Investigating the Potential Mechanism of Methane Mitigation in Seaweed Gracilaria lemaneiformis via 16S rRNA Gene Sequencing and LC/MS-Based Metabolomics
Abstract
1. Introduction
2. Materials and Methods
2.1. Seaweed Collection and Preparation
2.2. Experimental Design and Treatments
2.3. In Vitro Incubation
2.4. Sample Collection
2.5. Gas Analysis
2.6. Fermentation Parameter Determination
2.7. DNA Extraction, 16S rRNA Sequencing, and Bioinformatics
2.8. Non-Targeted Metabolomics Analysis and Data Processing
2.9. Statistical Analysis
3. Results
3.1. Effects of G. lemaneiformis on Rumen Fermentation Characteristics
3.2. Effects of G. lemaneiformis on Rumen Gas Composition
3.3. Effects of G. lemaneiformis on Microbial Community
3.4. Effects of G. lemaneiformis on Rumen Metabolites and Metabolic Pathways
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Alex Thumba, D.; Lazarova-Molnar, S.; Niloofar, P. Comparative evaluation of data requirements and level of decision support provided by decision support tools for reducing livestock-related greenhouse gas emissions. J. Clean. Prod. 2022, 373, 133886. [Google Scholar] [CrossRef]
- Cheong, K.L.; Zhang, Y.; Li, Z.; Li, T.; Ou, Y.; Shen, J.; Zhong, S.; Tan, K. Role of Polysaccharides from Marine Seaweed as Feed Additives for Methane Mitigation in Ruminants: A Critical Review. Polymers 2023, 15, 3153. [Google Scholar] [CrossRef]
- Seshadri, R.; Leahy, S.C.; Attwood, G.T.; Teh, K.H.; Lambie, S.C.; Cookson, A.L.; Eloe-Fadrosh, E.A.; Pavlopoulos, G.A.; Hadjithomas, M.; Varghese, N.J.; et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat. Biotechnol. 2018, 36, 359–367. [Google Scholar] [CrossRef]
- McAllister, T.; Newbold, C. Redirecting rumen fermentation to reduce methanogenesis. Aust. J. Exp. Agric. 2008, 48, 7–13. [Google Scholar] [CrossRef]
- Roque, B.M.; Brooke, C.G.; Ladau, J.; Polley, T.; Marsh, L.J.; Najafi, N.; Pandey, P.; Singh, L.; Kinley, R.; Salwen, J.K.; et al. Effect of the macroalgae Asparagopsis taxiformis on methane production and rumen microbiome assemblage. Anim. Microbiome 2019, 1, 3. [Google Scholar] [CrossRef] [PubMed]
- Machado, L.; Magnusson, M.; Paul, N.A.; Kinley, R.; de Nys, R.; Tomkins, N. Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitro. J. Appl. Phycol. 2016, 28, 3117–3126. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, S.J.; Kim, H.S.; Eom, J.S.; Jo, S.U.; Guan, L.L.; Park, T.; Seo, J.; Lee, Y.; Bae, D.; et al. Red seaweed extracts reduce methane production by altering rumen fermentation and microbial composition in vitro. Front. Vet. Sci. 2022, 9, 985824. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.; Park, T.; Kim, M.; Yu, Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 2017, 8, 13. [Google Scholar] [CrossRef]
- Abbott, D.W.; Aasen, I.M.; Beauchemin, K.A.; Grondahl, F.; Gruninger, R.; Hayes, M.; Huws, S.; Kenny, D.A.; Krizsan, S.J.; Kirwan, S.F.; et al. Seaweed and Seaweed Bioactives for Mitigation of Enteric Methane: Challenges and Opportunities. Animals 2020, 10, 2432. [Google Scholar] [CrossRef]
- Wasson, D.E.; Stefenoni, H.; Cueva, S.F.; Lage, C.; Räisänen, S.E.; Melgar, A.; Fetter, M.; Hennessy, M.; Narayan, K.; Indugu, N.; et al. Screening macroalgae for mitigation of enteric methane in vitro. Sci. Rep. 2023, 13, 9835. [Google Scholar] [CrossRef]
- FAO. Global Aquaculture Production. Available online: https://www.fao.org/fishery/statistics-query/en/aquaculture (accessed on 31 March 2024).
- Hidayah, N.; Adiwimarta, K.; Noviandi, C.; Astuti, A.; Hanim, C.; Suwignyo, B. Evaluation of rumen in vitro gas production and fermentation characteristics of four tropical seaweed species. Vet. Integr. Sci. 2022, 21, 229–238. [Google Scholar] [CrossRef]
- Prayitno, C.H.; Utami, F.K.; Nugroho, A.; Widyastuti, T. The effect of seaweed (Gracilaria sp.) supplementation in sheep feed on methanogenesis inhibition in vitro. IOP Conf. Ser. Earth Environ. Sci. 2019, 247, 012069. [Google Scholar] [CrossRef]
- Maia, M.R.G.; Fonseca, A.J.M.; Oliveira, H.M.; Mendonça, C.; Cabrita, A.R.J. The Potential Role of Seaweeds in the Natural Manipulation of Rumen Fermentation and Methane Production. Sci. Rep. 2016, 6, 32321. [Google Scholar] [CrossRef] [PubMed]
- Sofyan, A.; Irawan, A.; Herdian, H.; Jasmadi; Harahap, M.A.; Sakti, A.A.; Suryani, A.E.; Novianty, H.; Kurniawan, T.; Darma, I.N.G.; et al. Effects of various macroalgae species on methane production, rumen fermentation, and ruminant production: A meta-analysis from in vitro and in vivo experiments. Anim. Feed Sci. Technol. 2022, 294, 115503. [Google Scholar] [CrossRef]
- Wang, M.; Wang, R.; Janssen, P.H.; Zhang, X.M.; Sun, X.Z.; Pacheco, D.; Tan, Z.L. Sampling procedure for the measurement of dissolved hydrogen and volatile fatty acids in the rumen of dairy cows1. J. Anim. Sci. 2016, 94, 1159–1169. [Google Scholar] [CrossRef]
- Roque, B.M.; Venegas, M.; Kinley, R.D.; de Nys, R.; Duarte, T.L.; Yang, X.; Kebreab, E. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS ONE 2021, 16, e0247820. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Y.; Wang, H.; Nan, X.; Guo, Y.; Xiong, B. Calcium Propionate Supplementation Has Minor Effects on Major Ruminal Bacterial Community Composition of Early Lactation Dairy Cows. Front. Microbiol. 2022, 13, 847488. [Google Scholar] [CrossRef] [PubMed]
- Bhatta, R.; Tajima, K.; Kurihara, M. Influence of Temperature and pH on Fermentation Pattern and Methane Production in the Rumen Simulating Fermenter (RUSITEC). Asian-Australas J. Anim. Sci. 2006, 19, 376–380. [Google Scholar] [CrossRef]
- Counotte, G.H.M.; Prins, R.A. Regulation of rumen lactate metabolism and the role of lactic acid in nutritional disorders of ruminants. Vet. Res. Commun. 1978, 2, 277–303. [Google Scholar] [CrossRef]
- Kamke, J.; Kittelmann, S.; Soni, P.; Li, Y.; Tavendale, M.; Ganesh, S.; Janssen, P.H.; Shi, W.; Froula, J.; Rubin, E.M.; et al. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation. Microbiome 2016, 4, 56. [Google Scholar] [CrossRef]
- Martínez-Álvaro, M.; Auffret, M.D.; Stewart, R.D.; Dewhurst, R.J.; Duthie, C.-A.; Rooke, J.A.; Wallace, R.J.; Shih, B.; Freeman, T.C.; Watson, M.; et al. Identification of Complex Rumen Microbiome Interaction Within Diverse Functional Niches as Mechanisms Affecting the Variation of Methane Emissions in Bovine. F. Microbiol. 2020, 11, 659. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. Metabolic Hydrogen Flows in Rumen Fermentation: Principles and Possibilities of Interventions. F. Microbiol. 2020, 11, 589. [Google Scholar] [CrossRef]
- Li, X.; Norman, H.; Kinley, R.; Laurence, M.; Wilmot, M.; Bender, H.; de Nys, R.; Tomkins, N. Asparagopsis taxiformis decreases enteric methane production from sheep. Anim. Prod. Sci. 2016, 58, 681–688. [Google Scholar] [CrossRef]
- Choi, Y.; Shin, N.; Lee, S.; Lee, Y.; Kim, H.; Eom, J.; Lee, S.-S.; Kim, E.; Lee, S.S. In vitro five brown algae extracts for efficiency of ruminal fermentation and methane yield. J. Appl. Phycol. 2021, 33, 1253–1262. [Google Scholar] [CrossRef]
- Molina-Alcaide, E.; Carro, M.D.; Roleda, M.Y.; Weisbjerg, M.R.; Lind, V.; Novoa-Garrido, M. In vitro ruminal fermentation and methane production of different seaweed species. Anim. Feed Sci. Technol. 2017, 228, 1–12. [Google Scholar] [CrossRef]
- Denman, S.E.; Tomkins, N.W.; McSweeney, C.S. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 2007, 62, 313–322. [Google Scholar] [CrossRef]
- Stefenoni, H.A.; Räisänen, S.E.; Cueva, S.F.; Wasson, D.E.; Lage, C.F.A.; Melgar, A.; Fetter, M.E.; Smith, P.; Hennessy, M.; Vecchiarelli, B.; et al. Effects of the macroalga Asparagopsis taxiformis and oregano leaves on methane emission, rumen fermentation, and lactational performance of dairy cows. J. Dairy Sci. 2021, 104, 4157–4173. [Google Scholar] [CrossRef] [PubMed]
- Min, B.R.; Parker, D.; Brauer, D.; Waldrip, H.; Lockard, C.; Hales, K.; Akbay, A.; Augyte, S. The role of seaweed as a potential dietary supplementation for enteric methane mitigation in ruminants: Challenges and opportunities. Anim. Nutr. 2021, 7, 1371–1387. [Google Scholar] [CrossRef]
- Wanapat, M.; Prachumchai, R.; Dagaew, G.; Matra, M.; Phupaboon, S.; Sommai, S.; Suriyapha, C. Potential use of seaweed as a dietary supplement to mitigate enteric methane emission in ruminants. Sci. Total Environ. 2024, 931, 173015. [Google Scholar] [CrossRef] [PubMed]
- Ku-Vera, J.C.; Jiménez-Ocampo, R.; Valencia-Salazar, S.S.; Montoya-Flores, M.D.; Molina-Botero, I.C.; Arango, J.; Gómez-Bravo, C.A.; Aguilar-Pérez, C.F.; Solorio-Sánchez, F.J. Role of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants. Front. Vet. Sci. 2020, 7, 584. [Google Scholar] [CrossRef]
- Holtshausen, L.; Chaves, A.V.; Beauchemin, K.A.; McGinn, S.M.; McAllister, T.A.; Odongo, N.E.; Cheeke, P.R.; Benchaar, C. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows1. J. Dairy Sci. 2009, 92, 2809–2821. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Blümmel, M.; Becker, K. In vitro effects of and interactions between tannins and saponins and fate of tannins in the rumen. J. Sci. Food Agric. 1995, 69, 481–493. [Google Scholar] [CrossRef]
- Desgagné-Penix, I. Biosynthesis of alkaloids in Amaryllidaceae plants: A review. Phytochem. Rev. 2021, 20, 409–431. [Google Scholar] [CrossRef]
- Garcia, P.; Gribaldo, S.; Borrel, G. Diversity and Evolution of Methane-Related Pathways in Archaea. Annu. Rev. Microbiol. 2022, 76, 727–755. [Google Scholar] [CrossRef]
- Wallace, R.J.; Rooke, J.A.; Duthie, C.-A.; Hyslop, J.J.; Ross, D.W.; McKain, N.; de Souza, S.M.; Snelling, T.J.; Waterhouse, A.; Roehe, R. Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beef cattle. Sci. Rep. 2014, 4, 5892. [Google Scholar] [CrossRef]
- Pitta, D.W.; Melgar, A.; Hristov, A.N.; Indugu, N.; Narayan, K.S.; Pappalardo, C.; Hennessy, M.L.; Vecchiarelli, B.; Kaplan-Shabtai, V.; Kindermann, M.; et al. Temporal changes in total and metabolically active ruminal methanogens in dairy cows supplemented with 3-nitrooxypropanol. J. Dairy Sci. 2021, 104, 8721–8735. [Google Scholar] [CrossRef]
- Yi, S.; Dai, D.; Wu, H.; Chai, S.; Liu, S.; Meng, Q.; Zhou, Z. Dietary Concentrate-to-Forage Ratio Affects Rumen Bacterial Community Composition and Metabolome of Yaks. Front. Nutr. 2022, 9, 927206. [Google Scholar] [CrossRef]
- Kittelmann, S.; Pinares-Patino, C.; Seedorf, H.; Kirk, M.; Ganesh, S.; McEwan, J.; Janssen, P. Two Different Bacterial Community Types Are Linked with the Low-Methane Emission Trait in Sheep. PLoS ONE 2014, 9, e103171. [Google Scholar] [CrossRef] [PubMed]
- Pope, P.B.; Smith, W.; Denman, S.E.; Tringe, S.G.; Barry, K.; Hugenholtz, P.; McSweeney, C.S.; McHardy, A.C.; Morrison, M. Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies. Science 2011, 333, 646–648. [Google Scholar] [CrossRef]
- Van Lingen, H.J.; Plugge, C.M.; Fadel, J.G.; Kebreab, E.; Bannink, A.; Dijkstra, J. Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation. PLoS ONE 2016, 11, e0161362. [Google Scholar] [CrossRef]
- Li, Y.; Kreuzer, M.; Clayssen, Q.; Ebert, M.-O.; Ruscheweyh, H.-J.; Sunagawa, S.; Kunz, C.; Attwood, G.; Amelchanka, S.; Terranova, M. The rumen microbiome inhibits methane formation through dietary choline supplementation. Sci. Rep. 2021, 11, 21761. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Treloar, B.P.; Teh, K.H.; McKenzie, C.M.; Henderson, G.; Attwood, G.T.; Waters, S.M.; Patchett, M.L.; Janssen, P.H. Sharpea and Kandleria are lactic acid producing rumen bacteria that do not change their fermentation products when co-cultured with a methanogen. Anaerobe 2018, 54, 31–38. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Effects of Adaptation of In vitro Rumen Culture to Garlic Oil, Nitrate, and Saponin and Their Combinations on Methanogenesis, Fermentation, and Abundances and Diversity of Microbial Populations. Front. Microbiol. 2015, 6, 1434. [Google Scholar] [CrossRef]
- Martin, C.; Morgavi, D.P.; Doreau, M. Methane mitigation in ruminants: From microbe to the farm scale. Animal 2010, 4, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Yao, S.; Wang, T.; Lu, Y.; Han, H.; Liu, X.; Lv, D.; Ma, X.; Guan, S.; Yao, Y.; et al. Effects of melatonin on rumen microorganisms and methane production in dairy cow: Results from in vitro and in vivo studies. Microbiome 2023, 11, 196. [Google Scholar] [CrossRef] [PubMed]
- Yanibada, B.; Hohenester, U.; Pétéra, M.; Canlet, C.; Durand, S.; Jourdan, F.; Boccard, J.; Martin, C.; Eugène, M.; Morgavi, D.P.; et al. Inhibition of enteric methanogenesis in dairy cows induces changes in plasma metabolome highlighting metabolic shifts and potential markers of emission. Sci. Rep. 2020, 10, 15591. [Google Scholar] [CrossRef]
Parameter | Roughage 1 | Concentrate 2 | G. lemaneiformis |
---|---|---|---|
OM | 92.9% | 92.8% | 65.6% |
Ash | 7.1% | 7.8% | 34.4% |
CP | 7.1% | 20.5% | 25.0% |
NDF | 38.5% | 16.6% | 14.6% |
ADF | 21.7% | 6.2% | 5.5% |
Mineral | Content (mg/kg) |
---|---|
Macro-minerals | |
Na | 11,650 |
Mg | 2670 |
Ca | 2250 |
K | 13,720 |
S | 7930 |
P | 1790 |
Trace elements | |
Al | 2660 |
B | 177.80 |
Cr | 2.65 |
Cu | 6.03 |
Co | 0.50 |
Fe | 1200 |
Mo | 0.24 |
Sb | <0.01 |
Zn | 35.56 |
I | 7.78 |
Mn | 135.50 |
Se | 0.48 |
Toxic heavy metals | |
As | 6.03 |
Ba | 6.39 |
Cd | 0.6 |
Hg | <0.01 |
Pb | 2.41 |
Ti | 43.82 |
Tl | <0.01 |
Sn | 0.38 |
Sr | 20.83 |
Ni | 1.93 |
V | 2.53 |
Item | Content |
---|---|
Ingredients (%) | |
Corn | 35.00 |
DDGS | 16.45 |
Soybean meal | 15.40 |
Stone powder | 0.70 |
CaHPO4 | 0.60 |
Vitamins | 0.28 |
NaCl | 0.70 |
Minerals | 0.07 |
NaHCO3 | 0.70 |
Antifungal agent | 0.10 |
Whole plant silage corn | 30.00 |
Total | 100.00 |
Nutrient levels (%) | |
OM | 89.37 |
CP | 16.48 |
NDF | 50.33 |
ADF | 26.22 |
EE | 4.80 |
Ca | 0.90 |
P | 0.35 |
Nem (MJ/kg) | 6.71 |
Parameter | CON | 2% | 5% | 10% | SEM | p Value |
---|---|---|---|---|---|---|
pH | 6.95 | 6.96 | 6.97 | 6.97 | 0.0033 | 0.056 |
DMD % | 0.85 | 0.85 | 0.85 | 0.84 | 0.0023 | 0.057 |
NH3-N mmol/L | 16.73 a | 11.81 c | 12.18 c | 13.47 b | 0.42 | <0.001 |
Volatile fatty acids (mmol/L) | ||||||
TVFA | 83.33 a | 75.97 ab | 78.27 ab | 72.01 b | 1.27 | <0.01 |
Acetate | 46.82 a | 42.11 b | 43.09 b | 39.44 b | 0.76 | <0.01 |
Propionate | 22.35 | 21.85 | 22.88 | 20.86 | 0.31 | 0.12 |
Isobutyrate | 0.80 a | 0.61 b | 0.63 b | 0.60 b | 0.19 | <0.01 |
Butyrate | 11.93 a | 10.17 b | 10.38 b | 9.86 b | 0.21 | <0.01 |
Valerate | 1.43 a | 1.29 b | 1.25 b | 1.22 b | 0.24 | <0.01 |
AP ratio | 2.10 a | 1.93 b | 1.88 c | 1.89 c | 0.018 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Li, S.; Guo, T.; Tong, X.; Zhang, Z.; Yang, Y.; Wang, Q.; Li, D.; Min, L. Investigating the Potential Mechanism of Methane Mitigation in Seaweed Gracilaria lemaneiformis via 16S rRNA Gene Sequencing and LC/MS-Based Metabolomics. Agriculture 2025, 15, 1768. https://doi.org/10.3390/agriculture15161768
Sun Y, Li S, Guo T, Tong X, Zhang Z, Yang Y, Wang Q, Li D, Min L. Investigating the Potential Mechanism of Methane Mitigation in Seaweed Gracilaria lemaneiformis via 16S rRNA Gene Sequencing and LC/MS-Based Metabolomics. Agriculture. 2025; 15(16):1768. https://doi.org/10.3390/agriculture15161768
Chicago/Turabian StyleSun, Yi, Shuai Li, Tongjun Guo, Xiong Tong, Zhifei Zhang, Yufeng Yang, Qing Wang, Dagang Li, and Li Min. 2025. "Investigating the Potential Mechanism of Methane Mitigation in Seaweed Gracilaria lemaneiformis via 16S rRNA Gene Sequencing and LC/MS-Based Metabolomics" Agriculture 15, no. 16: 1768. https://doi.org/10.3390/agriculture15161768
APA StyleSun, Y., Li, S., Guo, T., Tong, X., Zhang, Z., Yang, Y., Wang, Q., Li, D., & Min, L. (2025). Investigating the Potential Mechanism of Methane Mitigation in Seaweed Gracilaria lemaneiformis via 16S rRNA Gene Sequencing and LC/MS-Based Metabolomics. Agriculture, 15(16), 1768. https://doi.org/10.3390/agriculture15161768