Addition of Organic Soil Amendments Increased Soil Macroporosity but Did Not Affect Intra-Aggregate Porosity of a Clay Soil. Soil Tillage Res. 2024, 242, 106139. [Google Scholar] [CrossRef]
- Keskinen, R.; Nikama, J.; Kostensalo, J.; Räty, M.; Rasa, K.; Soinne, H. Methodological Choices in Size and Density Fractionation of Soil Carbon Reserves—A Case Study on Wood Fiber Sludge Amended Soils. Heliyon 2024, 10, e24450. [Google Scholar] [CrossRef]
- EN 15935:2021; Sludge, Treated Biowaste, Soil and Waste—Determination of Loss on Ignition. CEN: Brussels, Belgium, 2021.
- EN 15934:2012; Sludge, Treated Biowaste, Soil and Waste—Calculation of Dry Matter Fraction after Determination of Dry Residue or Water Content. CEN: Brussels, Belgium, 2012.
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis, Part 3: Chemical Methods; Soil Science Society of America; American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010. ISBN 978-0-89118-894-5. [Google Scholar]
- ISO 11260:2018; Soil Quality—Determination of Effective Cation Exchange Capacity and Base Saturation Level Using Barium Chloride Solution. ISO: Geneva, Switzerland, 2018.
- ISO 14238:2012; Soil Quality—Biological Methods—Determination of Nitrogen Mineralization and Nitrification in Soils and the Influence of Chemicals on These Processes. ISO: Geneva, Switzerland, 2012.
- ISO 13320:2020; Particle Size Analysis—Laser Diffraction Methods. 2nd ed. ISO: Geneva, Switzerland, 2020.
- ISO 14688-2:2017; Geotechnical Investigation and Testing—Identification and Classification of Soil—Part 2: Principles For a Classification. 2nd ed. ISO: Geneva, Switzerland, 2017.
- European Parliament and Council of the European Union. P9_TA(2024)0204—Soil Monitoring and Resilience (Soil Monitoring Directive). Official Journal of the European Union, C 2025/1312. 13 March 2025. [Google Scholar]
- Růžičková, J.; Raclavská, H.; Kucbel, M.; Pfeifer, C.; Juchelková, D.; Hrbek, J.; Šafář, M.; Slamová, K.; Švédová, B.; Kantor, P. Incidence and Spread of Additives from Co-Combustion of Plastic Waste in Domestic Boilers in Indoor and Outdoor Environments around the Family House. Energy 2023, 285, 129357. [Google Scholar] [CrossRef]
- Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance. Biotechnol. Biofuels 2010, 3, 10. [Google Scholar] [CrossRef]
- Md Salim, R.; Asik, J.; Sarjadi, M.S. Chemical Functional Groups of Extractives, Cellulose and Lignin Extracted from Native Leucaena Leucocephala Bark. Wood Sci. Technol. 2021, 55, 295–313. [Google Scholar] [CrossRef]
- Hospodarova, V.; Singovszka, E.; Stevulova, N. Characterization of Cellulosic Fibers by FTIR Spectroscopy for Their Further Implementation to Building Materials. Am. J. Anal. Chem. 2018, 9, 303–310. [Google Scholar] [CrossRef]
- Kačík, F.; Jurczyková, T.; Bálintová, M.; Kmeťová, E.; Výbohová, E.; Kačíková, D. Saccharide Alterations in Spruce Wood Due to Thermal and Accelerated Aging Processes. Polymers 2025, 17, 1265. [Google Scholar] [CrossRef] [PubMed]
- Gupta, B.S.; Jelle, B.P.; Hovde, P.J.; Rüther, P. FTIR Spectroscopy as a Tool to Predict Service Life of Wooden Cladding. In Proceedings of the CIB World Congress 2010—Building a Better World, Salford, UK, 10–13 May 2010; International Council for Building Research Studies and Documentation (CIB): Salford, UK, 2010; pp. 345–356. [Google Scholar]
- Otenda, B.V.; Kareru, P.G.; Madivoli, E.S.; Salim, A.M.; Gichuki, J.; Wanakai, S.I. Starch-Hibiscus-Cellulose Nanofibrils Composite Films as a Model Antimicrobial Food Packaging Material. J. Nat. Fibers 2022, 19, 12371–12384. [Google Scholar] [CrossRef]
- Hu, Y.; Thalangamaarachchige, V.D.; Acharya, S.; Abidi, N. Role of Low-Concentration Acetic Acid in Promoting Cellulose Dissolution. Cellulose 2018, 25, 4389–4405. [Google Scholar] [CrossRef]
- O’Connor, R.T.; DuPré, E.F.; Mitcham, D. Applications of Infrared Absorption Spectroscopy to Investigations of Cotton and Modified Cottons: Part I: Physical and Crystalline Modifications and Oxidation. Text. Res. J. 1958, 28, 382–392. [Google Scholar] [CrossRef]
- Agarwal, U.P. Beyond Crystallinity: Using Raman Spectroscopic Methods to Further Define Aggregated/Supramolecular Structure of Cellulose. Front. Energy Res. 2022, 10, 857621. [Google Scholar] [CrossRef]
- Nishimura, A.; Otsuka, S. Sulfated Cellulose Pulp with High Water Retention and a Swollen Fiber Structure for the Preparation of Completely Dispersed Cellulose Nanofibers. Cellulose 2024, 31, 3561–3571. [Google Scholar] [CrossRef]
- Ioelovich, M. Study of Hydrophilic Properties of Polysaccharides. Org. Polym. Mater. Res. 2021, 3, 12–23. [Google Scholar] [CrossRef]
- Simon, M.; Fulchiron, R.; Gouanvé, F. Water Sorption and Mechanical Properties of Cellulosic Derivative Fibers. Polymers 2022, 14, 2836. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Xiao, B.; Li, S.; Kidron, G.J. Towards Moss Biocrust Effects on Surface Soil Water Holding Capacity: Soil Water Retention Curve Analysis and Modeling. Geoderma 2021, 399, 115120. [Google Scholar] [CrossRef]
- Kubát, J. Methodology for Assessing the Quantity and Quality of Organic Matter in Agricultural Soil; The Crop Research Institute: Praha-Ruzyně, Czech Republic, 2008; ISBN 978-80-86666-93-5. (In Czech) [Google Scholar]
- Poláková, J.; Holec, J.; Janků, J.; Maitah, M.; Soukup, J. Effects of Agri-Environment Schemes in Terms of the Results for Soil, Water and Soil Organic Matter in Central and Eastern Europe. Agronomy 2022, 12, 1585. [Google Scholar] [CrossRef]
- Thai, S.; Pavlů, L.; Tejnecký, V.; Vokurková, P.; Nozari, S.; Borůvka, L. Comparison of Soil Organic Matter Composition under Different Land Uses by DRIFT Spectroscopy. Plant Soil Environ. 2021, 67, 255–263. [Google Scholar] [CrossRef]
- Bekhovykh, Y.; Bekhovykh, L.; Lyoevin, A.; Sizov, E. Changes in Maximum Water Holding Capacity of Chernozem Soil Caused by Soil Compaction. E3S Web Conf. 2021, 262, 03003. [Google Scholar] [CrossRef]
- Rawls, W.J.; Pachepsky, Y.A.; Ritchie, J.C.; Sobecki, T.M.; Bloodworth, H. Effect of Soil Organic Carbon on Soil Water Retention. Geoderma 2003, 116, 61–76. [Google Scholar] [CrossRef]
- Libohova, Z.; Seybold, C.; Wysocki, D.; Wills, S.; Schoeneberger, P.; Williams, C.; Lindbo, D.; Stott, D.; Owens, P.R. Reevaluating the Effects of Soil Organic Matter and Other Properties on Available Water-Holding Capacity Using the National Cooperative Soil Survey Characterization Database. J. Soil Water Conserv. 2018, 73, 411–421. [Google Scholar] [CrossRef]
- Hudson, B.D. Soil Organic Matter and Available Water Capacity. J. Soil Water Conserv. 1994, 49, 189–194. [Google Scholar] [CrossRef]
- Ngo, A.T.; Nguyen, M.C.; Maeda, M.; Mori, Y. Cellulose Nanofibers Boost Soil Water Availability, Plant Growth, and Irrigation Water Use Efficiency under Deficit Irrigation. Catena 2025, 254, 108998. [Google Scholar] [CrossRef]
- Ghezzehei, T.A.; Sulman, B.; Arnold, C.L.; Bogie, N.A.; Berhe, A.A. On the Role of Soil Water Retention Characteristic on Aerobic Microbial Respiration. Biogeosciences 2019, 16, 1187–1209. [Google Scholar] [CrossRef]
- Torrent, J.; Del Campillo, M.C.; Barrón, V. Short Communication: Predicting Cation Exchange Capacity from Hygroscopic Moisture in Agricultural Soils of Western Europe. Span. J. Agric. Res. 2015, 13, e11SC01. [Google Scholar] [CrossRef]
- Ye, C.; Zheng, G.; Tao, Y.; Xu, Y.; Chu, G.; Xu, C.; Chen, S.; Liu, Y.; Zhang, X.; Wang, D. Effect of Soil Texture on Soil Nutrient Status and Rice Nutrient Absorption in Paddy Soils. Agronomy 2024, 14, 1339. [Google Scholar] [CrossRef]
Sample Description | C (%) | H (%) | O (%) | N (%) | Average Size of Particles (mm) | Degree of Crystallinity, CrI (%) | WHC (g/g) |
---|---|---|---|---|---|---|---|
RFC | 41.96 | 6.04 | 51.99 | BDL | 0.136 | 92.9 | 0.75 ± 0.2 |
WCC | 43.11 | 5.95 | 50.94 | 0.16 | 2.87 ± 1.38 | 84.8 | 12.6 ± 0.4 |
Calculated from the formula of cellulose | 44.45 | 6.22 | 49.33 |
Ratio | WCC | RFC | Structural Meaning | Interpretation |
---|---|---|---|---|
A1429/A896 | 0.995 | 1.009 | Crystallinity index (CH2 deformation/ β-glycosidic bond) | A higher value indicates higher crystallinity of RFC [38] |
A1372/A2900 | 0.991 | 0.995 | C–H deformation/aliphatic C–H stretching | Indicator of changes in methylene group concentration, deprivation [6] |
A1730/A1050 | 0.997 | n/a | C=O vibration/C–O–C vibration | Presence of ester or carboxyl groups—impurities |
A1600/A1050 | 1.003 | n/a | Aromatic C=C/C–O–C vibrations | Lignin or aromatic compounds |
A896/A1050 | <1 | >1 | β-glycosidic bond/C–O–C vibrations | Lower crystallinity of WCC, higher in RFC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raclavská, H.; Šafář, M.; Raclavský, K.; Kucbel, M.; Kantor, P.; Švédová, B.; Slamová, K.; Matýsek, D. Use of Cellulose from Waste Paper to Improve the Water Capacity of Soils Within the Circular Economy. Agriculture 2025, 15, 1880. https://doi.org/10.3390/agriculture15171880
Raclavská H, Šafář M, Raclavský K, Kucbel M, Kantor P, Švédová B, Slamová K, Matýsek D. Use of Cellulose from Waste Paper to Improve the Water Capacity of Soils Within the Circular Economy. Agriculture. 2025; 15(17):1880. https://doi.org/10.3390/agriculture15171880
Chicago/Turabian StyleRaclavská, Helena, Michal Šafář, Konstantin Raclavský, Marek Kucbel, Pavel Kantor, Barbora Švédová, Karolina Slamová, and Dalibor Matýsek. 2025. "Use of Cellulose from Waste Paper to Improve the Water Capacity of Soils Within the Circular Economy" Agriculture 15, no. 17: 1880. https://doi.org/10.3390/agriculture15171880
APA StyleRaclavská, H., Šafář, M., Raclavský, K., Kucbel, M., Kantor, P., Švédová, B., Slamová, K., & Matýsek, D. (2025). Use of Cellulose from Waste Paper to Improve the Water Capacity of Soils Within the Circular Economy. Agriculture, 15(17), 1880. https://doi.org/10.3390/agriculture15171880