Pseudomonas chlororaphis YTBTa14 as a Multifunctional Biocontrol Agent: Simultaneous Growth Enhancement and Systemic Resistance Induction in Vitis vinifera Against Downy Mildew
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation and Screening of Strain YTBTa14 Antagonism Assays
2.2. Antagonistic Activity Evaluation of YTBTa14 Against Phytopathogenic Fungi
2.3. Identifification of Strain YTBTa14
2.4. Determination of Environmental Adaptability and Antimicrobial Activity of YTBTa14
2.4.1. Salt Stress Adaptability Analysis
2.4.2. Thermal Stability Determination
2.4.3. pH Stability Determination
2.5. Plant Growth-Promoting Effects of YTBTa14
2.5.1. Wheat Seed Germination Assay
2.5.2. Grapevine Plant Growth Promotion Trial
2.6. Expression of Defense-Related Genes Against Plasmopara viticola
Gene Target | Primer Sequences | Reference |
---|---|---|
PR1 | 5′-GGAGTCCATTAGCACTCCTTTG-3′ 5′-CATAATTCTGGGCGTAGGCAG-3′ | [29] |
NPR1 | 5′-GGAATTCGATGTTGGGTACG -3′ 5′-GCAACCTTGTCAAGAATGTCC -3′ | [30] |
PAL1 | 5′-CCAGTTCTCAGAGCTTGTTAATGA-3′ 5′-ATACATGTTCCCTATCCACCACTT-3′ | [31] |
EF-1 a | 5′-AACCAAAATATCCGGAGTAAA AGA-3′ 5′-GAACTGGGTGCTTGATAGGC-3′ | [1] |
2.7. Analysis of Plant Cell Defense Response Characteristics
2.7.1. Reactive Oxygen Species Detection (DAB Staining)
2.7.2. Cell Necrosis Detection
2.8. Statistical Analysis
2.9. The Flowchart
3. Results
3.1. Biocontrol Effect of Pseudomonas chlororaphis YTBTa14 Against Plant Pathogens
3.2. YTBTa14 Was Identifified as Pseudomonas chlororaphis
3.3. The Growth-Promoting Potential of Strain YTBTa14 on Crops
3.4. Differential Regulation of Plant Hormones Mediates Growth Promotion by Pseudomonas chlororaphis YTBTa14
3.5. YTBTa14-Mediated Priming Enhances Pathogen Resistance and Accelerates Defense Gene Expression
3.6. YTBTa14 Primes Cellular Defense Responses in Grapevine Against Downy Mildew
3.7. YTBTa14 Regulates Antioxidant Enzyme Activities in Grape
4. Discussion
4.1. Broad-Spectrum Antifungal Activity and Biocontrol Potential of YTBTa14
4.2. Growth-Promoting Effects of Pseudomonas chlororaphis YTBTa14
4.3. Molecular and Physiological Evidence for Induced Systemic Resistance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Etminani, F.; Harighi, B.; Bahramnejad, B.; Mozafari, A.A. Antivirulence effects of cell-free culture supernatant of endophytic bacteria against grapevine crown gall agent, Agrobacterium tumefaciens, and induction of defense responses in plantlets via intact bacterial cells. BMC Plant Biol. 2024, 24, 104. [Google Scholar] [CrossRef]
- Li, B.Y.; Shi, J.; Zhang, W.; Zhou, H.F.; Chen, P.; Zhang, Z.R.; Yang, J.J.; Liu, B.Y. Sensitivity baseline and resistance risk assessment of Coniella vitis, the pathogen of grape white rot, to the novel fungicide Mefentrifluconazole. N. Z. J. Crop Hortic. Sci. 2024, 53, 1834–1851. [Google Scholar] [CrossRef]
- Zhang, Z.; Niu, Z.; Chen, Z.; Zhao, Y.; Yang, L. Review of the pathogenic mechanism of grape downy mildew (Plasmopara viticola) and strategies for its control. Microorganisms 2025, 13, 1279. [Google Scholar] [CrossRef]
- Ilnitskaya, E.T.; Makarkina, M.V.; Tokmakov, S.V.; Naumova, L.G. DNA marker identification of downy mildew resistance locus Rpv10 in grapevine genotypes. Vavilov J. Genet. Breed. 2023, 27, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Li, B.Y.; Ran, L.X.; Shi, L.M.; Zhang, K.C.; Ge, B.B. Research progress of grape downy mildew. Chin. Agric. Sci. Bull. 2023, 39, 125–131. [Google Scholar]
- Koledenkova, K.; Esmaeel, Q.; Jacquard, C.; Nowak, J.; Clément, C.; Barka, E.A. Plasmopara viticola, the causal agent of downy mildew of grapevine: From its taxonomy to disease management. Front. Microbiol. 2022, 13, 889472. [Google Scholar] [CrossRef] [PubMed]
- Delmas, C.E.; Dussert, Y.; Delière, L.; Couture, C.; Mazet, I.D.; Richart Cervera, S.; Delmotte, F. Soft selective sweeps in fungicide resistance evolution: Recurrent mutations without fitness costs in grapevine downy mildew. Mol. Ecol. 2017, 26, 1936–1951. [Google Scholar] [CrossRef]
- Chen, W.J.; Delmotte, F.; Richard-Cervera, S.; Douence, L.; Greif, C.; Corio-Costet, M.F. At least two origins of fungicide resistance in grapevine downy mildew populations. Appl. Environ. Microbiol. 2007, 73, 5162–5172. [Google Scholar] [CrossRef]
- Sun, Z.B.; Song, H.J.; Liu, Y.Q.; Ren, Q.; Wang, Q.Y.; Li, X.F.; Pan, H.X.; Huang, X.Q. The potential of microorganisms for the control of grape downy mildew—A review. J. Fungi 2024, 10, 702. [Google Scholar] [CrossRef]
- Preston, G.M. Plant perceptions of plant growth-promoting Pseudomonas. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004, 359, 907–918. [Google Scholar] [CrossRef]
- Mercado-Blanco, J.; Bakker, P.A. Interactions between plants and beneficial Pseudomonas spp.: Exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 2007, 92, 367–389. [Google Scholar] [CrossRef] [PubMed]
- Pieterse, C.M.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, S.C.; Bakker, P.A. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Z.; Wu, N.; Hale, L.; Guo, Y. Characterisation of Pseudomonas chlororaphis subsp. Aurantiaca strain Pa40 with the ability to control wheat sharp eyespot disease. Ann. Appl. Biol. 2013, 163, 444–453. [Google Scholar] [CrossRef]
- Rovera, M.; Pastor, N.; Niederhauser, M.; Rosas, S.B. Evaluation of Pseudomonas chlororaphis subsp. Aurantiaca SR1 for growth promotion of soybean and for control of Macrophomina phaseolina. Biocontrol Sci. Technol. 2014, 24, 1012–1025. [Google Scholar] [CrossRef]
- Hu, W.; Gao, Q.; Hamada, M.S.; Dawood, D.H.; Ma, Z. Potential of Pseudomonas chlororaphis subsp aurantiaca strain Pcho10 as a biocontrol agent against Fusarium graminearum. Phytopathology 2014, 104, 1289–1297. [Google Scholar] [CrossRef]
- Kang, B.R.; Anderson, A.J.; Kim, Y.C. Hydrogen cyanide produced by Pseudomonas chlororaphis O6 is a key aphicidal metabolite. Can. J. Microbiol. 2019, 65, 185–190. [Google Scholar] [CrossRef]
- Arrebola, E.; Aprile, F.R.; Calderón, C.E.; de Vicente, A.; Cazorla, F.M. Insecticidal features displayed by the beneficial rhizobacterium Pseudomonas chlororaphis PCL1606. Int. Microbiol. 2022, 25, 679–689. [Google Scholar] [CrossRef]
- Arrebola, E.; Tienda, S.; Vida, C.; de Vicente, A.; Cazorla, F.M. Fitness features involved in the biocontrol interaction of Pseudomonas chlororaphis with host plants: The case study of PcPCL1606. Front. Microbiol. 2019, 10, 719. [Google Scholar] [CrossRef]
- Mengistu, A.A. Endophytes: Colonization, behaviour, and their role in defense mechanism. Int. J. Microbiol. 2020, 2020, 6927219. [Google Scholar] [CrossRef]
- Magnin-Robert, M.; Trotel-Aziz, P.; Quantinet, D.; Biagianti, S.; Aziz, A. Biological control of Botrytis cinerea by selected grapevine-associated bacteria and stimulation of chitinase and β-1,3 glucanase activities under field conditions. Eur. J. Plant Pathol. 2007, 118, 43–57. [Google Scholar] [CrossRef]
- Ramamoorthy, V.; Raguchander, T.; Samiyappan, R. Induction of defense related proteins in tomato roots treated with Pseudomonas fluorescens Pf1 and Fusarium oxysporum f. sp. lycopersici. Plant Soil. 2002, 239, 55–68. [Google Scholar] [CrossRef]
- Wang, J.; Tavakoli, J.; Tang, Y. Bacterial cellulose production, properties and applications with different culture methods–A review. Carbohydr. Polym. 2019, 219, 63–76. [Google Scholar] [CrossRef]
- Li, B.Y.; Wang, Y.Z.; Jiang, F.X.; Shi, J.; Liu, X.Q. Study on physiological and biochemical defense responses of grape against infection of Plasmopara viticola. Shandong Agric. Sci. 2018, 50, 122–126. [Google Scholar]
- Lalucat, J.; Mulet, M.; Gomila, M.; García-Valdés, E. Genomics in bacterial taxonomy: Impact on the genus Pseudomonas. Genes 2020, 11, 139. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.S.; Xie, X.W.; Shi, Y.X.; Chai, A.L.; Li, L.; Li, B.J. Application of Pseudomonas chlororaphis subsp. Aurantiaca against gray leaf spot of tomato. Chin. J. Biol. Control. 2021, 37, 1265–1275. [Google Scholar]
- Zhu, Z.S.; Wang, Q.F.; Li, Q.; Ma, J.; Xia, Z.M.; Hou, Y.; Wang, H.T.; Hu, F.K.; Xu, Y.C. Changes of endogenous hormone content in main organs of Hibiscus mutabilis linn during the flowering period. J. West China For. Sci. 2021, 50, 16–23. [Google Scholar]
- Farhangi-Abriz, S.; Torabian, S. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicol. Environ. Saf. 2017, 137, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, 2003–2007. [Google Scholar] [CrossRef]
- Hatmi, S.; Villaume, S.; Trotel-Aziz, P.; Barka, E.A.; Clément, C.; Aziz, A. Osmotic stress and ABA affect immune response and susceptibility of grapevine berries to gray mold by priming polyamine accumulation. Front. Plant Sci. 2018, 9, 1010. [Google Scholar] [CrossRef] [PubMed]
- Le Henanff, G.; Heitz, T.; Mestre, P.; Mutterer, J.; Walter, B.; Chong, J. Characterization of Vitis vinifera NPR1 homologs involved in the regulation of pathogenesis-related gene expression. BMC Plant Biol. 2009, 9, 54. [Google Scholar] [CrossRef]
- Ahn, S.Y.; Kim, S.A.; Han, J.H.; Kim, S.H.; Yun, H.K. Screening differential expressions of defense-related responses in cold-treated ‘Kyoho’ and ‘Campbell Early’ grapevines. Korean J. Hortic. Sci. Technol. 2013, 31, 275–281. [Google Scholar] [CrossRef]
- Peng, J.; Bao, Z.; Ren, H.; Wang, J.; Dong, H. Expression of harpinXoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive response. Phytopathology 2004, 94, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, R.; Chen, L.; Wang, Y.; Liang, Y.; Wu, X.; Li, B.; Wu, J.; Liang, Y.; Wang, X.; et al. Nicotiana tabacum TTG1 contributes to ParA1-induced signalling and cell death in leaf trichomes. J. Cell Sci. 2009, 122, 2673–2685. [Google Scholar] [CrossRef] [PubMed]
- Fedele, G.; González-Domínguez, E.; Ammour, M.S.; Languasco, L.; Rossi, V. Reduction of Botrytis cinerea colonization of and sporulation on bunch trash. Plant Dis. 2020, 104, 808–816. [Google Scholar] [CrossRef]
- Elnahal, A.S.M.; El-Saadony, M.T.; Saad, A.M.; Desoky, E.S.M.; El-Tahan, A.M.; Rady, M.M.; Abuqamar, S.F.; El-Tarabily, K.A. The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. Eur. J. Plant Pathol. 2022, 162, 759–792. [Google Scholar] [CrossRef]
- Raio, A.; Puopolo, G.; Cimmino, A.; Danti, R.; Della Rocca, G.; Evidente, A. Biocontrol of cypress canker by the phenazine producer Pseudomonas chlororaphis subsp. Aureofaciens strain M71. Biol. Control. 2011, 58, 133–138. [Google Scholar] [CrossRef]
- Cho, S.M.; Kang, B.R.; Han, S.H.; Anderson, A.J.; Park, J.Y.; Lee, Y.H.; Cho, B.H.; Yang, K.Y.; Ryu, C.M.; Kim, Y.C. 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 2008, 21, 1067–1075. [Google Scholar] [CrossRef]
- Egamberdieva, D. Pseudomonas chlororaphis: A salt-tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Physiol. Plant. 2012, 34, 751–756. [Google Scholar] [CrossRef]
- Anderson, J.A.; Staley, J.; Challender, M.; Heuton, J. Safety of Pseudomonas chlororaphis as a gene source for genetically modified crops. Transgenic Res. 2018, 27, 103–113. [Google Scholar] [CrossRef]
- Huang, R.; Feng, Z.B.; Chi, X.Y.; Sun, X.; Lu, Y.; Zhang, B.; Lu, R.; Luo, W.; Wang, Y.; Miao, J.; et al. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum. Microbiol. Res. 2018, 215, 55–64. [Google Scholar] [CrossRef]
- Kang, B.R.; Anderson, A.J.; Kim, Y.C. Hydrogen cyanide produced by Pseudomonas chlororaphis O6 exhibits nematicidal activity against Meloidogyne hapla. Plant Pathol. J. 2018, 34, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Bardas, G.A.; Lagopodi, A.L.; Kadoglidou, K.; Tzavella-Klonari, K. Biological control of three Colletotrichum lindemuthianum races using Pseudomonas chlororaphis PCL1391 and Pseudomonas fluorescens WCS365. Biol. Control. 2009, 49, 139–145. [Google Scholar] [CrossRef]
- Zhao, L.F.; Xu, Y.J.; Ma, Z.Q.; Deng, Z.S.; Shan, C.J.; Wei, G.H. Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules. Braz. J. Microbiol. 2013, 44, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Setlhare, B.; Kumar, A.; Mokoena, M.P.; Olaniran, A.O. Catechol 1,2-Dioxygenase is an analogue of Homogentisate 1,2-Dioxygenase in Pseudomonas chlororaphis Strain UFB2. Int. J. Mol. Sci. 2018, 20, 61. [Google Scholar] [CrossRef]
- Liu, Z.J.; Shang, L.L.; Tuerdi, M.; Li, T.; Kang, Q.H.; Zhang, R.; Dong, N.; Chen, X.F. Screening and identification of antagonistic bacterium Pseudomonas chlororaphis for walnut rot disease and its effect on promoting germination of seeds and growth of seedlings in walnut. J. Fruit Sci. 2025, 42, 170–184. [Google Scholar]
- Barahona, E.; Navazo, A.; Martínez-Granero, F.; Zea-Bonilla, T.; Pérez-Jiménez, R.M.; Martín, M.; Rivilla, R. Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. Appl. Environ. Microbiol. 2011, 77, 5412–5419. [Google Scholar] [CrossRef]
- Tagele, S.B.; Lee, H.G.; Kim, S.W.; Lee, Y.S. Phenazine and 1-undecene producing Pseudomonas chlororaphis subsp. Aurantiaca strain KNU17Pc1 for growth promotion and disease suppression in Korean maize cultivars. J. Microbiol. Biotechnol. 2019, 29, 66–78. [Google Scholar] [CrossRef]
- Pierson, L.S., III; Thomashow, L.S. Cloning and heterologous expression of the phenazine biosynthetic. Mol. Plant-Microbe Interact. 1992, 5, 330–339. [Google Scholar] [CrossRef]
- Chin-A-Woeng, T.F.C.; Bloemberg, G.V.; Mulders, I.H.; Dekkers, L.C.; Lugtenberg, B.J. Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol. Plant-Microbe Interact. 2000, 13, 1340–1345. [Google Scholar] [CrossRef]
- Gao, X.Y.; Liu, Y.; Miao, L.L.; Li, E.W.; Sun, G.X.; Liu, Y.; Liu, Z.P. Characterization and mechanism of anti-Aeromonas salmonicida activity of a marine probiotic strain, Bacillus velezensis V4. Appl. Microbiol. Biotechnol. 2017, 101, 3759–3768. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.J.; Xu, M.J.; Guo, J.H.; Zhang, C.M.; Feng, Z.Z.; Peng, X.; Li, Z.Y.; Xing, K.; Qin, S. Antifungal effect of volatile organic compounds produced by Pseudomonas chlororaphis subsp. Aureofaciens SPS-41 on oxidative stress and mitochondrial dysfunction of Ceratocystis fimbriata. Pestic. Biochem. Physiol. 2021, 173, 104777. [Google Scholar] [CrossRef]
- Qin, J.J.; Yan, S.Z.; Liu, J. The growth-promotion on pepper and control of Phytophthora capsica by endophytic bacterium agents. J. Plant Prot. 2010, 37, 325–330. [Google Scholar]
- Wu, L.Q.; Shang, H.Z.; Wang, Q.; Gu, H.K.; Liu, G.J.; Yang, S.L. Isolation and characterization of antagonistic endophytes from Dendrobium candidum Wall ex Lindl., and the biofertilizing potential of a novel Pseudomonas saponiphila strain. Appl. Soil Ecol. 2016, 105, 101–108. [Google Scholar] [CrossRef]
- Zhang, P.; Jin, T.; Sahu, S.K.; Xu, J.; Shi, Q.; Liu, H.; Wang, Y. The distribution of tryptophan-dependent indole-3-acetic acid synthesis pathways in bacteria unraveled by large-scale genomic analysis. Molecules 2019, 24, 1411. [Google Scholar] [CrossRef] [PubMed]
- Duca, D.; Rose, D.R.; Glick, B.R. Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. strain UW4 that converts indole-3-acetonitrile to indole-3-acetic acid. Appl. Environ. Microbiol. 2014, 80, 4640–4649. [Google Scholar] [CrossRef] [PubMed]
- Patten, C.L.; Blakney, A.J.; Coulson, T.J. Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit. Rev. Microbiol. 2013, 39, 395–415. [Google Scholar] [CrossRef] [PubMed]
- Pieterse, C.M.J.; Van Wees, S.C.M.; Ton, J.; van Pelt, J.A.; van Loon, L.C. Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol. 2002, 4, 535–544. [Google Scholar] [CrossRef]
- Mariutto, M.; Duby, F.; Adam, A.; Bureau, C.; Fauconnier, M.L.; Ongena, M.; Thonart, P. The elicitation of a systemic resistance by Pseudomonas putida BTP1 in tomato involves the stimulation of two lipoxygenase isoforms. BMC Plant Biol. 2011, 11, 29. [Google Scholar] [CrossRef]
- Asghari, S.; Harighi, B.; Ashengroph, M.; Clement, C.; Aziz, A.; Esmaeel, Q.; Barka, E.A. Induction of systemic resistance to Agrobacterium tumefaciens by endophytic bacteria in grapevine. Plant Pathol. 2020, 69, 827–837. [Google Scholar] [CrossRef]
- Van Loon, L.C.; Rep, M.; Pieterse, C.M. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 2006, 44, 135–162. [Google Scholar] [CrossRef]
- Muro-Villanueva, F.; Mao, X.Y.; Chapple, C. Linking phenylpropanoid metabolism, lignin deposition, and plant growth inhibition. Curr. Opin. Biotechnol. 2019, 56, 202–208. [Google Scholar] [CrossRef]
- Nowogórska, A.; Patykowski, J.S. Selected reactive oxygen species and antioxidant enzymes in common bean after Pseudomonas syringae pv. Phaseolicola and Botrytis cinerea infection. Acta Physiol. Plant. 2015, 37, 1725. [Google Scholar] [CrossRef]
- Xie, J.; Chai, T.T.; Xu, R.; Liu, D.; Yang, Y.X.; Deng, Z.C.; Jin, H.; He, H. Induction of defense-related enzymes in patchouli inoculated with virulent Ralstonia solanacearum. Electron. J. Biotechnol. 2017, 27, 63–69. [Google Scholar] [CrossRef]
- Haghpanah, M.; Namdari, A.; Kaleji, M.K.; Nikbakht-Dehkordi, A.; Arzani, A.; Araniti, F. Interplay between ROS and hormones in plant defense against pathogens. Plants 2025, 14, 1297. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, X.; Yao, X.; Ma, J.; Lu, K.; An, Y.; Sun, Z.; Wang, Q.; Zhou, M.; Qin, L.; et al. MYB44 regulates PTI by promoting the expression of EIN2 and MPK3/6 in Arabidopsis. Plant Commun. 2023, 4, 100628. [Google Scholar] [CrossRef]
- Niu, L.; Jiang, F.; Yin, J.; Wang, Y.; Li, Y.; Yu, X.; Song, X.; Ottosen, C.O.; Rosenqvist, E.; Mittler, R.; et al. ROS-mediated waterlogging memory, induced by priming, mitigates photosynthesis inhibition in tomato under waterlogging stress. Front. Plant Sci. 2023, 14, 1238108. [Google Scholar] [CrossRef]
Gene Name | Primer Sequences | Reference |
---|---|---|
16S rRNA | 5′-AGAGTTTGATCCTGGCTCAG-3 5′-AAGGAGGTGATCCAGCCGCA-3′ | [24] |
rpoD | 5′-CACGGTTGAGCACATCCTCT-3′ 5′-GGAGAGTACTTCGCGAGTCG-3′ | [25] |
Plant Pathogens | Radius (cm)/Disease Index (100%) | Inhibition Rate (%) | |
---|---|---|---|
YTBTa14 | CK | ||
Colletotrichum gloeosporioides | 3.10 ± 0.26 | 8.3 ± 0.26 | 62.65 ± 2.84 |
Coniella vitis | 3.90 ± 0.17 | 8.2 ± 0.10 | 52.44 ± 1.65 |
Plasmopara viticola | 22.17 ± 0.32 | 58.4 ± 2.29 | 61.69 ± 1.97 |
Botryosphaeria dothidea | 5.20 ± 0.26 | 8.8 ± 0.17 | 40.91 ± 3.57 |
Alternaria mali | 2.70 ± 0.26 | 6.7 ± 0.20 | 59.70 ± 4.28 |
Phytophthora nicotianae | 4.90 ± 0.30 | 8.3 ± 0.10 | 40.96 ± 3.30 |
Rhizoctonia cerealis | 4.50 ± 0.30 | 8.5 ± 0.17 | 47.06 ± 3.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Sun, Q.; Shi, J.; Zhang, W.; Zhou, H.; Wang, Y.; Wang, P.; Tang, M.; Du, Y.; Liu, B.; et al. Pseudomonas chlororaphis YTBTa14 as a Multifunctional Biocontrol Agent: Simultaneous Growth Enhancement and Systemic Resistance Induction in Vitis vinifera Against Downy Mildew. Agriculture 2025, 15, 1822. https://doi.org/10.3390/agriculture15171822
Li B, Sun Q, Shi J, Zhang W, Zhou H, Wang Y, Wang P, Tang M, Du Y, Liu B, et al. Pseudomonas chlororaphis YTBTa14 as a Multifunctional Biocontrol Agent: Simultaneous Growth Enhancement and Systemic Resistance Induction in Vitis vinifera Against Downy Mildew. Agriculture. 2025; 15(17):1822. https://doi.org/10.3390/agriculture15171822
Chicago/Turabian StyleLi, Baoyan, Qihua Sun, Jie Shi, Wei Zhang, Huafei Zhou, Yingzi Wang, Peisong Wang, Meiling Tang, Yuanpeng Du, Baoyou Liu, and et al. 2025. "Pseudomonas chlororaphis YTBTa14 as a Multifunctional Biocontrol Agent: Simultaneous Growth Enhancement and Systemic Resistance Induction in Vitis vinifera Against Downy Mildew" Agriculture 15, no. 17: 1822. https://doi.org/10.3390/agriculture15171822
APA StyleLi, B., Sun, Q., Shi, J., Zhang, W., Zhou, H., Wang, Y., Wang, P., Tang, M., Du, Y., Liu, B., & Wu, J. (2025). Pseudomonas chlororaphis YTBTa14 as a Multifunctional Biocontrol Agent: Simultaneous Growth Enhancement and Systemic Resistance Induction in Vitis vinifera Against Downy Mildew. Agriculture, 15(17), 1822. https://doi.org/10.3390/agriculture15171822