Effects of Tannin-Rich Supplements on Immune Response in Goats and Beef Cattle: A Collection of Controlled Feeding Trials
Abstract
1. Introduction
2. Materials and Methods
2.1. Trial 1
2.1.1. Experimental Feeding Protocol
2.1.2. Vaccination Challenge and Bloodwork Procedures
2.2. Trial 2
2.2.1. Experimental Feeding Protocol
2.2.2. Vaccination Challenge and Bloodwork Procedures
2.3. Trial 3
2.3.1. Experimental Feeding Protocol
2.3.2. Vaccination Challenge and Bloodwork Procedures
2.4. Statistical Analyses (All Trials)
3. Results
3.1. Trial 1
3.2. Trial 2
3.3. Trial 3
4. Discussion
4.1. Trial 1
4.2. Trial 2
4.3. Trial 3
4.4. Comparative Analysis of Trials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADG | Average Daily Gain |
BP | Blueberry Pomace |
CT | Condensed Tannins |
CG | Control Group |
DM | Dry Matter |
GP | Grape Pomace |
mDP | Mean Degree of Polymerization |
RJ | Redberry Juniper |
SO | Shinnery Oak |
References
- Cornell, H.V.; Hawkins, B.A. Herbivore Responses to Plant Secondary Compounds: A Test of Phytochemical Coevolution Theory. Am. Nat. 2003, 161, 507–522. [Google Scholar] [CrossRef]
- Burritt, E.A.; Provenza, F.D. Role of Toxins in Intake of Varied Diets by Sheep. J. Chem. Ecol. 2000, 26, 1991–2005. [Google Scholar] [CrossRef]
- Deeds, B.E.; Scott, C.B.; Brantley, R. Feeding Shinoak to Meat Goats Improves Four-Wing Saltbush and Total Intake. Tex. J. Agric. Nat. Resour. 2010, 23, 1–11. [Google Scholar]
- Provenza, F.D. Acquired Aversions as the Basis for Varied Diets of Ruminants Foraging on Rangelands. J. Anim. Sci. 1996, 74, 2010–2020. [Google Scholar] [CrossRef] [PubMed]
- Clemensen, A.K.; Provenza, F.D.; Hendrickson, J.R.; Grusak, M.A. Ecological Implications of Plant Secondary Metabolites-Phytochemical Diversity Can Enhance Agricultural Sustainability. Front. Sustain. Food Syst. 2020, 4, 547826. [Google Scholar] [CrossRef]
- Provenza, F.D.; Villalba, J.J.; Dziba, L.E.; Atwood, S.B.; Banner, R.E. Linking Herbivore Experience, Varied Diets, and Plant Biochemical Diversity. Small Rumin. Res. 2003, 49, 257–274. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Ramírez-Restrepo, C.; Muir, J.P. Developing a Conceptual Model of Possible Benefits of Condensed Tannins for Ruminant Production. Animal 2014, 8, 1095–1105. [Google Scholar] [CrossRef]
- Villalba, J.J.; Costes-Thiré, M.; Ginane, C. Phytochemicals in Animal Health: Diet Selection and Trade-Offs between Costs and Benefits. Proc. Nutr. Soc. 2017, 76, 113–121. [Google Scholar] [CrossRef]
- Böttger, A.; Vothknecht, U.; Bolle, C.; Wolf, A. Plant Secondary Metabolites and Their General Function in Plants. In Lessons on Caffeine, Cannabis & Co: Plant-Derived Drugs and Their Interaction with Human Receptors; Springer Nature: Cham, Switzerland, 2018; pp. 3–17. [Google Scholar]
- Erb, M.; Kliebenstein, D.J. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiol. 2020, 184, 39–52. [Google Scholar] [CrossRef]
- Hartmann, T. From Waste Products to Ecochemicals: Fifty Years Research of Plant Secondary Metabolism. Phytochemistry 2007, 68, 2831–2846. [Google Scholar] [CrossRef]
- Kabera, J.N.; Semana, E.; Mussa, A.R.; He, X. Plant Secondary Metabolites: Biosynthesis, Classification, Function and Pharmacological Properties. J. Pharm. Pharmacol. 2014, 2, 377–392. [Google Scholar]
- Illius, A.W.; Jessop, N.S. Modeling Metabolic Costs of Allelochemical Ingestion by Foraging Herbivores. J. Chem. Ecol. 1995, 21, 693–719. [Google Scholar] [CrossRef] [PubMed]
- Villalba, J.J.; Ramsey, R.D.; Athanasiadou, S. Herbivory and the Power of Phytochemical Diversity on Animal Health. Animal 2024, 101287. [Google Scholar] [CrossRef] [PubMed]
- Gessner, D.K.; Ringseis, R.; Eder, K. Potential of Plant Polyphenols to Combat Oxidative Stress and Inflammatory Processes in Farm Animals. J. Anim. Physiol. Anim. Nutr. 2017, 101, 605–628. [Google Scholar] [CrossRef]
- Nakajima, N.; Doi, K.; Tamiya, S.; Yayota, M. Potential Impact of Botanically Diverse Pasture on the Nutritional, Physiological, and Immunological Status of Grazing Cows. Grassl. Sci. 2022, 68, 155–164. [Google Scholar] [CrossRef]
- Tsiplakou, E.; Mavrommatis, A.; Gelasakis, A.I.; Kalogianni, A.I.; Simitzis, P.E. Effect of Phytochemical Feed Additives on Health Status, Milk Yield, and Quality Characteristics in Ruminants. Sustain. Use Feed Addit. Livest. 2023, 191, 641–663. [Google Scholar] [CrossRef]
- Gradé, J.T.; Tabuti, J.R.S.; Van Damme, P. Four Footed Pharmacists: Indications of Self-Medicating Livestock in Karamoja, Uganda. Econ. Bot. 2008, 63, 29–42. [Google Scholar] [CrossRef]
- Lozano, G.A. Parasitic Stress and Self-Medication in Wild Animals. Adv. Study Behav. 1998, 27, 291–317. [Google Scholar]
- Villalba, J.J.; Provenza, F.D.; Shaw, R. Sheep Self-Medicate When Challenged with Illness-Inducing Foods. Anim. Behav. 2006, 71, 1131–1139. [Google Scholar] [CrossRef]
- Villalba, J.J.; Landau, S.Y. Host Behavior, Environment and Ability to Self-Medicate. Small Rumin. Res. 2012, 103, 50–59. [Google Scholar] [CrossRef]
- Villalba, J.J.; Provenza, F.D. Self-Medication and Homeostatic Behaviour in Herbivores: Learning about the Benefits of Nature’s Pharmacy. Animal 2007, 1, 1360–1370. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. The Junipers of the World: The Genus Juniperus; Trafford Publishing: Bloomington, IN, USA, 2008. [Google Scholar]
- Nixon, K.C. Global and Neotropical Distribution and Diversity of Oak (Genus Quercus) and Oak Forests. In Ecology and Conservation of Neotropical Montane Oak Forests; Springer Science+Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Burlacu, E.; Nisca, A.; Tanase, C. A Comprehensive Review of Phytochemistry and Biological Activities of Quercus Species. Forests 2020, 11, 904. [Google Scholar] [CrossRef]
- Najar, B.; Pistelli, L.; Mancini, S.; Fratini, F. Chemical Composition and in Vitro Antibacterial Activity of Essential Oils from Different Species of Juniperus (Section Juniperus). Flavour Fragr. J. 2020, 35, 623–638. [Google Scholar] [CrossRef]
- Fretz, T.A.; Sydnor, T.D.; Cobbs, M.R. Monoterpene Composition of Foliage of 9 Juniperus Species. Sci. Hortic. 1976, 5, 85–91. [Google Scholar] [CrossRef]
- Peterson, R.S.; Boyd, C.S. Ecology and Management of Sand Shinnery Communities: A Literature Review; General Technical Report RMRS–GTR–16; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 1998. [Google Scholar]
- Aldrich, G.A.; Tanaka, J.A.; Adams, R.M.; Buckhouse, J.C. Economics of Western Juniper Control in Central Oregon. Rangel. Ecol. Manag. 2005, 58, 542–552. [Google Scholar] [CrossRef]
- Vermeire, L.T.; Wester, D.B. Shinnery Oak Poisoning of Rangeland Cattle: Causes, Effects & Solutions. Rangelands 2001, 23, 19–21. [Google Scholar] [CrossRef]
- George, C.H.; Scott, C.B.; Whitney, T.R.; Owens, C.J.; May, B.J.; Brantley, R. Supplements Containing Escape Protein Improve Redberry Juniper Intake by Goats. Rangel. Ecol. Manag. 2010, 63, 655–661. [Google Scholar] [CrossRef]
- Kadigi, J.H.; Muzzo, B.I.; Schreiber, S. Potential Benefits of Tannins on Ruminant Health, Production and Environmental Sustainability. Eur. J. Nutr. Food Saf. 2024, 16, 13–24. [Google Scholar] [CrossRef]
- Capaldi, G.; Aimone, C.; Calcio Gaudino, E.; Radošević, K.; Bagović, M.; Grillo, G.; Cravotto, G. The Green Extraction of Blueberry By-Products: An Evaluation of the Bioactive Potential of the Anthocyanin/Polyphenol Fraction. Int. J. Mol. Sci. 2024, 25, 11032. [Google Scholar] [CrossRef]
- Barbehenn, R.V.; Constabel, C.P. Tannins in Plant-Herbivore Interactions. Phytochemistry 2011, 72, 1551–1565. [Google Scholar] [CrossRef]
- Jawad, M.; Schoop, R.; Suter, A.; Klein, P.; Eccles, R. Review: Unravelling the Conundrum of Tannins in Animal Nutrition and Health. J. Sci. Food Agric. 2013, 13, 125–135. [Google Scholar] [CrossRef]
- Chung, K.T.; Wei, C.I.; Johnson, M.G. Are Tannins a Double-Edged Sword in Biology and Health? Trends Food Sci. Technol. 1998, 9, 168–175. [Google Scholar] [CrossRef]
- Ramah, A.; Yasuda, M.; Ohashi, Y.; Urakawa, M.; Kida, T.; Yanagita, T.; Uemura, R.; Bakry, H.H.; Abdelaleem, N.M.; El-Shewy, E.A. Different Doses of Tannin Reflect a Double-Edged Impact on Broiler Chicken Immunity. Vet. Immunol. Immunopathol. 2020, 220, 109991. [Google Scholar] [CrossRef] [PubMed]
- Amarowicz, R. Tannins: The New Natural Antioxidants? Eur. J. Lipid Sci. Technol. 2007, 109, 549–551. [Google Scholar] [CrossRef]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (Poly)Phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects against Chronic Diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [PubMed]
- Dey, A.; Dutta, N.; Pattanaik, A.K.; Sharma, K. Antioxidant Status, Metabolic Profile and Immune Response of Lambs Supplemented with Tannin Rich Ficus Infectoria Leaf Meal. Jpn. J. Vet. Res. 2015, 63, 15–24. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Xu, B. Anti-Inflammatory Effects of Phytochemicals from Fruits, Vegetables, and Food Legumes: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1260–1270. [Google Scholar] [CrossRef]
- Hoste, H.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Mueller-Harvey, I.; Sotiraki, S.; Louvandini, H.; Thamsborg, S.M.; Terrill, T.H. Tannin Containing Legumes as a Model for Nutraceuticals against Digestive Parasites in Livestock. Vet. Parasitol. 2015, 212, 5–17. [Google Scholar] [CrossRef]
- Juhnke, J.; Miller, J.; Hall, J.O.; Provenza, F.D.; Villalba, J.J. Preference for Condensed Tannins by Sheep in Response to Challenge Infection with Haemonchus contortus. Vet. Parasitol. 2012, 188, 104–114. [Google Scholar] [CrossRef]
- Lange, K.C.; Olcott, D.D.; Miller, J.E.; Mosjidis, J.A.; Terrill, T.H.; Burke, J.M.; Kearney, M.T. Effect of Sericea Lespedeza (Lespedeza cuneata) Fed as Hay, on Natural and Experimental Haemonchus contortus Infections in Lambs. Vet. Parasitol. 2006, 141, 273–278. [Google Scholar] [CrossRef]
- Min, B.R.; Hernandez, K.; Pinchak, W.E.; Anderson, R.C.; Miller, J.E.; Valencia, E. Effects of Plant Tannin Extracts Supplementation on Animal Performance and Gastrointestinal Parasites Infestation in Steers Grazing Winter Wheat. Open J. Anim. Sci. 2015, 5, 343–350. [Google Scholar] [CrossRef]
- Pathak, A.K.; Dutta, N.; Banerjee, P.S.; Goswami, T.K.; Sharma, K. Effect of Condensed Tannins Supplementation through Leaf Meal Mixture on Voluntary Feed Intake, Immune Response and Worm Burden in Haemonchus contortus Infected Sheep. J. Parasit. Dis. 2016, 40, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Y.I.; Kosir, V.; Yin, X.; Ross, K.; Diarra, M.S. Grape Pomace as a Promising Antimicrobial Alternative in Feed: A Critical Review. J. Agric. Food Chem. 2019, 67, 9705–9718. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Liu, X.; Zhao, G.; Hu, T.; Wang, Y. Potential and Challenges of Tannins as an Alternative to In-Feed Antibiotics for Farm Animal Production. Anim. Nutr. 2018, 4, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K. An Overview of Antimicrobial Properties of Different Classes of Phytochemicals. In Dietary Phytochemicals and Microbes; Patra, A.K., Ed.; Springer: Dordrecht, The Netherlands, 2012; ISBN 9789400739260. [Google Scholar]
- Akter, A.; Li, X.; Grey, E.; Wang, S.C.; Kebreab, E. Grape Pomace Supplementation Reduced Methane Emissions and Improved Milk Quality in Lactating Dairy Cows. J. Dairy Sci. 2025, 108, 2468–2480. [Google Scholar] [CrossRef]
- Ali, M.; Mehboob, H.A.; Mirza, M.A.; Raza, H.; Osredkar, M. Effect of Hydrolysable Tannin Supplementation on Production Performance of Crossbred Cows. J. Anim. Plant Sci. 2017, 27, 1088–1093. [Google Scholar]
- Grainger, C.; Clarke, T.; Auldist, M.J.; Beauchemin, K.A.; Mcginn, S.M.; Waghorn, G.C.; Eckard, R.J. Potential Use of Acacia mearnsii Condensed Tannins to Reduce Methane Emissions and Nitrogen Excretion from Grazing Dairy Cows. Can. J. Anim. Sci. 2009, 89, 241–251. [Google Scholar] [CrossRef]
- Chedea, V.S.; Pelmus, R.S.; Lazar, C.; Pistol, G.C.; Calin, L.G.; Toma, S.M.; Dragomir, C.; Taranu, I. Effects of a Diet Containing Dried Grape Pomace on Blood Metabolites and Milk Composition of Dairy Cows. J. Sci. Food Agric. 2017, 97, 2516–2523. [Google Scholar] [CrossRef]
- Asiamah, E.K.; Adjei-Fremah, S.; Osei, B.; Ekwemalor, K.; Worku, M. An Extract of Sericea Lespedeza Modulates Production of Inflammatory Markers in Pathogen Associated Molecular Pattern (PAMP) Activated Ruminant Blood. J. Agric. Sci. 2016, 8, 1–11. [Google Scholar] [CrossRef]
- Demarco, C.F.; Paisley, S.; Goodall, R.; Brauner, C.C.; Lake, S. Effects of Bacterial DFM and Tannins on Measures of Immunity and Growth Performance of Newly Weaned Beef Calves. Livest. Sci. 2021, 250, 104571. [Google Scholar] [CrossRef]
- Cox-Georgian, D.; Ramadoss, N.; Dona, C.; Basu, C. Therapeutic and Medicinal Uses of Terpenes. In Medicinal Plants: From Farm to Pharmacy; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Paduch, R.; Kandefer-Szerszeń, M.; Trytek, M.; Fiedurek, J. Terpenes: Substances Useful in Human Healthcare. Arch. Immunol. Ther. Exp. 2007, 55, 315–327. [Google Scholar] [CrossRef]
- Seifzadeh, S.; Aghjeh-Gheshlagh, F.; Abdi-Benemar, H.; Seifdavati, J.; Navidshad, B. The Effects of a Medical Plant Mixture and a Probiotic on Performance, Antioxidant Activity and Weaning Age of Newborn Holstein Calves. Iran. J. Appl. Anim. Sci. 2016, 6, 285–291. [Google Scholar]
- Dey, A.; Misra, S.; Dahiya, S.; Balhara, A.; Krishan, K.; Das, A.; Singh, R.; Kiran, A.; Imaz, J. Essential Oils as Phytogenic Feed Additive: Potential Benefits on Environment, Livestock Health and Production. Int. J. Econ. Plants 2017, 4, 177–181. [Google Scholar]
- Dorantes-Iturbide, G.; Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Lee-Rangel, H.A. Essential Oils as a Dietary Additive for Small Ruminants: A Meta-Analysis on Performance, Rumen Parameters, Serum Metabolites, and Product Quality. Vet. Sci. 2022, 9, 475. [Google Scholar] [CrossRef]
- Torres-Fajardo, R.A.; Higuera-Piedrahita, R.I. In Vivo Anthelmintic Activity of Terpenes and Essential Oils in Small Ruminants. Rev. MVZ Cordoba 2021, 26, e2317. [Google Scholar] [CrossRef]
- Nehme, R.; Andrés, S.; Pereira, R.B.; Ben Jemaa, M.; Bouhallab, S.; Ceciliani, F.; López, S.; Rahali, F.Z.; Ksouri, R.; Pereira, D.M.; et al. Essential Oils in Livestock: From Health to Food Quality. Antioxidants 2021, 10, 330. [Google Scholar] [CrossRef] [PubMed]
- Poulopoulou, I.; Evangelos, Z.; Styliani, A.; Theofilaktos, M.; Ioannis, H. Effects of Terpenes Administration on Fatty Acid Profile and Coagulation Properties of Ewes’ Milk. Emir. J. Food Agric. 2019, 31, 980–985. [Google Scholar] [CrossRef]
- Jaiswal, L.; Ismail, H.; Worku, M. A Review of the Effect of Plant-Derived Bioactive Substances on the Inflammatory Response of Ruminants (Sheep, Cattle, and Goats). Int. J. Vet. Anim. Med. 2020, 3, 130. Available online: https://www.boffinaccess.com/international-journal-veterinary-animal-medicine/a-review-of-the-3-130/IJVAM-3-130.pdf (accessed on 28 August 2025).
- Li, P.; Piao, X.; Ru, Y.; Han, X.; Xue, L.; Zhang, H. Effects of Adding Essential Oil to the Diet of Weaned Pigs on Performance, Nutrient Utilization, Immune Response and Intestinal Health. Asian-Australas. J. Anim. Sci. 2012, 25, 1617–1626. [Google Scholar] [CrossRef]
- Su, G.; Zhou, X.; Wang, Y.; Chen, D.; Chen, G.; Li, Y.; He, J. Effects of Plant Essential Oil Supplementation on Growth Performance, Immune Function and Antioxidant Activities in Weaned Pigs. Lipids Health Dis. 2018, 17, 139. [Google Scholar] [CrossRef]
- Adams, D.O. Phenolics and Ripening in Grape Berries. Am. J. Enol. Vitic. 2006, 57, 249–256. [Google Scholar] [CrossRef]
- Brenes, A.; Viveros, A.; Goñi, I.; Centeno, C.; Sáyago-Ayerdy, S.G.; Arija, I.; Saura-Calixto, F. Effect of Grape Pomace Concentrate and Vitamin E on Digestibility of Polyphenols and Antioxidant Activity in Chickens. Poult. Sci. 2008, 87, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Ross, K.A.; Ehret, D.; Godfrey, D.; Fukumoto, L.; Diarra, M. Characterization of Pilot Scale Processed Canadian Organic Cranberry (Vaccinium macrocarpon) and Blueberry (Vaccinium angustifolium) Juice Pressing Residues and Phenolic-Enriched Extractives. Int. J. Fruit Sci. 2017, 17, 202–232. [Google Scholar] [CrossRef]
- Spinei, M.; Oroian, M. The Potential of Grape Pomace Varieties as a Dietary Source of Pectic Substances. Foods 2021, 10, 867. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Butler, L.G. Protein Precipitation Method for the Quantitative Determination of Tannins. J. Agric. Food Chem. 1978, 26, 809–812. [Google Scholar] [CrossRef]
- Dietz, T.H.; Scott, C.B.; Campbell, E.J.; Owens, C.J.; Taylor, C.A.; Brantely, R. Feeding Redberry Juniper (Juniperus pinchotii) at Weaning Increases Juniper Consumption by Goats on Pasture. Rangel. Ecol. Manag. 2010, 63, 366–372. [Google Scholar] [CrossRef]
- Molosse, V.L.; Deolindo, G.L.; Lago, R.V.P.; Cécere, B.G.O.; Zotti, C.A.; Vedovato, M.; Copetti, P.M.; Fracasso, M.; Morsch, V.M.; Xavier, A.C.H.; et al. The Effects of the Inclusion of Ensiled and Dehydrated Grape Pomace in Beef Cattle Diet: Growth Performance, Health, and Economic Viability. Anim. Feed Sci. Technol. 2023, 302, 115671. [Google Scholar] [CrossRef]
- Hall, M.B.; Akinyode, A. Cottonseed Hulls: Working with a Novel Fiber Source. In Proceedings of the 11th Annual Florida Ruminant Nutrition Symposia, Gainsville, FL, USA, 13–14 January 2000; pp. 179–186. [Google Scholar]
- Zanine, A.M.; Castro, W.J.R.; Ferreira, D.J.; Souza, A.L.; Ribeiro, M.D.; Parente, H.N.; Parente, M.O.M.; Santos, E.M.; Oliveira, J.S.; Lima, A.G.V.O.; et al. Effects of Cottonseed Hull on Intake, Digestibility, Nitrogen Balance, Blood Metabolites and Ingestive Behaviour of Rams. Sci. Rep. 2023, 13, 2228. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Small Ruminants. Sheep, Goats, Cervids and New World Camelids; National Academy Press: Washington, DC, USA, 2007; p. 9. [Google Scholar]
- National Research Council. Nutrient Requirements of Beef Cattle, 8th Revised Edition; National Academic Press: Washington, DC, USA, 2015. [Google Scholar]
- Min, B.R.; Pinchak, W.E.; Merkel, R.; Walker, S.; Tomita, G.; Anderson, R.C. Comparative Antimicrobial Activity of Tannin Extracts from Perennial Plants on Mastitis Pathogens. Sci. Res. Essays 2008, 3, 66–73. [Google Scholar]
- Choi, J.; Kim, W.K. Dietary Application of Tannins as a Potential Mitigation Strategy for Current Challenges in Poultry Production: A Review. Animals 2020, 10, 2389. [Google Scholar] [CrossRef]
- Pelegrin-Valls, J.; Álvarez-Rodríguez, J.; Martín-Alonso, M.J.; Ramírez, G.A.; Baila, C.; Lobon, S.; Joy, M.; Serrano-Pérez, B. Effect of Maternal Dietary Condensed Tannins from Sainfoin (Onobrychis viciifolia) on Gut Health and Antioxidant-Immune Crosstalk in Suckling Lambs. Agriculture 2022, 12, 1694. [Google Scholar] [CrossRef]
- Riddle, R.R.; Taylor, C.A.; Kothmann, M.M.; Huston, J.E. Volatile Oil Contents of Ashe and Redberry Juniper and Its Relationship to Preference by Angora and Spanish Goats. J. Range Manag. 1996, 49, 35–41. [Google Scholar] [CrossRef]
- Pritz, R.K.; Launchbaugh, K.L.; Taylor, C.A. Effects of Breed and Dietary Experience on Juniper Consumption by Goats. J. Range Manag. 1997, 50, 600–606. [Google Scholar] [CrossRef]
- Lisonbee, L.D.; Villalba, J.J.; Provenza, F.D.; Hall, J.O. Tannins and Self-Medication: Implications for Sustainable Parasite Control in Herbivores. Behav. Process. 2009, 82, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Villalba, J.J.; Miller, J.; Ungar, E.D.; Landau, S.Y.; Glendinning, J. Ruminant Self-Medication against Gastrointestinal Nematodes: Evidence, Mechanism, and Origins. Parasite 2014, 21, 31. [Google Scholar] [CrossRef]
- Min, B.R.; Hart, S.P. Tannins for Suppression of Internal Parasites. J. Anim. Sci. 2003, 81, E102–E109. [Google Scholar]
- Min, B.R.; Hart, S.P.; Miller, D.; Tomita, G.M.; Loetz, E.; Sahlu, T. The Effect of Grazing Forage Containing Condensed Tannins on Gastro-Intestinal Parasite Infection and Milk Composition in Angora Does. Vet. Parasitol. 2005, 130, 105–113. [Google Scholar] [CrossRef]
- Launchbaugh, K.L.; Provenza, F.D.; Werkmeister, M.J. Overcoming Food Neophobia in Domestic Ruminants through Addition of a Familiar Flavor and Repeated Exposure to Novel Foods. Appl. Anim. Behav. Sci. 1997, 54, 327–334. [Google Scholar] [CrossRef]
- Provenza, F.D.; Burritt, E.A.; Clausen, T.P.; Bryant, J.P.; Reichardt, P.B.; Distel, R.A. Conditioned Flavor Aversion: A Mechanism for Goats to Avoid Condensed Tannins in Blackbrush. Am. Nat. 1990, 136, 810–828. [Google Scholar] [CrossRef]
- Cha, C.-N.; Park, E.-K.; Yoo, C.-Y.; Tutkun, L.; Kim, S.; Lee, H.-J. Changes in the Appetite and Behavior of Cattle and Pigs Inoculated with the Foot-and-Mouth Disease Vaccine. J. Prev. Vet. Med. 2016, 40, 166–168. [Google Scholar] [CrossRef]
- Dias Batista, L.F.; Rivera, M.E.; Norris, A.B.; Muir, J.P.; Fonseca, M.A.; Tedeschi, L.O. The Influence of Extended Supplementation of Quebracho Extract to Beef Steers Consuming a Hay Diet on Digestion, Ruminal, and Blood Parameters. J. Anim. Sci. 2021, 99, skab074. [Google Scholar] [CrossRef] [PubMed]
- Cravens, R.L.; Bechtol, D. Clinical Response of Feeder Calves Under Direct IBR and BVD Virus Challenge: A Comparison of Two Vaccines and Negative Control. Bov. Pract. 1991, 26, 154–158. [Google Scholar] [CrossRef]
- Kolb, E.A.; Buterbaugh, R.E.; Rinehart, C.L.; Ensley, D.; Perry, G.A.; Abdelsalam, K.W.; Chase, C.C.L. Protection against Bovine Respiratory Syncytial Virus in Calves Vaccinated with Adjuvanted Modified Live Vaccine Administered in the Face of Maternal Antibody. Vaccine 2020, 38, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Mueller-Harvey, I.; Bee, G.; Dohme-Meier, F.; Hoste, H.; Karonen, M.; Kölliker, R.; Lüscher, A.; Niderkorn, V.; Pellikaan, W.F.; Salminen, J.P.; et al. Benefits of Condensed Tannins in Forage Legumes Fed to Ruminants: Importance of Structure, Concentration, and Diet Composition. Crop Sci. 2019, 59, 861–885. [Google Scholar] [CrossRef]
- Mcmahon, L.R.; Mcallister, T.A.; Berg, B.P.; Majak, W.; Acharya, S.N.; Popp, J.D.; Coulman, B.E.; Wang, Y.; Cheng, K. A Review of the Effects of Forage Condensed Tannins on Ruminal Fermentation and Bloat in Grazing Cattle. Can. J. Plant Sci. 2000, 80, 469–485. [Google Scholar] [CrossRef]
- Idowu, M.; Taiwo, G.; Sidney, T.; Treon, E.; Leal, Y.; Ologunagba, D.; Eichie, F.; Pech-Cervantes, A.; Ogunade, I.M. Effects of Rumen-Bypass Protein Supplement on Growth Performance, Hepatic Mitochondrial Protein Complexes, and Hepatic Immune Gene Expression of Beef Steers with Divergent Residual Feed Intake. PLoS ONE 2024, 19, e0293718. [Google Scholar] [CrossRef]
- Cériac, S.; Archimède, H.; Feuillet, D.; Félicité, Y.; Giorgi, M.; Bambou, J.C. Supplementation with Rumen-Protected Proteins Induces Resistance to Haemonchus contortus in Goats. Sci. Rep. 2019, 9, 1237. [Google Scholar] [CrossRef]
- Williams, A.R.; Klaver, E.J.; Laan, L.C.; Ramsay, A.; Fryganas, C.; Difborg, R.; Kringel, H.; Reed, J.D.; Mueller-Harvey, I.; Skov, S.; et al. Co-Operative Suppression of Inflammatory Responses in Human Dendritic Cells by Plant Proanthocyanidins and Products from the Parasitic Nematode Trichuris Suis. Immunology 2017, 150, 312–328. [Google Scholar] [CrossRef]
- Tibe, O.; Pernthaner, A.; Sutherland, I.; Lesperance, L.; Harding, D.R.K. Condensed Tannins from Botswanan Forage Plants Are Effective Priming Agents of Γδ T Cells in Ruminants. Vet. Immunol. Immunopathol. 2012, 146, 237–244. [Google Scholar] [CrossRef]
- Maheshwari, S.; Kumar, V.; Bhadauria, G.; Mishra, A. Immunomodulatory Potential of Phytochemicals and Other Bioactive Compounds of Fruits: A Review. Food Front. 2022, 3, 221–238. [Google Scholar] [CrossRef]
- Andersen-Civil, A.I.S.; Leppä, M.M.; Thamsborg, S.M.; Salminen, J.P.; Williams, A.R. Structure-Function Analysis of Purified Proanthocyanidins Reveals a Role for Polymer Size in Suppressing Inflammatory Responses. Commun. Biol. 2021, 4, 896. [Google Scholar] [CrossRef]
- Schreiber, S.P.; Villalba, J.; Meyer-Ficca, M.L. Potential Epigenetic Impacts of Phytochemicals on Ruminant Health and Production: Connecting Lines of Evidence. Animals 2025, 15, 1787. [Google Scholar] [CrossRef]
- Silva, G.M.; Chalk, C.D.; Ranches, J.; Schulmeister, T.M.; Henry, D.D.; DiLorenzo, N.; Arthington, J.D.; Moriel, P.; Lancaster, P.A. Effect of Rumen-Protected Methionine Supplementation to Beef Cows during the Periconception Period on Performance of Cows, Calves, and Subsequent Offspring. Animal 2021, 15, 100055. [Google Scholar] [CrossRef]
Table 1a: Trial 1 | ||||
---|---|---|---|---|
Source | Volatile Oils (% DM) | Condensed tannin (% DM) | ||
Redberry juniper [68] | 0.94–1.08 | |||
Shinnery oak [69] | ≈7.9 | |||
Table 1b: Trial 2 | ||||
Source | Extractable tannin (%) | Protein bound tannin (%) | Fiber bound tannin (%) | Total condensed tannin (%) |
Blueberry pomace | 1.42 | 3.35 | 0.00 | 4.77 |
Grape pomace | 0.81 | 4.10 | 1.56 | 4.91 |
Grape–blueberry mix | 1.11 | 3.73 | 0.78 | 4.84 |
Ingredients/Nutrients | (%) |
---|---|
Alfalfa Pellets | 10.0 |
Cotton Seed Meal | 12.5 |
Cottonseed hulls | 31.5 |
Cane molasses | 3.5 |
Mineral Premix | 2.5 |
Corn | 40.0 |
DE | 2.6 Mcal/kg |
TDN | 59.0 |
Crude Protein | 14.5 |
Crude Fiber | 14.2 |
Ingredients/ Nutrients | Grape Pomace Ration (%) | Blueberry Pomace Ration (%) | Control (%) |
---|---|---|---|
Alfalfa Pellets | 10.0 | 10.0 | 10.0 |
Cotton Seed Meal | 12.5 | 12.5 | 12.5 |
Cottonseed hulls | 11.5 | 11.5 | 31.5 |
Grape Pomace | 20.0 | -- | -- |
Blueberry Pomace | -- | 20.0 | -- |
Cane molasses | 3.5 | 3.5 | 3.5 |
Mineral Premix | 2.5 | 2.5 | 2.5 |
Corn | 40.0 | 40.0 | 40.0 |
DE | 2.5 Mcal/kg | 2.5 Mcal/kg | 2.6 Mcal/kg |
TDN | 56.5 | 56.2 | 59.0 |
Crude Protein | 16.1 | 14.7 | 14.5 |
Crude Fiber | 8.8 | 8.1 | 14.2 |
Ingredients/Nutrients | Treatment (%) | Control (%) |
---|---|---|
Alfalfa pellets | 10.0 | 10.0 |
Cotton seed meal | 12.5 | 12.5 |
Cottonseed hulls | 25.5 | 31.5 |
Grape/blueberry pomace | 6.0 | 0.0 |
Cane molasses | 3.5 | 3.5 |
Mineral premix | 2.5 | 2.5 |
Corn | 40.0 | 40.0 |
DE | 2.6 Mcal/kg | 2.6 Mcal/kg |
TDN | 58.2 | 59.0 |
Crude protein | 14.8 | 14.5 |
Crude fiber | 12.5 | 14.2 |
Trial 1 | Parameter | CG | SE | SO | SE | RJ | SE |
---|---|---|---|---|---|---|---|
ADG (kg/day) | 0.16 | 0.04 | 0.13 | 0.04 | 0.12 | 0.04 | |
Globulins (g/dL) | 2.90 b | 0.11 | 3.36 a | 0.11 | 2.88 b | 0.11 | |
Trial 2 | Parameter | CG | SE | GP | SE | BP | SE |
ADG (kg/day) | 0.08 | 0.02 | 0.04 | 0.02 | 0.08 | 0.02 | |
Total WBCs (K/uL) | 14.17 | 1.10 | 12.90 | 1.03 | 13.46 | 1.03 | |
RBC (M/uL) | 19.62 | 0.70 | 18.48 | 0.66 | 19.55 | 0.66 | |
Lymphocytes (K/uL) | 7.55 | 0.57 | 7.10 | 0.56 | 7.63 | 0.56 | |
Neutrophils (K/uL)) | 4.87 | 0.57 | 5.05 | 0.54 | 4.51 | 0.55 | |
Globulins (g/dL) | 3.34 | 0.13 | 3.13 | 0.13 | 3.22 | 0.13 | |
Trial 3 | Parameter | Control | SE | Treatment | SE | ||
ADG (kg/day) | 1.33 | 0.62 | 1.07 | 0.62 | |||
Total WBCs (K/uL) | 8.05 | 0.62 | 8.27 | 0.59 | |||
RBC (M/uL) | 7.79 | 0.21 | 8.08 | 0.21 | |||
Lymphocytes (K/uL) | 5.12 | 0.54 | 4.88 | 0.51 | |||
Neutrophils (K/uL)) | 2.76 | 0.54 | 3.09 | 0.51 | |||
IBR Immunoglobulins (g/dL) | 2.41 | 0.09 | 2.51 | 0.09 | |||
BVD Immunoglobulins (g/dL) | 2.44 | 0.10 | 2.49 | 0.10 |
Response | Predictor | p-Value | Days with Group Differences |
---|---|---|---|
Clippings Intake | Group | 0.1064 | 2, 3 |
Day | 0.0053 | ||
Group × Day | 0.0244 | ||
Basal Ration Intake | Group | 0.2625 | None |
Day | <0.0001 | ||
Group × Day | 0.1590 | ||
Average Daily Gain | Group | 0.7252 | None |
Body Temperature | Group | <0.0001 | 72 hr |
Day | 0.1590 | ||
Group × Day | 0.2645 | ||
Globulins | Group | 0.0053 | 0, 7 |
Day | <0.0001 | ||
Group × Day | 0.0166 |
Response | Predictor | p-Value | Days with Group Differences |
---|---|---|---|
Intake | Group | 0.0787 | 2, 7, 13 |
Day | 0.0067 | ||
Group × Day | 0.9040 | ||
Average Daily Gain | Group | 0.2985 | None |
White Blood Cells | Group | 0.7040 | None |
Day | 0.0684 | ||
Group × Day | 0.3127 | ||
Red Blood Cells | Group | 0.4164 | None |
Day | 0.9228 | ||
Group × Day | 0.8495 | ||
Globulins | Group | 0.5578 | |
Day | 0.0148 | 14 | |
Group × Day | 0.1874 |
Response | Predictor | p-Value | Days with Group Differences |
---|---|---|---|
Intake | Group | 0.8327 | 2, 17, 18 |
Day | <0.0001 | ||
Group × Day | <0.0001 | ||
Average Daily Gain | Group | 0.8646 | None |
Body Temperature | Group | 0.8276 | |
Day | <0.0001 | None | |
Group × Day | 0.0295 | ||
White Blood Cells | Group | 0.5525 | None |
Day | 0.0460 | ||
Group × Day | 0.6543 | ||
Red Blood Cells | Group | 0.4047 | None |
Day | <0.0001 | ||
Group × Day | 0.6832 | ||
IBR Immunoglobulins | Group | 0.4264 | |
Day | 0.0699 | None | |
Group × Day | 0.9279 | ||
BVD Immunoglobulins | Group | 0.5453 | |
Day | 0.1258 | None | |
Group × Day | 0.5547 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schreiber, S.P.; Burson, R.D.; Scott, C.B.; Owens, C.J. Effects of Tannin-Rich Supplements on Immune Response in Goats and Beef Cattle: A Collection of Controlled Feeding Trials. Agriculture 2025, 15, 1863. https://doi.org/10.3390/agriculture15171863
Schreiber SP, Burson RD, Scott CB, Owens CJ. Effects of Tannin-Rich Supplements on Immune Response in Goats and Beef Cattle: A Collection of Controlled Feeding Trials. Agriculture. 2025; 15(17):1863. https://doi.org/10.3390/agriculture15171863
Chicago/Turabian StyleSchreiber, Sebastian P., Rebecca D. Burson, Cody B. Scott, and Corey J. Owens. 2025. "Effects of Tannin-Rich Supplements on Immune Response in Goats and Beef Cattle: A Collection of Controlled Feeding Trials" Agriculture 15, no. 17: 1863. https://doi.org/10.3390/agriculture15171863
APA StyleSchreiber, S. P., Burson, R. D., Scott, C. B., & Owens, C. J. (2025). Effects of Tannin-Rich Supplements on Immune Response in Goats and Beef Cattle: A Collection of Controlled Feeding Trials. Agriculture, 15(17), 1863. https://doi.org/10.3390/agriculture15171863