Operating Speed Analysis of a 1.54 kW Walking-Type One-Row Cam-Follower-Type Cabbage Transplanter for Biodegradable Seedling Pots
Abstract
1. Introduction
2. Materials and Methods
2.1. Operational Principle of the Transplanting System
2.2. Theoretical Evaluation
2.2.1. Optimization of Rotational Speed for Transplanting Mechanism
2.2.2. Consistent Horizontal Velocity of Seedling Placement
2.3. Procedures for Simulation and Validation
2.3.1. Simulation of Motion and Operational Speed
2.3.2. Testing and Validation of the Prototype
2.4. Biodegradable Pot Seedlings Selection and Properties
3. Results
3.1. Optimal Rotating Motion of the Planting Device
3.2. Seedling Placement of the Planting Device by Forward Velocity
3.3. Seedling Spacing Based on Forward Speed
3.4. Power Requirements of the Planting Device
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chae, S.H.; Min, S.G.; Moon, H.W.; Jung, Y.B.; Park, S.H.; Seo, H.Y.; Ku, K.M. Kimchi cabbage (Brassica rapa subsp. pekinensis [Lour.]) metabolic changes during growing seasons in the Republic of Korea. Hortic. Environ. Biotechnol. 2024, 65, 1–13. [Google Scholar] [CrossRef]
- Statistics Korea. Agriculture, Forestry and Fishery Survey in 2021. Statistics Korea 2024. Available online: http://kostat.go.kr/ (accessed on 20 February 2025).
- Park, W.S. The present status and future prospects of kimchi industry in Korea. Food Sci. Ind. 2020, 53, 166–182. [Google Scholar]
- Kang, J.H.; Woo, H.J.; Park, J.B.; Chun, H.H.; Park, C.W.; Song, K.B. Effect of storage in pallet-unit controlled atmosphere on the quality of Chinese cabbage (Brassica rapa L. ssp. pekinensis) used in kimchi manufacturing. LWT 2019, 111, 436–442. [Google Scholar] [CrossRef]
- Kumar, G.V.P.; Raheman, H. Development of a walk-behind type hand tractor powered vegetable transplanter for paper pot seedlings. Biosyst. Eng. 2011, 110, 189–197. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Islam, M.N.; Chowdhury, M.; Islam, S.; Park, T.; Kim, Y.J.; Chung, S.O. Working speed analysis of the gear-driven dibbling mechanism of a 2.6 kW walking-type automatic pepper transplanter. Machines 2021, 9, 6. [Google Scholar] [CrossRef]
- Kumar, G.V.P.; Raheman, H. Vegetable transplanters for use in developing countries—A review. Int. J. Veg. Sci. 2008, 14, 232–255. [Google Scholar] [CrossRef]
- Park, S.H.; Cho, S.C.; Kim, J.Y.; Choi, D.K.; Kim, C.K.; Kwak, T.Y. Development of rotary type transplanting device for vegetable transplanter. J. Biosyst. Eng. 2005, 30, 135–140. [Google Scholar] [CrossRef]
- Han, L.; Mao, H.; Kumi, F.; Hu, J. Development of a multi-task robotic transplanting workcell for greenhouse seedlings. Appl. Eng. Agric. 2018, 34, 335–342. [Google Scholar] [CrossRef]
- Nandede, B.M.; Raheman, H.; Kumar, G.P. Standardization of potting mix and pot volume for the production of vegetable seedlings in paper pot. J. Plant Nutr. 2014, 37, 1214–1226. [Google Scholar] [CrossRef]
- Ali, M.R.; Reza, M.N.; Habineza, E.; Haque, M.A.; Kang, B.S.; Chung, S.O. Kinematic analysis of a cam-follower-type transplanting mechanism for a 1.54 kW biodegradable potted cabbage transplanter. Machines 2024, 12, 925. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Yan, H.; Zhang, J.; Wang, G.; Deng, S.; Bao, R.; Vaddevolu, U.B.; Wang, X. Plastic Pollution in Agriculture as a Threat to Food Security, the Ecosystem, and the Environment: An Overview. Agronomy 2024, 14, 548. [Google Scholar] [CrossRef]
- Anirudh, M.K.; Lal, A.N.; Harikrishnan, M.P.; Jose, J.; Thasim, J.; Warrier, A.S.; Venkatesh, R.; Vaddevolu, U.B.; Kothakota, A. Sustainable seedling pots: Development and characterisation of banana waste and natural fibre-reinforced composites for horticultural applications. Int. J. Biol. Macromol. 2024, 270, 132070. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Chen, Y. Properties of selected biodegradable seedling plug-trays. Scientia Horticulturae 2019, 249, 177–184. [Google Scholar] [CrossRef]
- Habineza, E.; Ali, M.; Reza, M.N.; Woo, J.K.; Chung, S.O.; Hou, Y. Vegetable transplanters and kinematic analysis of major mechanisms: A review. Korean J. Agric. Sci. 2023, 50, 113–129. [Google Scholar] [CrossRef]
- Islam, M.N.; Iqbal, M.Z.; Ali, M.; Chowdhury, M.; Kiraga, S.; Nur Kabir, M.S.; Lee, D.H.; Woo, J.K.; Chung, S.O. Theoretical transmission analysis to optimize gearbox for a 2.6 kW automatic pepper transplanter. J. Agric. Eng. 2022, LIII, 1254. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, J.; Tian, J.; Duan, D.; Zhang, Y.; Tan, Y.; Yuan, T.; Li, X. Design of a traction double-row fully automatic transplanter for vegetable plug seedlings. Comput. Electron. Agric. 2021, 182, 106017. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Islam, M.N.; Ali, M.; Kabir, M.S.N.; Park, T.; Kang, T.G.; Park, K.S.; Chung, S.O. Kinematic analysis of a hopper-type dibbling mechanism for a 2.6 kW two-row pepper transplanter. J. Mech. Sci. Technol. 2021, 35, 2605–2614. [Google Scholar] [CrossRef]
- Shim, S.; Kim, Y.; Yang, S.; Lee, S.; Lee, D. A study on trace of hopper of the transplanter. Proc. Conf. Korean Soc. Agric. Mach. 2016, 21, 201–202. [Google Scholar]
- Jin, X.; Cheng, Q.; Zhao, B.; Ji, J.; Li, M. Design and test of 2ZYM-2 potted vegetable seedlings transplanting machine. Int. J. Agric. Biol. Eng. 2020, 13, 101–110. [Google Scholar] [CrossRef]
- Islam, M.N.; Iqbal, M.Z.; Ali, M.; Chowdhury, M.; Kabir, M.S.N.; Park, T.; Kim, Y.J.; Chung, S.O. Kinematic analysis of a clamp-type picking device for an automatic pepper transplanter. Agriculture 2020, 10, 627. [Google Scholar] [CrossRef]
- Reza, M.N.; Islam, M.N.; Chowdhury, M.; Ali, M.; Islam, S.; Kiraga, S.; Lim, S.J.; Choi, I.S.; Chung, S.O. Kinematic analysis of a gear-driven rotary planting mechanism for a six-row self-propelled onion transplanter. Machines 2021, 9, 183. [Google Scholar] [CrossRef]
- Hu, S.; Hu, M.; Yan, W.; Zhang, W. Design and experiment of an integrated automatic transplanting mechanism for picking and planting pepper hole tray seedlings. Agriculture 2022, 12, 557. [Google Scholar] [CrossRef]
- Wang, H.W.; Zhou, X.; Wu, X.; Dan, Y.; Chu, H.; Chen, J. MATLAB-based design and analysis of small rice transplanter in hilly areas. INMATEH-Agric. Eng. 2024, 73, 110–118. [Google Scholar] [CrossRef]
- Liu, J.; Chen, W.; Tang, D.; Tang, H.; Zhang, H. Kinematic analysis and experiment of planetary five-bar planting mechanism for zero-speed transplanting on mulch film. Int. J. Agric. Biol. Eng. 2016, 9, 84–91. [Google Scholar]
- Hwang, S.J.; Park, J.H.; Lee, J.Y.; Shim, S.B.; Nam, J.S. Optimization of main link lengths of transplanting device of semi-automatic vegetable transplanter. Agronomy 2020, 10, 1938. [Google Scholar] [CrossRef]
- Paradkar, V.; Raheman, H.; Rahul, K. Development of a metering mechanism with serial robotic arm for handling paper pot seedlings in a vegetable transplanter. Artif. Intell. Agric. 2021, 5, 52–63. [Google Scholar] [CrossRef]
- Reza, M.N.; Ali, M.; Habineza, E.; Kabir, M.S.; Kabir, M.S.N.; Lim, S.J.; Chung, S.O. Analysis of operating speed and power consumption of a gear-driven rotary planting mechanism for a 12-kW six-row self-propelled onion transplanter. Span. J. Agric. Res. 2023, 21, e0207. [Google Scholar] [CrossRef]
- Paudel, B.; Basak, J.K.; Jeon, S.W.; Lee, G.H.; Deb, N.C.; Karki, S.; Kim, H.T. Working speed optimization of the fully automated vegetable seedling transplanter. J. Agric. Eng. 2024, 55, 1569. [Google Scholar]
- Khadatkar, A.; Mathur, S.M.; Dubey, K.; BhusanaBabu, V. Development of embedded automatic transplanting system in seedling transplanters for precision agriculture. Artif. Intell. Agric. 2021, 5, 175–184. [Google Scholar] [CrossRef]
- Elwakeel, A.E.; Elbeltagi, A.; Salem, A.; Dewidar, A.Z. Optimized design and performance evaluation of a highly precise variable rate mis-planting and replanting potato electronic-metering mechanism. Front. Plant Sci. 2025, 16, 1531377. [Google Scholar] [CrossRef]
- Magar, A.P.; Nandede, B.M.; Khadatkar, A.; Sawant, C.P.; Pandirwar, A.P.; Chaudhary, V.P. Optimization, development and evaluation of vegetable seedlings transplanter using inclined magazine-type metering device for cylindrical paper pot seedlings. Agric. Res. 2024. [CrossRef]
- Yang, Q.; Zhang, R.; Jia, C.; Li, Z.; Zhu, M.; Addy, M. Study of dynamic hole-forming performance of a cup-hanging planter on a high-speed seedling transplanter. Front. Mech. Eng. 2022, 8, 896881. [Google Scholar] [CrossRef]
- Durga, M.L.; Rao, A.S.; Kumar, A.A. Performance evaluation of single row-low horse power tractor operated vegetable transplanter. Curr. J. Appl. Sci. Technol. 2020, 39, 37–44. [Google Scholar] [CrossRef]
- Sri, M.; Hwang, S.J.; Nam, J.S. Experimental safety analysis of transplanting device of the cam-type semi-automatic vegetable transplanter. J. Terramech. 2022, 103, 19–32. [Google Scholar] [CrossRef]
- Dou, Z.; Li, Y.; Guo, H.; Chen, L.; Jiang, J.; Zhou, Y.; Xu, Q.; Xing, Z.; Gao, H.; Zhang, H. Effects of mechanically transplanting methods and planting densities on yield and quality of Nanjing 2728 under rice-crayfish continuous production system. Agronomy 2021, 11, 488. [Google Scholar] [CrossRef]
- Kim, S.; Rho, H.Y.; Kim, S. The effects of climate change on heading type Chinese cabbage (Brassica rapa L. ssp. pekinensis) economic production in South Korea. Agronomy 2022, 12, 3172. [Google Scholar] [CrossRef]
- Seo, T.C.; An, S.W.; Kim, S.M.; Nam, C.W.; Chun, H.; Kim, Y.C.; Kang, T.K.; Woo, S.K.; Jeon, S.G.; Jang, K.S. Effect of the seedlings difference in cylindrical paper pot trays on initial root growth and yield of pepper. Prot. Hortic. Plant Fact. 2017, 26, 368–377. [Google Scholar] [CrossRef]
- Kim, H.C.; Cho, Y.H.; Ku, Y.G.; Bae, J.H. Seedling qualities of hot pepper according to seedling growth periods and growth and yield after planting. Korean J. Hortic. Sci. Technol. 2015, 33, 839–844. [Google Scholar] [CrossRef]
- Du, S.; Yu, J.; Wang, W. Determining the minimal mulch film damage caused by the up film transplanter. Adv. Mech. Eng. 2018, 10, 168781401876677. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Goering, C.E.; Rohrbach, R.P.; Buckmaster, D.R. Engineering Principles of Agricultural Machines, 2nd ed.; ASABE: St. Joseph, MI, USA, 2006. [Google Scholar]
- Dihingia, P.C.; Prasanna Kumar, G.V.; Sarma, P.K. Development of a hopper-type planting device for a walk-behind hand-tractor-powered vegetable transplanter. J. Biosyst. Eng. 2016, 41, 21–33. [Google Scholar] [CrossRef]
- Rohrer, R.A.; Luck, J.D.; Pitla, S.K.; Hoy, R. Evaluation of the accuracy of machine reported CAN data for engine torque and speed. Trans. ASABE 2018, 61, 1547–1557. [Google Scholar] [CrossRef]
- Jo, J.S.; Okyere, F.G.; Jo, J.M.; Kim, H.T. A study on improving the performance of the planting device of a vegetable transplanter. J. Biosyst. Eng. 2018, 43, 202–210. [Google Scholar]
- Zhu, D.; Gao, K.; Xue, K.; Zhang, S.; Liao, J.; Wang, T.; Kuang, F. Vibration analysis and parameter optimization of seedling pushing device of transplanting mechanism with planetary elliptic gears. J. Chin. Inst. Eng. 2023, 46, 154–162. [Google Scholar] [CrossRef]
- Zhou, B.; Miao, H.; Guan, C.; Ji, X.; Wang, X. Design and test of seedling-picking mechanism of fully automatic transplanting machine. Appl. Sci. 2024, 14, 9235. [Google Scholar] [CrossRef]
- Han, L.; Ma, H.; Mo, M.; Kumi, F.; Hu, J.; Mao, H. Design and test of an efficient seedling pick-up device with a combination of air jet ejection and mechanical action. J. Agric. Eng. 2024, 55, 3. [Google Scholar] [CrossRef]
- Ren, Z.; Hu, M.; Ji, Y.; Yan, W.; Li, K.; Zhou, X.; Zhang, W. Dynamic analysis and experiment of the seedling pick-up mechanism for pepper hole tray seedlings. Int. J. Agric. Biol. Eng. 2025, 18, 134–142. [Google Scholar] [CrossRef]
- Hussein, Z.; Yuan, Q.; Luo, S.; Xu, C.; Gouda, S.G. Plantable biodegradable pots as a cleaner product from biomaterials: Characterization and optimization of physical and mechanical properties. Arab. J. Sci. Eng. 2024, 49, 9099–9109. [Google Scholar] [CrossRef]
- Manafi-Dastjerdi, M.; Ebrahimi-Nik, M.; Rohani, A.; Lawson, S. Production of biodegradable pots from cattle manure and wood waste: Effects of natural binders on mechanical performances and biodegradability. Environ. Sci. Pollut. Res. 2022, 29, 20265–20278. [Google Scholar] [CrossRef]
Notation | Definition and Unit |
---|---|
Linear velocity of the transplanter, ms−1 | |
Angular speed of the planting mechanism, rad−1 | |
Angle of the planting hopper relative to the vertical axis, | |
Radius of rotation, | |
Necessary rate of seedling feed, seedling min−1 | |
Target spacing between seedlings, | |
Number of simultaneous planting rows, integer | |
n | Rotational velocity of the planting unit, rpm |
Aerodynamic drag coefficient of the seedling, numeral | |
A | Projected frontal area of the seedling, m2 |
S | Mean mass of the seedling, g |
g | Acceleration due to gravity, ms−2 |
Air density at 27 °C, gm−3 | |
Time duration of seedling free fall, s | |
Seedling velocity during free fall, ms−1 | |
Constant, numeral | |
h | Vertical drop height of the seedling, m |
Characteristic coefficient, numeral |
Parameter | Value | |
---|---|---|
Soil moisture content (%) | 22.15 ± 1.26 | |
Soil temperature (°C) | 33.4 ± 0.4 | |
Soil EC (dSm/s) | 1.38 ± 0.13 | |
Bulk density (gcm/s) | 1.35 ± 0.04 | |
CI (MPa) | 0.62 ± 0.08 | |
Soil texture (Sandy loam) | Sand (%) | 75.6 |
Silt (%) | 18 | |
Clay (%) | 6.4 |
Parameter | Numerical Value |
---|---|
Seedling height (mm) | 85 |
Width of seedling leaves (mm) | 32 |
Weight of seedling (g) | 20 |
Age of seedling (days) | 30 |
Leaf count | 4–5 |
Speed (mm/s) | λ | Planting Distance (mm) (Simulated) | Planting Distance (mm) (Experimental) | Experimental Mis-Planting Rate (%) |
---|---|---|---|---|
250 | >1 (1.2) | 410 | 408 | 12.54 |
300 | =1 (1.0) | 450 | 448 | 9.12 |
350 | <1 (0.85) | 490 | 492 | 15.84 |
Forward Speed (mm/s) | Operating Speed of the Planting Hopper (rpm) | ||||
---|---|---|---|---|---|
40 | 50 | 60 | 70 | 80 | |
250 | 500 | 460 | 400 | 390 | 370 |
300 | 540 | 500 | 400 | 420 | 400 |
350 | 600 | 570 | 500 | 490 | 460 |
Forward Speed (mm/s) | Mis-Planting Rate (%) | Soil Disturbance (mm2) | Power Requirement (W) (max.) |
---|---|---|---|
250 | 12.54 ± 0.12 a | 3296.32 ± 2.05 a | 26.19 ± 1.52 a |
300 | 9.12 ± 0.04 b | 2186.95 ± 2.27 b | 17.42 ± 1.21 b |
350 | 15.84 ± 0.13 c | 3482.37 ± 2.67 c | 28.27 ± 1.92 c |
Study | Mechanism | Speed (mm/s) | Success Rate (%) | Power (W) | Key Feature |
---|---|---|---|---|---|
[29] | Linkage + plug tray | 200–300 | N/A | N/A | Low intrusion and displacement |
[28] | Rotary gear-driven | 100–200 | 94 | 36.53 | Compact rotary system |
[6] | Gear-driven dibbler | 250–350 | 92 | 28.96 | Walking-speed transplanter |
[20] | Five-bar duckbill | 250–450 | 90–94 | N/A | Speed-adjusted hopper |
This study | Cam-follower, biodegradable pot | 250–350 | 92.34 | 17.47 | λ = 1 optimization, uprightness |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.R.; Reza, M.N.; Lee, K.-H.; Samsuzzaman; Habineza, E.; Haque, M.A.; Kang, B.-S.; Chung, S.-O. Operating Speed Analysis of a 1.54 kW Walking-Type One-Row Cam-Follower-Type Cabbage Transplanter for Biodegradable Seedling Pots. Agriculture 2025, 15, 1816. https://doi.org/10.3390/agriculture15171816
Ali MR, Reza MN, Lee K-H, Samsuzzaman, Habineza E, Haque MA, Kang B-S, Chung S-O. Operating Speed Analysis of a 1.54 kW Walking-Type One-Row Cam-Follower-Type Cabbage Transplanter for Biodegradable Seedling Pots. Agriculture. 2025; 15(17):1816. https://doi.org/10.3390/agriculture15171816
Chicago/Turabian StyleAli, Md Razob, Md Nasim Reza, Kyu-Ho Lee, Samsuzzaman, Eliezel Habineza, Md Asrakul Haque, Beom-Sun Kang, and Sun-Ok Chung. 2025. "Operating Speed Analysis of a 1.54 kW Walking-Type One-Row Cam-Follower-Type Cabbage Transplanter for Biodegradable Seedling Pots" Agriculture 15, no. 17: 1816. https://doi.org/10.3390/agriculture15171816
APA StyleAli, M. R., Reza, M. N., Lee, K.-H., Samsuzzaman, Habineza, E., Haque, M. A., Kang, B.-S., & Chung, S.-O. (2025). Operating Speed Analysis of a 1.54 kW Walking-Type One-Row Cam-Follower-Type Cabbage Transplanter for Biodegradable Seedling Pots. Agriculture, 15(17), 1816. https://doi.org/10.3390/agriculture15171816