Controlled-Release Urea Coordinates Maize Physiology with Soil Nitrogen Retention: Balancing High Yield and Environmental Sustainability
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Site
2.2. Experimental Design and Crop Management
2.3. Measurements and Calculation of Evaluation Indicators
2.3.1. Plant and Soil Sampling
2.3.2. Measurements of Physiological Characteristics and Soil Enzyme Activities
2.3.3. N Release Rate of CRU
2.3.4. Reactive Nitrogen Losses and GHG Emission Calculations
2.3.5. Evaluation of Economic Benefits
2.4. Statistical Analysis
3. Results
3.1. N Release Curves of Controlled-Release Urea
3.2. Maize Yield Response to N Management
3.3. Maize N Uptake and Response of Economic Benefits to N Management
3.4. Response of Physiological Characteristics to N Management
3.4.1. Leaf Photosynthetic Parameters
3.4.2. Enzyme Activity
3.4.3. Hormones
3.5. Soil Chemical Properties and the Response of Enzyme Activities to N Management
3.6. Reactive N Losses and GHG Emissions Affected by N Management
3.7. Reactive N Losses and Intensity of GHG Emissions Affected by N Management
4. Discussion
4.1. Effects of CRU and Common Urea on Maize Yield and N Uptake
4.2. Response of Physiological and Soil Enzyme Plant Activities to N Management
4.3. Reactive N Losses and Response of GHG Emissions to N Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, G.G.; Liu, S.J.; Wang, X.Y.; Wang, X.F.; Zhang, Y.; Zhao, D.H.; Wen, X.X.; Han, J.; Liao, Y.C. Mixed application of controlled-release urea and normal urea can improve crop productivity and reduce the carbon footprint under straw return in winter wheat-summer maize cropping system. Eur. J. Agron. 2023, 151, 127002. [Google Scholar] [CrossRef]
- Feng, X.J.; Zhan, X.M.; Han, X.R.; Chen, K.; Peng, J.; Wang, X.X.; Shang, D.Y. Slow-release nitrogen fertiliser suitable for one-time fertilisation of spring maize in Northeast China. Plant Soil. Environ. 2021, 67, 164–172. [Google Scholar] [CrossRef]
- Rocha, K.F.; de Souza, M.; Almeida, D.S.; Chadwick, D.R.; Jones, D.L.; Mooney, S.J.; Rosolem, C.A. Cover crops affect the partial nitrogen balance in a maize forage cropping system. Geoderma 2020, 360, 114000. [Google Scholar] [CrossRef]
- Wang, X.; Xiang, Y.Z.; Guo, J.J.; Tang, Z.J.; Zhao, S.T.; Wang, H.; Li, Z.J.; Zhang, F.C. Coupling effect analysis of drip irrigation and mixed slow-release nitrogen fertilizer on yield and physiological characteristics of winter wheat in Guanzhong area. Field Crops Res. 2023, 302, 109103. [Google Scholar] [CrossRef]
- Rosolem, C.A.; Ritz, K.; Cantarella, H.; Galdos, M.V.; Hawkesford, M.J.; Whalley, W.R.; Mooney, S.J. Chapter five-enhanced plant rooting and crop system management for improved N use efficiency. Adv. Agron. 2017, 146, 205–239. [Google Scholar]
- Zheng, W.K.; Wan, Y.S.; Li, Y.C.; Liu, Z.G.; Chen, J.Q.; Zhou, H.Y.; Gao, Y.X.; Chen, B.C.; Zhang, M. Developing water and nitrogen budgets of a wheat-maize rotation system using auto-weighing lysimeters: Effects of blended application of controlled-release and un-coated urea. Environ. Pollut. 2020, 263, 114383. [Google Scholar] [CrossRef] [PubMed]
- Azeem, B.; KuShaari, K.; Man, Z.B.; Basit, A.; Thanh, T.H. Review on materials and methods to produce controlled release coated urea fertilizer. J. Control. Release 2014, 181, 11–21. [Google Scholar] [CrossRef]
- Zhang, W.S.; Liang, Z.Y.; He, X.M.; Wang, X.Z.; Shi, X.J.; Zou, C.Q.; Chen, X.P. The effects of controlled release urea on maize productivity and reactive nitrogen losses: A meta-analysis. Environ. Pollut. 2019, 246, 559–565. [Google Scholar] [CrossRef]
- Geng, J.B.; Chen, J.Q.; Sun, Y.B.; Zheng, W.K.; Tian, X.F.; Yang, Y.C.; Li, C.L.; Zhang, M. Controlled-release urea improved nitrogen use efficiency and yield of wheat and corn. Agron. J. 2016, 108, 1666–1673. [Google Scholar] [CrossRef]
- Zhao, B.; Dong, S.T.; Zhang, J.W.; Liu, P. Effects of controlled-release fertilizer on nitrogen use efficiency in summer maize. PLoS ONE 2013, 8, 70569. [Google Scholar]
- Guo, X.; Li, G.H.; Ding, X.P.; Zhang, J.W.; Ren, B.Z.; Liu, P.; Zhang, S.G.; Zhao, B. Response of leaf senescence, photosynthetic characteristics, and yield of summer maize to controlled-release urea-based application depth. Agronomy 2022, 12, 687. [Google Scholar] [CrossRef]
- Zhou, Z.J.; Andersen, M.N.; Plauborg, F. Radiation interception and radiation use efficiency of potato affected by different N fertigation and irrigation regimes. Eur. J. Agric. 2016, 81, 129–137. [Google Scholar] [CrossRef]
- Fernandez, J.A.; Debruin, J.; Messina, C.D.; Ciampitti, I.A. Late-season nitrogen fertilization on maize yield: A meta-analysis. Field Crops Res. 2020, 247, 107586. [Google Scholar] [CrossRef]
- Shaviv, A. Advances in controlled-release fertilizers. Adv. Agron. 2001, 71, 1–49. [Google Scholar]
- Li, G.; Zhao, B.; Dong, S.; Zhang, J.; Liu, P.; Vyn, T.J. Interactive effects of water and controlled release urea on nitrogen metabolism, accumulation, translocation, and yield in summer maize. Sci. Nat. 2017, 104, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Maaz, T.M.; Sapkota, T.B.; Eagle, A.J.; Kantar, M.B.; Bruulsema, T.W.; Majumdar, K. Meta-analysis of yield and nitrous oxide outcomes for nitrogen management in agriculture. Glob. Change Biol. 2021, 27, 2343–2360. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.L.; Yue, S.C.; Wang, G.L.; Zhang, F.S.; Chen, X.P. In-season root-zone N management for mitigating greenhouse gas emission and reactive N losses in intensive wheat production. Environ. Sci. Technol. 2013, 47, 6015–6022. [Google Scholar] [CrossRef]
- Wang, X. Effect of Nitrogen Application Patterns on Variation of Soil Nitrate-N and of Grain Yield of Wheat and Maize. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2011; pp. 45–58. [Google Scholar]
- Chen, X.P.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Hati, K.M.; Swarup, A.; Dwivedi, A.K.; Misra, A.K.; Bandyopadhyay, K.K. Changes in soil physical properties and organic carbon status at the topsoil horizon of a vertisol of central India after 28 years of continuous cropping, fertilization and manuring. Agric. Ecosyst. Environ. 2006, 119, 127–134. [Google Scholar] [CrossRef]
- Kuai, J.; Li, X.L.; Ji, J.L.; Li, Z.; Xie, Y.; Wang, B.; Zhou, G.S. Response of leaf carbon metabolism and dry matter accumulation to density and row spacing in two Rapeseed (Brassica napus L.) genotypes with differing plant architectures. Crop J. 2022, 10, 680–691. [Google Scholar] [CrossRef]
- Liu, X.; Han, H.; Gu, S.; Gao, R. Effects of urea application on soil organic nitrogen mineralization and nitrogen fertilizer availability in a rice–broad bean rotation system. Sustainability 2023, 15, 6091. [Google Scholar] [CrossRef]
- Guan, S.Y. Soil Enzymes and Their Research Methods; Agricultural Press: Beijing, China, 1986; pp. 273–339. (In Chinese) [Google Scholar]
- Zhang, L.; Liang, Z.Y.; Hu, Y.C.; Schmidhalter, U.; Zhang, W.S.; Ruan, S.Y.; Chen, X.P. Integrated assessment of agronomic, environmental and ecosystem economic benefits of blending use of controlled-release and common urea in wheat production. J. Clean. Prod. 2021, 287, 125572. [Google Scholar] [CrossRef]
- Forster, P.; Storelvmo, T.; Armour, K.; Collins, W.; Dufresne, J.-L.; Frame, D.; Lunt, D.J.; Mauritsen, T.; Palmer, M.D.; Watanabe, M.; et al. The Earth’s Energy Budget, Climate Feedbacks and Climate Sensitivity. In Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change, Ed.; Cambridge University Press: Cambridge, UK, 2021; pp. 923–1054. [Google Scholar]
- Brentrup, P. Energy Efficiency and Greenhouse Gas Emissions in European Nitrogen Fertilizer Production and Use; IFA Proceedings No. 639; International Fertilizer Society: York, UK, 2008. [Google Scholar]
- Huang, J.; Chen, Y.; Sui, P.; Gao, W. Estimation of net greenhouse gas balance using crop- and soil-based approaches: Two case studies. Sci. Total Environ. 2013, 456, 299–306. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Omid, M.; Heidari, M.D. On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province. Energy 2013, 59, 63–71. [Google Scholar] [CrossRef]
- Williams, A.G.; Audsley, E.; Sandars, D.L. Determining the Environmental Burdens and Resource Use in the Production of Agricultural Commodities. Final Report to Defra on Project ISO205. 2006. Available online: www.defra.gov.uk (accessed on 15 August 2025).
- Yue, S. Optimum Nitrogen Management for High-Yielding Wheat and Maize Cropping System. Ph.D. Thesis, China Agricultural University, Beijing, China, 2013. (In Chinese with English Abstract). [Google Scholar]
- Zhang, W. Greenhouse Gas Emissions and Reactive Nitrogen Losses Assessment, Mitigation Potentials and Management Approaches of Maize Production in China. Ph.D. Thesis, China Agricultural University, Beijing, China, 2019. (In Chinese with English Abstract). [Google Scholar]
- Guo, J.J.; Fan, J.L.; Zhang, F.C.; Yan, S.C.; Zheng, J.; Wu, Y.; Li, J.; Wang, Y.L.; Sun, X.; Liu, X.Q.; et al. Blending urea and slow-release nitrogen fertilizer increases dryland maize yield and nitrogen use efficiency while mitigating ammonia volatilization. Sci. Total Environ. 2021, 790, 148058. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Yan, X. Comparison of statistical models for predicting cost effective nitrogen rate at rice wheat cropping systems. Soil. Sci. Plant Nutr. 2011, 57, 320–330. [Google Scholar] [CrossRef]
- Sadras, V.O.; Hayman, P.T.; Rodriguez, D.; Monjardino, M.; Bielich, M.; Unkovich, M.; Mudge, B.; Wang, E. Interactions between water and nitrogen in Australian cropping systems: Physiological, agronomic, economic, breeding and modelling perspectives. Crop Pasture Sci. 2016, 67, 1019–1053. [Google Scholar] [CrossRef]
- Chen, X.P.; Cui, Z.L.; Vitousek, P.M.; Cassman, K.G.; Matson, P.A.; Bai, J.S. Integrated soil-crop system management for food security. Proc. Natl. Acad. Sci. USA 2011, 108, 6399–6404. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.M.; Wang, Y.H.; Fang, T.L.; Chen, X.P.; Cui, Z.L. Design corn management strategies for high yield and high nitrogen use efficiency. Agron. J. 2016, 108, 922–929. [Google Scholar] [CrossRef]
- Akiyama, H.; Yan, X.Y.; Yagi, K. Evaluation of effectiveness of enhanced efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: Meta-analysis. Glob. Change Biol. 2010, 16, 1837–1846. [Google Scholar] [CrossRef]
- Li, G.; Cheng, G.; Lu, W.; Lu, D. Differences of yield and nitrogen use efficiency under different applications of slow-release fertilizer in spring maize. J. Integr. Agric. 2021, 20, 554–564. [Google Scholar] [CrossRef]
- Su, W.N.; Ahmad, S.; Ahmad, I.; Han, Q.F. Nitrogen fertilization affects maize grain yield through regulating nitrogen uptake, radiation and water use efficiency, photosynthesis and root distribution. PeerJ 2020, 8, 10291. [Google Scholar] [CrossRef]
- Wang, J.; Wen, X.F.; Zhang, X.Y.; Li, S.G.; Zhang, D.Y. Co-regulation of photosynthetic capacity by nitrogen, phosphorus and magnesium in a subtropical Karst forest in China. Sci. Rep. 2018, 8, 7406. [Google Scholar] [CrossRef]
- Liu, C.; Sun, Y.; Wu, G.; Wang, X.; Yuan, M.; Wang, J.; He, W.; Chen, F.; LeCocq, K.; Wang, L.; et al. Amendment with controlled release urea increases leaf morpho-physiological traits, grain yield and NUE in a double-cropping rice system in southern China. J. Sci. Food Agric. 2023, 103, 1692–1703. [Google Scholar] [CrossRef]
- Li, H.; Zhu, Y.; Wang, G.F.; Liu, R.R.; Huang, D.; Song, M.M.; Zhang, Y.H.; Wang, H.; Wang, Y.C.; Shao, R.X.; et al. Maize yield increased by matching canopy light and nitrogen distribution via controlled-release urea/urea adjustment. Field Crops Res. 2024, 308, 109284. [Google Scholar] [CrossRef]
- Tang, C.; Han, M.; Yang, X.; Shen, T.; Gao, Y.; Wang, Y.; Li, Y.C. Gene expression, enzyme activity, nitrogen use efficiency, and yield of rice affected by controlled-release nitrogen. ACS Omega 2023, 8, 23772–23781. [Google Scholar] [CrossRef]
- Li, P.F.; Lu, J.W.; Hou, W.F.; Pan, Y.H.; Wang, Y.; Khan, M.R.; Ren, T.; Cong, R.H.; Li, X.K. Reducing nitrogen losses through ammonia volatilization and surface runoff to improve apparent nitrogen recovery of double cropping of late rice using controlled release urea. Environ. Sci. Pollut. Res. 2017, 24, 11722–11733. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.R.; Chen, Q.L.; Liu, D.; Tao, W.K.; Gao, S.; Li, J.Q.; Lin, C.H.; Zhu, M.C.; Ding, Y.F.; Li, W.W.; et al. Application of slow-controlled release fertilizer coordinates the carbon flow in carbon-nitrogen metabolism to effect rice quality. BMC Plant Biol. 2024, 24, 621. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Cun, Z.; Chen, J.W. Photosynthetic performance and photosynthesis-related gene expression coordinated in a shade-tolerant species Panax notoginseng under nitrogen regimes. BMC Plant Biol. 2020, 20, 273. [Google Scholar] [CrossRef]
- Chaparro, J.M.; Sheflin, A.M.; Manter, D.K.; Vivanco, J.M. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fert. Soils 2012, 48, 489–499. [Google Scholar] [CrossRef]
- Chen, H.; Li, D.J.; Zhao, J.; Xiao, K.C.; Wang, K.L. Effects of nitrogen addition on activities of soil nitrogen acquisition enzymes: A meta-analysis. Agric. Ecosyst. Environ. 2018, 252, 126–131. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, M.Y.; Zheng, G.L.; Yao, Y.; Tao, R.R.; Zhu, M.; Ding, J.F.; Li, C.Y.; Guo, W.S.; Zhu, X.K. Twice-split application of controlled-release nitrogen fertilizer met the nitrogen demand of winter wheat. Field Crop Res. 2021, 267, 108163. [Google Scholar] [CrossRef]
- Shu, X.; He, J.; Zhou, Z.; Xia, L.; Hu, Y.; Zhang, Y. Organic amendments enhance soil microbial diversity, microbial functionality and crop yields: A meta-analysis. Sci. Total Environ. 2022, 829, 154627. [Google Scholar] [CrossRef]
- Ma, Q.; Qian, Y.S.; Yu, Q.Q.; Cao, Y.F.; Tao, R.G.; Zhu, M.; Ding, J.F.; Li, C.Y.; Guo, W.S.; Zhu, X.K. Controlled-release nitrogen fertilizer application mitigated N losses and modified microbial community while improving wheat yield and N use efficiency. Agric. Ecosyst. Environ. 2023, 349, 108445. [Google Scholar] [CrossRef]
- Mostashari-Rad, F.; Ghasemi-Mobtaker, H.; Taki, M.; Ghahderijani, M.; Kaab, A.; Chau, K.; Nabavi-Pelesaraei, A. Exergoenvironmental damages assessment of horticultural crops using ReCiPe2016 and cumulative exergy demand frameworks. J. Clean. Prod. 2020, 123788. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Y.; Blaylock, A.D.; Chen, X. Mixture of controlled release and normal urea to optimize nitrogen management for high-yielding (>15 Mg ha−1) maize. Field Crop Res. 2017, 204, 23–30. [Google Scholar] [CrossRef]
- Ying, H.; Ye, Y.L.; Cui, Z.L.; Chen, X.P. Managing nitrogen for sustainable wheat production. J. Clean. Prod. 2017, 162, 1308–1316. [Google Scholar] [CrossRef]
- Halvorson, A.D.; Del Grosso, S.J.; Jantalia, C.P. Nitrogen source effects on soil nitrous oxide emission from strip-till corn. J. Environ. Qual. 2011, 40, 1775–1786. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Song, F. Effects of different coated controlled-release urea on soil ammonia volatilization in farmland. Acta Ecol. 2011, 31, 7133–7140. [Google Scholar]
- Wang, Z.B.; Zhang, H.L.; Lu, X.H.; Wang, M.; Chu, Q.Q.; Wen, X.Y.; Chen, F. Lowering carbon footprint of winter wheat by improving management practices in North China Plain. J. Clean. Prod. 2016, 112, 149–157. [Google Scholar] [CrossRef]
- Luo, J.; Liao, G.; Banerjee, S.K.; Gu, S.; Liang, J.; Guo, X. Long-term organic fertilization promotes the resilience of soil multifunctionality driven by bacterial communities. Soil. Biol. Biochem. 2022, 177, 108922. [Google Scholar]
Treatment | N Source | Total N Rate (kg N ha−1) | Basal N Rate | Topdressing at 10-Leaf Stage (kg N ha−1) | |
---|---|---|---|---|---|
Common Urea (kg N ha−1) | CRU (kg N ha−1) | ||||
N0 | − | 0 | 0 | 0 | 0 |
N126 | Common urea | 126 | 50.4 | − | 75.6 |
N180 | Common urea | 180 | 72 | − | 108 |
N234 | Common urea | 234 | 93.6 | − | 140.4 |
N280 | Common urea | 280 | 186.7 | − | 93.3 |
PSCU | CRU | 180 | − | 180 | 0 |
TCU | CRU | 180 | − | 180 | 0 |
PCU | CRU | 180 | − | 180 | 0 |
Year | N Treatment | GNC | SNC | GNU | SNU | Total N Uptake | NHI | PFPN | NUE |
---|---|---|---|---|---|---|---|---|---|
(g kg–1) | (g kg−1) | (kg ha−1) | (kg ha−1) | (kg ha−1) | (%) | (kg kg−1) | (%) | ||
2019 | N0 | 10.58 c | 6.93 b | 70.1 b | 45.4 b | 115.4 b | 60.9 a | – | – |
N234 | 13.32 ab | 8.42 a | 125.4 a | 70.5 a | 195.9 a | 64.1 a | 46.9 b | 34.4 ab | |
N280 | 13.07 ab | 8.81 a | 117.7 a | 76.8 a | 194.5 a | 60.8 a | 37.4 c | 28.2 b | |
PSCU | 13.04 ab | 8.72 a | 114.3 a | 77.7 a | 192.0 a | 59.9 a | 56.5 a | 42.5 ab | |
TCU | 12.98 c | 8.96 a | 119.8 a | 84.9 a | 204.6 a | 58.5 a | 59.6 a | 49.6 a | |
PCU | 14.06 a | 8.50 a | 121.8 a | 75.4 a | 197.2 a | 61.8 a | 56.0 a | 45.4 ab | |
2020 | N0 | 9.30 b | 6.90 c | 77.2 b | 48.6 b | 125.7 b | 61.4 a | – | – |
N234 | 13.46 a | 11.49 a | 152.1 a | 132.7 a | 284.8 a | 53.7 a | 56.2 b | 72.4 ab | |
N280 | 14.13 a | 10.50 ab | 161.0 a | 120.6 a | 281.6 a | 57.0 a | 47.2 c | 59.3 b | |
PSCU | 13.70 a | 9.90 ab | 154.1 a | 111.2 a | 265.2 a | 58.4 a | 72.7 a | 83.2 ab | |
TCU | 13.60 a | 9.47 b | 162.7 a | 108.3 a | 271.1 a | 60.0 a | 77.2 a | 86.5 a | |
PCU | 13.67 a | 9.73 b | 159.6 a | 114.5 a | 274.1 a | 58.4 a | 75.4 a | 88.1 a | |
Source of variance | |||||||||
Year (Y) | ns | *** | *** | *** | *** | * | *** | *** | |
N treatment (N) | *** | *** | *** | *** | *** | ns | *** | ** | |
N*Y | * | ns | ns | ns | ns | ns | ns | ns |
Year | Treatment | Total Revenue | Fertilizer Cost | Top Dressing Cost | Other Costs | Ecological Costs | Net Profit |
---|---|---|---|---|---|---|---|
(USD ha−1) | |||||||
2019 | N0 | 2526.0 | 125.4 | 0.0 | 628.5 | 81.0 | 1062.5 b |
N234 | 3612.4 | 260.2 | 47.0 | 628.5 | 308.8 | 1739.4 a | |
N280 | 3447.3 | 286.7 | 47.0 | 628.5 | 353.6 | 1503.0 a | |
PSCU | 3315.5 | 298.0 | 0.0 | 628.5 | 199.7 | 1560.8 a | |
TCU | 3531.7 | 293.4 | 0.0 | 628.5 | 199.7 | 1781.5 a | |
PCU | 3349.9 | 253.0 | 0.0 | 628.5 | 199.7 | 1640.3 a | |
2020 | N0 | 3176.6 | 125.4 | 0.0 | 628.5 | 81.0 | 1713.2 b |
N234 | 4406.7 | 260.2 | 47.0 | 628.5 | 308.8 | 2533.7 a | |
N280 | 4347.5 | 286.7 | 47.0 | 628.5 | 353.6 | 2403.1 a | |
PSCU | 4468.9 | 298.0 | 0.0 | 628.5 | 199.7 | 2714.2 a | |
TCU | 4572.9 | 293.4 | 0.0 | 628.5 | 199.7 | 2822.7 a | |
PCU | 4309.7 | 253.0 | 0.0 | 628.5 | 199.7 | 2600.0 a |
N Treatment | pH | Total N | Total P | Total K | Alkaline Hydrolysis | Available P | Available K | Organic Matter |
---|---|---|---|---|---|---|---|---|
(g kg−1) | (g kg−1) | (g kg−1) | of N (mg kg−1) | (mg kg−1) | (mg kg−1) | (g kg−1) | ||
N0 | 7.80 a | 0.94 a | 0.73 a | 25.65 a | 47.02 b | 34.58 a | 170.33 a | 18.24 b |
N234 | 7.52 b | 1.07 a | 0.78 a | 26.43 a | 74.11 a | 31.42 a | 162.00 a | 17.63 b |
N280 | 7.54 ab | 0.90 a | 0.83 a | 26.00 a | 66.00 a | 35.08 a | 141.33 a | 18.78 b |
PSCU | 7.55 ab | 1.11 a | 0.85 a | 26.60 a | 71.82 a | 46.50 a | 151.33 a | 21.47 a |
TCU | 7.66 ab | 1.17 a | 0.90 a | 26.93 a | 68.06 a | 40.92 a | 142.33 a | 23.15 a |
PCU | 7.52 b | 1.13 a | 0.78 a | 26.31 a | 58.49 ab | 49.75 a | 133.33 a | 22.92 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, W.; Huang, M.; Yang, H.; Wang, Z.; Sun, S.; Xie, Y.; Sun, J.; Li, Q.; Liu, B.; Gao, C.; et al. Controlled-Release Urea Coordinates Maize Physiology with Soil Nitrogen Retention: Balancing High Yield and Environmental Sustainability. Agriculture 2025, 15, 1778. https://doi.org/10.3390/agriculture15161778
Yan W, Huang M, Yang H, Wang Z, Sun S, Xie Y, Sun J, Li Q, Liu B, Gao C, et al. Controlled-Release Urea Coordinates Maize Physiology with Soil Nitrogen Retention: Balancing High Yield and Environmental Sustainability. Agriculture. 2025; 15(16):1778. https://doi.org/10.3390/agriculture15161778
Chicago/Turabian StyleYan, Wei, Meng Huang, Huiqing Yang, Zhonghua Wang, Shujuan Sun, Yinshan Xie, Jinbian Sun, Qiong Li, Bo Liu, Chengcheng Gao, and et al. 2025. "Controlled-Release Urea Coordinates Maize Physiology with Soil Nitrogen Retention: Balancing High Yield and Environmental Sustainability" Agriculture 15, no. 16: 1778. https://doi.org/10.3390/agriculture15161778
APA StyleYan, W., Huang, M., Yang, H., Wang, Z., Sun, S., Xie, Y., Sun, J., Li, Q., Liu, B., Gao, C., Xue, Y., & Liu, K. (2025). Controlled-Release Urea Coordinates Maize Physiology with Soil Nitrogen Retention: Balancing High Yield and Environmental Sustainability. Agriculture, 15(16), 1778. https://doi.org/10.3390/agriculture15161778