Chlorophyll Deficiency by an OsCHLI Mutation Reprograms Metabolism and Alters Growth Trade-Offs in Rice Seedlings
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Phenotype Evaluation of Seedling Traits
2.2. Macro-Phenotype Evaluation of Seedling Traits
2.3. Leaf Micro-Phenotype Analysis
2.4. Leaf Anatomical-Phenotype Analysis
2.5. Transcriptome Analysis
2.6. Statistical Analysis
3. Results
3.1. Light-Dependent Phenotypic Differences Between Green Seedlings (GSs) and Yellow Seedlings (YSs)
3.2. Comparative Leaf Micro- and Anatomical Phenotypes Between GS and YS
3.3. Loss of Function of OsCHLI-Induced Aberrant Mesophyll Development and Chloroplast Arrangement
3.4. Yellow Seedling Mutants Showed Altered Expression of Metabolomic Pathway
4. Discussion
4.1. Multifaceted Role of OsCHLI in Light-Triggered Plastid Maturation, Plastid-to-Nucleus Signaling, and Growth Regulation
4.2. Structural Adaptations and Cellular Responses Associated with Chlorophyll Deficiency
4.3. OsCHLI-Dependent Alterations in Mesophyll Patterning and Chloroplast Positioning
4.4. Metabolic Reprogramming Revealed by Transcriptome Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fitzgerald, M.A.; McCouch, S.R.; Hall, R.D. Not just a grain of rice: The quest for quality. Trends Plant Sci. 2009, 14, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Khush, G.S. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol. Biol. 2005, 59, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Nelson, N.; Ben-Shem, A. The complex architecture of oxygenic photosynthesis. Nat. Rev. Mol. Cell Biol. 2004, 5, 971–982. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Tanaka, R. Chlorophyll metabolism. Curr. Opin. Plant Biol. 2006, 9, 248–255. [Google Scholar] [CrossRef]
- Mochizuki, N.; Brusslan, J.A.; Larkin, R.; Nagatani, A.; Chory, J. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc. Natl. Acad. Sci. USA 2001, 98, 2053–2058. [Google Scholar] [CrossRef]
- Shim, K.C.; Kang, Y.A.; Song, J.H.; Kim, Y.J.; Kim, J.K.; Kim, C.; Tai, T.H.; Park, I.; Ahn, S.N. A Frameshift Mutation in the Mg-Chelatase I Subunit Gene Is Associated with a Lethal Chlorophyll-Deficient, Yellow Seedling Phenotype in Rice. Plants 2023, 12, 2831. [Google Scholar] [CrossRef]
- Aluru, M.R.; Bae, H.; Wu, D.; Rodermel, S.R. The Arabidopsis immutans mutation affects plastid differentiation and the morphogenesis of white and green sectors in variegated plants. Plant Physiol. 2001, 127, 67–77. [Google Scholar] [CrossRef]
- Tripathy, B.C.; Pattanayak, G.K. Chlorophyll biosynthesis in higher plants. In Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation; Eaton-Rye, J.J., Tripathy, B.C., Sharkey, T.D., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 63–94. [Google Scholar] [CrossRef]
- Papenbrock, J.; Grimm, B. Regulatory network of tetrapyrrole biosynthesis—Studies of intracellular signalling involved in metabolic and developmental control of plastids. Planta 2001, 213, 667–681. [Google Scholar] [CrossRef]
- Walker, C.J.; Willows, R.D. Mechanism and regulation of Mg-chelatase. Biochem. J. 1997, 327, 321–333. [Google Scholar] [CrossRef]
- Farmer, D.A.; Brindley, A.A.; Hitchcock, A.; Jackson, P.J.; Johnson, B.; Dickman, M.J.; Hunter, C.N.; Reid, J.D.; Adams, N.B.P. The ChlD subunit links the motor and porphyrin binding subunits of magnesium chelatase. Biochem. J. 2019, 476, 1875–1887. [Google Scholar] [CrossRef]
- Ikegami, A.; Yoshimura, N.; Motohashi, K.; Takahashi, S.; Romano, P.G.; Hisabori, T.; Takamiya, K.-I.; Masuda, T. The CHLI1 subunit of Arabidopsis thaliana magnesium chelatase is a target protein of the chloroplast thioredoxin. J. Biol. Chem. 2007, 282, 19282–19291. [Google Scholar] [CrossRef]
- Guinea Díaz, M.; Nikkanen, L.; Himanen, K.; Toivola, J.; Rintamäki, E. Two chloroplast thioredoxin systems differentially modulate photosynthesis in Arabidopsis depending on light intensity and leaf age. Plant J. 2020, 104, 718–734. [Google Scholar] [CrossRef] [PubMed]
- Persello, A.; Torricella, V.; Ballabio, F.; Bertaso, C.; Rotasperti, L.; Jeran, N.; Masiero, S.; Capra, N.G.; Capelli, R.; Camilloni, C.; et al. A Mg-chelatase subunit I missense mutant in barley exhibits a cold-sensitive phenotype under field conditions. Physiol. Plant. 2025, 177, e70434. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, L.; Cai, M.; Zhou, X.; Xu, J.; Chen, Y.; Wang, J.; Zhang, Z. A Point Mutation of Magnesium Chelatase OsCHLI Gene Dampens the Interaction Between CHLI and CHLD Subunits in Rice. Plant Mol. Biol. Rep. 2015, 33, 1975–1987. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, S.; Du, J.; Huang, G.; Shi, J.; Lu, X.; Wang, J.; Yang, W.; Guo, X.; Zhao, C. Plant microphenotype: From innovative imaging to computational analysis. Plant Biotechnol. J. 2024, 22, 802–818. [Google Scholar] [CrossRef]
- Bhugra, S.; Mishra, D.; Anupama, A.; Chaudhury, S.; Lall, B.; Chugh, A.; Chinnusamy, V. Deep Convolutional Neural Networks Based Framework for Estimation of Stomata Density and Structure from Microscopic Images. In Computer Vision—ECCV 2018 Workshops. Lecture Notes in Computer Science; Leal-Taixé, L., Roth, S., Eds.; Springer: Cham, Switzerland, 2019; Volume 11134, pp. 500–515. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Yoo, J.H.; Yoo, S.C.; Cho, S.H.; Koh, H.J.; Seo, H.S.; Paek, N.C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol. Biol. 2006, 62, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Brzezowski, P.; Sharifi, M.N.; Dent, R.M.; Morhard, M.K.; Niyogi, K.K.; Grimm, B. Mg chelatase in chlorophyll synthesis and retrograde signaling in Chlamydomonas reinhardtii: CHLI2 cannot substitute for CHLI1. J. Exp. Bot. 2016, 67, 3925–3938. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R. A procedure for standardizing comparative leaf anatomy in the Poaceae. I. The leaf-blade as viewed in transverse section. Bothalia 1976, 12, 65–109. [Google Scholar] [CrossRef]
- Ellis, R. A procedure for standardizing comparative leaf anatomy in the Poaceae. II. The epidermis as seen in surface view. Bothalia 1979, 12, 641–671. [Google Scholar] [CrossRef]
- Thimm, O.; Bläsing, O.; Gibon, Y.; Nagel, A.; Meyer, S.; Krüger, P.; Selbig, J.; Müller, L.A.; Rhee, S.Y.; Stitt, M. MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004, 37, 914–939. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Li, Y.; Ali Buttar, Z.; Wang, N.; Xie, Y.; Wang, C. Single nucleotide mutagenesis of the TaCHLI gene suppressed chlorophyll and fatty acid biosynthesis in common wheat seedlings. Front. Plant Sci. 2020, 11, 97. [Google Scholar] [CrossRef]
- Floris, D.; Kuhlbrandt, W. Molecular landscape of etioplast inner membranes in higher plants. Nat. Plants 2021, 7, 514–523. [Google Scholar] [CrossRef]
- Solymosi, K.; Schoefs, B. Etioplast and etio-chloroplast formation under natural conditions: The dark side of chlorophyll biosynthesis in angiosperms. Photosynth. Res. 2010, 105, 143–166. [Google Scholar] [CrossRef]
- Yuan, M.; Zhao, Y.-Q.; Zhang, Z.-W.; Chen, Y.-E.; Ding, C.-B.; Yuan, S. Light regulates transcription of chlorophyll biosynthetic genes during chloroplast biogenesis. Crit. Rev. Plant Sci. 2017, 36, 35–54. [Google Scholar] [CrossRef]
- Lim, C.; Kim, Y.; Shim, Y.; Cho, S.H.; Yang, T.J.; Song, Y.H.; Kang, K.; Paek, N.C. Rice OsGATA16 is a positive regulator for chlorophyll biosynthesis and chloroplast development. Plant J. 2024, 117, 599–615. [Google Scholar] [CrossRef] [PubMed]
- Armarego-Marriott, T.; Kowalewska, L.; Burgos, A.; Fischer, A.; Thiele, W.; Erban, A.; Strand, D.; Kahlau, S.; Hertle, A.; Kopka, J.; et al. Highly resolved systems biology to dissect the etioplast-to-chloroplast transition in tobacco leaves. Plant Physiol. 2019, 180, 654–681. [Google Scholar] [CrossRef]
- Verdecia, M.A.; Larkin, R.M.; Ferrer, J.L.; Riek, R.; Chory, J.; Noel, J.P. Structure of the Mg-chelatase cofactor GUN4 reveals a novel hand-shaped fold for porphyrin binding. PLoS Biol. 2005, 3, e151. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, A.; Zhou, S.; Kwiatkowski, K.; Luo, M.; Willows, R.D. 1-N-histidine phosphorylation of ChlD by the AAA(+) ChlI2 stimulates magnesium chelatase activity in chlorophyll synthesis. Biochem. J. 2017, 474, 2095–2105. [Google Scholar] [CrossRef]
- Apchelimov, A.A.; Soldatova, O.P.; Ezhova, T.A.; Grimm, B.; Shestakov, S.V. The analysis of the ChlI1 and ChlI2 genes using acifluorfen-resistant mutant of Arabidopsis thaliana. Planta 2007, 225, 935–943. [Google Scholar] [CrossRef]
- Kobayashi, K.; Mochizuki, N.; Yoshimura, N.; Motohashi, K.; Hisabori, T.; Masuda, T. Functional analysis of Arabidopsis thaliana isoforms of the Mg-chelatase CHLI subunit. Photochem. Photobiol. Sci. 2008, 7, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Zoschke, R.; Bock, R. Chloroplast translation: Structural and functional organization, operational control, and regulation. Plant Cell 2018, 30, 745–770. [Google Scholar] [CrossRef]
- Marín-Navarro, J.; Manuell, A.L.; Wu, J.; Mayfield, S.P. Chloroplast translation regulation. Photosynth. Res. 2007, 94, 359–374. [Google Scholar] [CrossRef]
- Herbst, J.; Hey, D.; Grimm, B. Posttranslational control of tetrapyrrole biosynthesis: Interacting proteins, chaperones, auxiliary factors. In Advances in Botanical Research; Elsevier: London, UK, 2019; Volume 91, pp. 163–194. [Google Scholar] [CrossRef]
- Zhang, J. The role of ROS in chloroplast retrograde signaling: Mechanisms and regulation. Innov. Sci. Technol. 2024, 3, 58–63. [Google Scholar] [CrossRef]
- Tan, J.J.; Tan, Z.H.; Wu, F.Q.; Sheng, P.K.; Heng, Y.Q.; Wang, X.H.; Ren, Y.L.; Wang, J.L.; Guo, X.P.; Zhang, X.; et al. A novel chloroplast-localized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice. Mol. Plant 2014, 7, 1329–1349. [Google Scholar] [CrossRef]
- Kim, S.G.; Kim, K.W.; Park, E.W.; Choi, D. Silicon-induced cell wall fortification of rice leaves: A possible cellular mechanism of enhanced host resistance to blast. Phytopathology 2002, 92, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.H.; Park, J.H.; Cho, S.H.; Yoo, S.C.; Li, J.J.; Zhang, H.T.; Kim, K.S.; Koh, H.J.; Paek, N.C. The rice bright green leaf (bgl) locus encodes OsRopGEF10, which activates the development of small cuticular papillae on leaf surfaces. Plant Mol. Biol. 2011, 77, 631–641. [Google Scholar] [CrossRef]
- Glover, B.J.; Martin, C. The role of petal cell shape and pigmentation in pollination success in Antirrhinum. Heredity 1998, 80, 778–784. [Google Scholar] [CrossRef]
- Martin, C.; Bhatt, K.; Baumann, K.; Jin, H.; Zachgo, S.; Roberts, K.; Schwarz-Sommer, Z.; Glover, B.; Perez-Rodrigues, M. The mechanics of cell fate determination in petals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2002, 357, 809–813. [Google Scholar] [CrossRef]
- Huang, G.J.; Shu, Y.; Peng, S.B.; Li, Y. Leaf photosynthesis is positively correlated with xylem and phloem areas in leaf veins in rice (Oryza sativa) plants. Ann. Bot. 2022, 129, 619–631. [Google Scholar] [CrossRef]
- Jane, W.-N.; Chiang, S.-H.T. Morphology and development of bulliform cells in Arundo formosana Hack. Taiwania 1991, 36, 85–97. [Google Scholar] [CrossRef]
- Xiang, J.J.; Zhang, G.H.; Qian, Q.; Xue, H.W. Semi-rolled leaf1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol. 2012, 159, 1488–1500. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Wu, S.Y.; Jiang, L.; Wang, J.L.; Zhang, X.; Guo, X.P.; Wu, C.Y.; Wan, J.M. A detailed analysis of the leaf rolling mutant sll2 reveals complex nature in regulation of bulliform cell development in rice (Oryza sativa L.). Plant Biol. 2015, 17, 437–448. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, J.C.; Cruz, R.T. Response of leaf water potential, stomatal resistance, and leaf rolling to water stress. Plant Physiol. 1980, 65, 428–432. [Google Scholar] [CrossRef]
- Chen, Z.-X.; Pan, X.-B.; Jun, H. Relationship between rolled-leaf and ideal plant type of rice (Oryza sativa L.). Jiangsu Agric. Res. 2001, 22, 88–91. [Google Scholar]
- Terashima, I.; Hanba, Y.T.; Tholen, D.; Niinemets, Ü. Leaf functional anatomy in relation to photosynthesis. Plant Physiol. 2011, 155, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.X.; Phua, S.Y.; Crisp, P.; McQuinn, R.; Pogson, B.J. Learning the languages of the chloroplast: Retrograde signaling and beyond. Annu. Rev. Plant Biol. 2016, 67, 25–53. [Google Scholar] [CrossRef]
- Brodersen, C.R.; Vogelmann, T.C. Do changes in light direction affect absorption profiles in leaves? Funct. Plant Biol. 2010, 37, 403–412. [Google Scholar] [CrossRef]
- Li, X.; He, Y.; Yang, J.; Jia, Y.H.; Zeng, H.L. Gene mapping and transcriptome profiling of a practical photo-thermo-sensitive rice male sterile line with seedling-specific green-revertible albino leaf. Plant Sci. 2018, 266, 37–45. [Google Scholar] [CrossRef]
- Ye, S.; Yang, J.; Huang, Y.; Liu, J.; Ma, X.; Zhao, L.; Ma, C.; Tu, J.; Shen, J.; Fu, T.; et al. Bulk segregant analysis-sequencing and RNA-Seq analyses reveal candidate genes associated with albino phenotype in Brassica napus. Front. Plant Sci. 2022, 13, 994616. [Google Scholar] [CrossRef]
GSs | YSs | |
---|---|---|
Stomatal position | Amphistomatic | Amphistomatic |
Stomata type | Dumbbell-shaped | Dumbbell-shaped |
Abaxial side | ||
Stomatal length (μm) | 26.54 ± 2.70 | 22.74 ± 2.46 *** |
Stomatal width (μm) | 14.53 ± 1.28 | 13.63 ± 1.96 ** |
Stomatal area (μm2) | 279.93 ± 38.27 | 241.48 ± 45.63 *** |
Stomatal density (counts/0.1 mm2) | 13.30 ± 1.16 | 27.60 ± 2.01 *** |
Papillae density (counts/0.005 mm2) | 76.70 ± 9.45 | 168.40 ± 12.99 *** |
Epicuticular wax type | Platelet | Platelet |
Adaxial side | ||
Stomatal length (μm) | 27.51 ± 2.78 | 19.30 ± 1.66 *** |
Stomatal width (μm) | 15.83 ± 2.08 | 10.80 ± 1.46 *** |
Stomatal area (μm2) | 354.46 ± 53.40 | 180.51 ± 28.49 *** |
Stomatal density (counts/0.1 mm2) | 14.50 ± 1.27 | 27.50 ± 3.14 *** |
Papillae density (counts/0.005 mm2) | 104.40 ± 7.68 | 129.90 ± 3.90 *** |
Epicuticular wax type | Platelet | Platelet |
Internal part | ||
Chloroplast arrangement | compact | loose |
Degree of mesophyll cells | high | low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, B.J.; Park, I.; Park, S.-E.; Jeon, Y.; Eum, A.H.; Song, J.-H.; Shim, K.-C. Chlorophyll Deficiency by an OsCHLI Mutation Reprograms Metabolism and Alters Growth Trade-Offs in Rice Seedlings. Agriculture 2025, 15, 1807. https://doi.org/10.3390/agriculture15171807
Jin BJ, Park I, Park S-E, Jeon Y, Eum AH, Song J-H, Shim K-C. Chlorophyll Deficiency by an OsCHLI Mutation Reprograms Metabolism and Alters Growth Trade-Offs in Rice Seedlings. Agriculture. 2025; 15(17):1807. https://doi.org/10.3390/agriculture15171807
Chicago/Turabian StyleJin, Byung Jun, Inkyu Park, Sa-Eun Park, Yujin Jeon, Ah Hyeon Eum, Jun-Ho Song, and Kyu-Chan Shim. 2025. "Chlorophyll Deficiency by an OsCHLI Mutation Reprograms Metabolism and Alters Growth Trade-Offs in Rice Seedlings" Agriculture 15, no. 17: 1807. https://doi.org/10.3390/agriculture15171807
APA StyleJin, B. J., Park, I., Park, S.-E., Jeon, Y., Eum, A. H., Song, J.-H., & Shim, K.-C. (2025). Chlorophyll Deficiency by an OsCHLI Mutation Reprograms Metabolism and Alters Growth Trade-Offs in Rice Seedlings. Agriculture, 15(17), 1807. https://doi.org/10.3390/agriculture15171807