The Evolution of Global Food Trade Systems and Their Resilience in Response to COVID-19: Performance Across Nations
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Methodology
2.2.1. Complex Network Analysis
- (1)
- Graph Density
- (2)
- Average Degree
- (3)
- Average Clustering Coefficient
- (4)
- Average Path Length
- (5)
- Weighted In/Out Degree
2.2.2. The Change Rate of the Weighted In/Out Degree
2.2.3. Epidemic Severity Index
2.2.4. Regression Analysis
3. Results
3.1. Spatiotemporal Evolution of the GTN4 from 2000 to 2021
3.1.1. Dynamics of the GTN4
3.1.2. Dynamics of the GTN4 in the Developed Country Group
3.1.3. Dynamics of the GTN4 in the Developing Group
3.2. Dynamics of IE4 and Its Relationship with COVID-19 from 2019 to 2021
3.2.1. Impact of the Pandemic on Global IE4
3.2.2. Performance in the Developed Group
3.2.3. Performance in the Developing Group
3.3. Impact of COVID-19 on Focal Countries
3.3.1. Response of Top 10 Countries to the Pandemic
3.3.2. Response of Outlier Countries to the Pandemic
4. Discussion
4.1. Heterogeneous Spatiotemporal Evolution in the GTN4
4.2. COVID-19 and Global IE4
4.3. Different Performance of Four Main Cereals
4.4. Limitations and Outlook
5. Conclusions
- (1)
- Between 2000 and 2021, the global food trade network underwent significant changes, particularly after 2019. In the initial phase, the GTN4 exhibited increasing internal clustering, size, and trade linkages. This trend was similar in both developing and developed countries. However, in the latter phase, the accessibility of trade networks for all four main cereals weakened. Specifically, the internal clustering of the soybean trade network decreased, the size of the rice trade network declined, and the size and accessibility of the maize trade network decreased, along with its linkages. In the developed country group, there was a reduction in the degree of clustering and agglomeration for soybeans, wheat, and rice. In the developing country group, the growth rate in size and trade linkages significantly decreased for the soybean, rice, and maize trade networks.
- (2)
- Global IE4 was significantly influenced by the COVID-19 pandemic, as evidenced by approximately 44% to 69% of global nations experiencing declines in their imports and exports during the pandemic period. Furthermore, as shown in the records, the import/export activities of the four main cereals dropped to zero in 38 countries in the year 2021, likely due to strict trade policies, high tariffs, international challenges, or domestic economic restructuring. For both developed countries and developing countries, the COVID-19 pandemic had a significant negative effect on soybean and maize imports, as well as rice and wheat exports. The pandemic’s effect on IE4 was more pronounced in developing countries compared with developed ones, indicating that the developing countries’ food systems were more vulnerable to the pandemic.
- (3)
- During the pandemic, Germany, Italy, and the United States demonstrated robust exports of wheat, rice, and maize, respectively, providing critical support to the global food trade. However, China’s soybean exports made limited contributions to the stability of global food exports. Conversely, Spain’s robust soybean imports—ranking sixth globally, with 3.04 million tons annually between 2000 and 2018—increased by 11.96%, despite a high ESI of 13.44%, highlighting its key role and trade resilience during the pandemic. In contrast, Japan, Saudi Arabia, and Vietnam were relatively vulnerable in importing wheat, rice, and maize, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Developed Economies | Developing Economies | |||
---|---|---|---|---|
Australia | Afghanistan | El Salvador | Mauritius | Thailand |
Austria | Algeria | Equatorial Guinea | Mexico | Timor-Leste |
Belgium | Angola | Eritrea | Mongolia | Togo |
Bulgaria | Argentina | Eswatini | Morocco | Trinidad and Tobago |
Canada | Bahamas | Ethiopia | Mozambique | Tunisia |
Croatia | Bahrain | Fiji | Myanmar | Türkiye |
Cyprus | Bangladesh | Gabon | Namibia | Uganda |
Czechia | Barbados | Gambia | Nepal | United Arab Emirates |
Denmark | Belize | Ghana | Nicaragua | United Republic of Tanzania |
Estonia | Benin | Guatemala | Niger | Uruguay |
Finland | Bhutan | Guinea | Nigeria | Vanuatu |
France | Bolivia (Plurinational State of) | Guinea-Bissau | Oman | Venezuela (Bolivarian Republic of) |
Germany | Botswana | Guyana | Pakistan | Viet Nam |
Greece | Brazil | Haiti | Panama | Yemen |
Hungary | Brunei Darussalam | Honduras | Papua New Guinea | Zambia |
Iceland | Burkina Faso | India | Paraguay | Zimbabwe |
Ireland | Burundi | Indonesia | Peru | |
Italy | Cabo Verde | Iran (Islamic Republic of) | Philippines | |
Japan | Cambodia | Iraq | Qatar | |
Latvia | Cameroon | Israel | Republic of Korea | |
Lithuania | Central African Republic | Jamaica | Rwanda | |
Luxembourg | Chad | Jordan | Samoa | |
Malta | Chile | Kenya | Sao Tome and Principe | |
Netherlands | China a | Kiribati | Saudi Arabia | |
New Zealand | Colombia | Kuwait | Senegal | |
Norway | Comoros | Lao People’s Democratic Republic | Sierra Leone | |
Poland | Congo | Lebanon | Singapore | |
Portugal | Costa Rica | Lesotho | Solomon Islands | |
Romania | Côte d’Ivoire | Liberia | Somalia | |
Slovakia | Cuba | Libya | South Africa | |
Slovenia | Democratic People’s Republic of Korea | Madagascar | South Sudan | |
Spain | Democratic Republic of the Congo | Malawi | Sri Lanka | |
Sweden | Djibouti | Malaysia | State of Palestine | |
Switzerland | Dominican Republic | Maldives | Sudan | |
United Kingdom | Ecuador | Mali | Suriname | |
United States | Egypt | Mauritania | Syrian Arab Republic |
Variant | The Global | Soybean | Wheat | Rice | Maize |
---|---|---|---|---|---|
Trade_ij | Trade_ij | Trade_ij | Trade_ij | Trade_ij | |
lnSWCOVID_i | −0.011 * | −0.017 * | −0.041 ** | 0.035 | −0.134 *** |
(0.008) | (0.014) | (0.021) | (0.008) | (0.014) | |
lnSWCOVID_j | −0.021 *** | −0.026 * | −0.076 *** | −0.060 *** | 0.109 |
(0.007) | (0.014) | (0.019) | (0.007) | (0.012) | |
lnGDP_i | 0.444 *** | 0.952 *** | 0.186 *** | 0.311 *** | 0.337 *** |
(0.010) | (0.024) | (0.027) | (0.010) | (0.018) | |
lnGDP_j | 0.247 *** | 0.164 *** | 0.173 *** | 0.032 *** | 0.079 *** |
(0.010) | (0.021) | (0.027) | (0.011) | (0.018) | |
WTO_ij | 0.777 *** | −0.676 *** | 1.172 *** | 0.797 *** | 0.091 |
(0.074) | (0.166) | (0.161) | (0.074) | (0.124) | |
Border_ij | 2.825 *** | 2.477 *** | 2.852 *** | 2.407 *** | 2.874 *** |
(0.068) | (0.115) | (0.131) | (0.070) | (0.091) | |
Language_ij | 0.087 * | 1.477 *** | −0.331 *** | 0.192 *** | −0.180 ** |
(0.048) | (0.096) | (0.111) | (0.051) | (0.072) | |
lnDistance_ij | −0.403 *** | 0.035 | 0.171 | 0.018 | −0.390 *** |
(0.020) | (0.039) | (0.045) | (0.021) | (0.031) | |
Rta_ij | −0.627 *** | −1.492 *** | 0.681 *** | −1.135 *** | 0.215 *** |
(0.039) | (0.085) | (0.112) | (0.041) | (0.070) | |
landlocked_ij | −1.031 *** | −0.558 *** | −0.962 *** | −1.377 *** | −1.193 *** |
(0.046) | (0.099) | (0.111) | (0.048) | (0.076) | |
Colony_ij | −0.665 *** | 0.186 | −1.412 *** | −1.166 *** | −0.346 ** |
(0.112) | (0.184) | (0.200) | (0.115) | (0.154) | |
Comcol_ij | 0.886 *** | 0.857 *** | −1.202 *** | 1.536 *** | −0.054 |
(0.075) | (0.176) | (0.226) | (0.074) | (0.134) | |
Curcol_ij | 1.574 *** | −0.999 | −0.089 | 2.040 *** | 3.676 *** |
(0.509) | (1.425) | (0.847) | (0.507) | (0.695) | |
Col45_ij | −0.011 | −1.946 *** | 1.959 *** | 0.304 * | −1.976 *** |
(0.154) | (0.301) | (0.324) | (0.157) | (0.237) | |
constant | −4.450 *** | −19.828 *** | −1.091 | 0.703 * | 1.532 ** |
(0.398) | (0.915) | (1.024) | (0.404) | (0.677) | |
N | 69,638.000 | 17,416.000 | 18,209.000 | 49,366.000 | 28,625.000 |
R2 | 0.089 | 0.154 | 0.053 | 0.098 | 0.092 |
References
- Adamchick, J.; Perez, A.M. Choosing awareness over fear: Risk analysis and free trade support global food security. Glob. Food Secur. 2020, 26, 100445. [Google Scholar] [CrossRef]
- Queiroz, C.; Norström, A.V.; Downing, A.; Harmáčková, Z.V.; De Coning, C.; Adams, V.; Bakarr, M.; Baedeker, T.; Chitate, A.; Gaffney, O.; et al. Investment in resilient food systems in the most vulnerable and fragile regions is critical. Nat. Food 2021, 2, 546–551. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Building a Common Vision for Sustainable Food and Agriculture. Available online: http://www.fao.org/3/a-i3940e.pdf (accessed on 10 May 2023).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 13 May 2023).
- Mustafa, M.A.; Mabhaudhi, T.; Massawe, F. Building a resilient and sustainable food system in a changing world–A case for climate-smart and nutrient dense crops. Glob. Food Secur. 2021, 28, 100477. [Google Scholar] [CrossRef]
- Wassénius, E.; Porkka, M.; Nyström, M.; Søgaard Jørgensen, P. A global analysis of potential self-sufficiency and diversity displays diverse supply risks. Glob. Food Secur. 2023, 37, 100673. [Google Scholar] [CrossRef]
- O’Hara, S.; Toussaint, E.C. Food access in crisis: Food security and COVID-19. Ecol. Econ. 2021, 180, 106859. [Google Scholar] [CrossRef]
- Udmale, P.; Pal, I.; Szabo, S.; Pramanik, M.; Large, A. Global food security in the context of COVID-19: A scenario-based exploratory analysis. Prog. Disaster Sci. 2020, 7, 100120. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Di, L.; Yu, E.G.; Tang, J.; Lin, L.; Zhang, C.; Yu, Z.; Gaigalas, J. Impact of climate change on soil salinity: A remote sensing based investigation in coastal bangladesh. In Proceedings of the 2018 7th International Conference on Agro-GeoinforMatics (Agro-Geoinformatics), Hangzhou, China, 6–9 August 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Barker, M.; Russell, J. Feeding the food insecure in Britain: Learning from the 2020 COVID-19 crisis. Food Secur. 2020, 12, 865–870. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Reflections on China’s food security and land use policy under rapid urbanization. Land Use Policy 2021, 109, 105699. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, P.K. Soil Salinity and Food Security in India. Front. Sustain. Food Syst. 2020, 4, 174. [Google Scholar] [CrossRef]
- FSIN and Global Network Against Food Crises. 2023. GRFC 2023. Available online: http://www.fsinplatform.org/sites/default/files/resources/files/GRFC2023-hi-res.pdf (accessed on 7 April 2023).
- Deaton, B.J. Food security and Canada’s agricultural system challenged by COVID-19. Can. J. Agric. Econ. 2020, 68, 143–149. [Google Scholar] [CrossRef]
- Niles, M.T.; Bertmann, F.; Belarmino, E.H.; Wentworth, T.; Biehl, E.; Neff, R. The Early Food Insecurity Impacts of COVID-19. Nutrients 2020, 12, 2096. [Google Scholar] [CrossRef]
- Davis, K.F.; Downs, S.; Gephart, J.A. Towards food supply chain resilience to environmental shocks. Nat. Food 2021, 2, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Egamberdiev, B.; Bobojonov, I.; Kuhn, L.; Glauben, T. Household resilience capacity and food security: Evidence from Kyrgyzstan. Food Secur. 2023, 15, 967–988. [Google Scholar] [CrossRef]
- Núñez-López, J.M.; Cansino-Loeza, B.; Sánchez-Zarco, X.G.; Ponce-Ortega, J.M. Involving resilience in assessment of the water–energy–food nexus for arid and semiarid regions. Clean Technol. Environ. Policy 2022, 24, 1681–1693. [Google Scholar] [CrossRef]
- Wood, A.; Queiroz, C.; Deutsch, L.; González-Mon, B.; Jonell, M.; Pereira, L.; Sinare, H.; Svedin, U.; Wassénius, E. Reframing the local–global food systems debate through a resilience lens. Nat. Food 2023, 4, 22–29. [Google Scholar] [CrossRef]
- Hertel, T.; Elouafi, I.; Tanticharoen, M.; Ewert, F. Diversification for enhanced food systems resilience. Nat. Food 2021, 2, 832–834. [Google Scholar] [CrossRef]
- Kummu, M.; Kinnunen, P.; Lehikoinen, E.; Porkka, M.; Queiroz, C.; Röös, E.; Troell, M.; Weil, C. Interplay of trade and food system resilience: Gains on supply diversity over time at the cost of trade independency. Glob. Food Secur. 2020, 24, 100360. [Google Scholar] [CrossRef]
- Matkovski, B.; Dokic, D.; Zekic, S.; Jurjevic, Z. Determining Food Security in Crisis Conditions: A Comparative Analysis of the Western Balkans and the EU. Sustainability 2020, 12, 9924. [Google Scholar] [CrossRef]
- Porkka, M.; Guillaume, J.; Siebert, S.; Schaphoff, S.; Kummu, M. The use of food imports to overcome local limits to growth. Earth’s Future 2017, 5, 393–407. [Google Scholar] [CrossRef]
- Olufemi-Phillips, A.Q.; Igwe, A.N.; Toromade, A.S.; Eyo-Udo, N.L.; Titilope, T.A. Global trade dynamics’ impact on food pricing and supply chain resilience: A quantitative model. World J. Adv. Res. Rev. 2024, 24, 492–519. [Google Scholar] [CrossRef]
- Dithmer, J.; Abdulai, A. Does trade openness contribute to food security? A dynamic panel analysis. Food Policy 2017, 69, 218–230. [Google Scholar] [CrossRef]
- Aguiar, S.; Texeira, M.; Garibaldi, L.A.; Jobbágy, E.G. Global changes in crop diversity: Trade rather than production enriches supply. Glob. Food Secur. 2020, 26, 100385. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y.; Wu, B.; Wang, B.; Li, L.; Shi, H.; Jin, N.; Liu, D.L.; Miao, R.; Lu, X.; et al. Building social resilience in North Korea can mitigate the impacts of climate change on food security. Nat. Food 2022, 3, 499–511. [Google Scholar] [CrossRef]
- Wang, X.; Ma, L.; Yan, S.; Chen, X.; Growe, A. Trade for Food Security: The Stability of Global Agricultural Trade Networks. Foods 2023, 12, 271. [Google Scholar] [CrossRef]
- Béné, C.; Frankenberger, T.R.; Nelson, S.; Constas, M.A.; Collins, G.; Langworthy, M.; Fox, K. Food system resilience measurement: Principles, framework and caveats. Food Secur. 2023, 15, 1437–1458. [Google Scholar] [CrossRef]
- d’Errico, M.; Pinay, J.; Jumbe, E.; Luu, A.H. Drivers and stressors of resilience to food insecurity: Evidence from 35 countries. Food Secur. 2023, 15, 1161–1183. [Google Scholar] [CrossRef]
- KC, U.; Campbell-Ross, H.; Godde, C.; Friedman, R.; Lim-Camacho, L.; Crimp, S. A systematic review of the evolution of food system resilience assessment. Glob. Food Secur. 2024, 40, 100744. [Google Scholar] [CrossRef]
- Fan, S.; Teng, P.; Chew, P.; Smith, G.; Copeland, L. Food system resilience and COVID-19–Lessons from the Asian experience. Glob. Food Secur. 2021, 28, 100501. [Google Scholar] [CrossRef]
- Wentworth, C.; Warsaw, P.; Isaacs, K.; Traore, A.; Hammon, A.; Lewis, A. The resilience and viability of farmers markets in the United States as an alternative food network: Case studies from Michigan during the COVID-19 pandemic. Agric. Hum. Values 2023, 40, 1481–1496. [Google Scholar] [CrossRef]
- Bentley, A.R.; Donovan, J.; Sonder, K.; Baudron, F.; Lewis, J.M.; Voss, R.; Rutsaert, P.; Poole, N.; Kamoun, S.; Saunders, D.G.O.; et al. Near- to long-term measures to stabilize global wheat supplies and food security. Nat. Food 2022, 3, 483–486. [Google Scholar] [CrossRef]
- Maitre d’Hôtel, E.; Béné, C.; Pelloquin, R.; Badaoui, O.; Gharba, F.; Sankima, J. Resilience of food system actors to armed conflicts: Empirical insights from Burkina Faso. Food Secur. 2023, 15, 1275–1292. [Google Scholar] [CrossRef]
- Harris, F.; Amarnath, G.; Joy, E.J.; Dangour, A.D.; Green, R.F. Climate-related hazards and Indian food supply: Assessing the risk using recent historical data. Glob. Food Secur. 2022, 33, 100625. [Google Scholar] [CrossRef]
- Ahvo, A.; Heino, M.; Sandström, V.; Chrisendo, D.; Jalava, M.; Kummu, M. Agricultural input shocks affect crop yields more in the high-yielding areas of the world. Nat. Food 2023, 4, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Laborde, D.; Martin, W.; Swinnen, J.; Vos, R. COVID-19 risks to global food security. Science 2020, 369, 500–502. [Google Scholar] [CrossRef]
- Bai, Y.; Costlow, L.; Ebel, A.; Laves, S.; Ueda, Y.; Volin, N.; Zamek, M.; Masters, W.A. Retail prices of nutritious food rose more in countries with higher COVID-19 case counts. Nat. Food 2022, 3, 325–330. [Google Scholar] [CrossRef]
- Priyadarshini, P.; Abhilash, P.C. Agri-food systems in India: Concerns and policy recommendations for building resilience in post COVID-19 pandemic times. Glob. Food Secur. 2021, 29, 100537. [Google Scholar] [CrossRef]
- Gebeyehu, D.T.; East, L.; Wark, S.; Islam, M.S. Direct and indirect crisis of food security due to COVID-19 emergence in Addis Ababa and Amhara regions, Ethiopia: A lesson for the inevitable pandemics. BMC Public Health 2025, 25, 866. [Google Scholar] [CrossRef]
- Boratyńska, K. Risk Challenges and Their Impact on the Sustainable Food Security System: Lessons Learned from the COVID-19 Pandemic. Sustainability 2025, 17, 226. [Google Scholar] [CrossRef]
- Karan, E.P.; Asgari, S.; Asadi, S. Resilience assessment of centralized and distributed food systems. Food Secur. 2023, 15, 59–75. [Google Scholar] [CrossRef]
- Love, D.C.; Allison, E.H.; Asche, F.; Belton, B.; Cottrell, R.S.; Froehlich, H.E.; Gephart, J.A.; Hicks, C.C.; Little, D.C.; Nussbaumer, E.M.; et al. Emerging COVID-19 impacts, responses, and lessons for building resilience in the seafood system. Glob. Food Secur. 2021, 28, 100494. [Google Scholar] [CrossRef]
- Bhavani, R.V.; Gopinath, R. The COVID19 pandemic crisis and the relevance of a farm-system-for-nutrition approach. Food Secur. 2020, 12, 881–884. [Google Scholar] [CrossRef] [PubMed]
- Bitzer, V.; Kruijssen, F.; Mugisha, J.; Waswa, L.; Aliso, J.; Nakazzi, B. Vulnerability and resilience among farmers and market actors in local agri-food value chains in the face of COVID-19 disruptions: Findings from Uganda and Kenya. Food Secur. 2024, 16, 185–200. [Google Scholar] [CrossRef]
- Kumar, A.; Padhee, A.K.; Kumar, S. How Indian agriculture should change after COVID-19. Food Secur. 2020, 12, 837–840. [Google Scholar] [CrossRef]
- Angelidis, G.; Ioannidis, E.; Makris, G.; Antoniou, I.; Varsakelis, N. Competitive Conditions in Global Value Chain Networks: An Assessment Using Entropy and Network Analysis. Entropy 2020, 22, 1068. [Google Scholar] [CrossRef]
- Lu, Y.; Wolszczak-Derlacz, J. The impact of China’s One-Belt One-Road initiative on international trade and global value chains. Asia-Pac. J. Account. Econ. 2024, 32, 163–180. [Google Scholar] [CrossRef]
- Sousa Filho, J.F.D.; Santos, G.F.D.; Ribeiro, L.C.D.S.; Cerqueira, R.B.D.; Lima, L.L. Global value chains and intra-BRICs trade in value-added. J. Gov. Econ. 2024, 16, 100127. [Google Scholar] [CrossRef]
- Antràs, P.; Chor, D. Global value chains. Handb. Int. Econ. 2022, 5, 297–376. [Google Scholar] [CrossRef]
- Hedlund, J.; Carlsen, H.; Croft, S.; West, C.; Bodin, O.; Stokeld, E.; Jagermeyr, J.; Mueller, C. Impacts of climate change on global food trade networks. Environ. Res. Lett. 2022, 17, 124040. [Google Scholar] [CrossRef]
- Qiang, W.; Niu, S.; Wang, X.; Zhang, C.; Liu, A.; Cheng, S. Evolution of the Global Agricultural Trade Network and Policy Implications for China. Sustainability 2019, 12, 192. [Google Scholar] [CrossRef]
- Nie, C.; Jiang, H.; Duan, J. Spatial Pattern Evolution of Global Grain Trade Network Since the 21st Century. Econ. Geogr. 2021, 41, 119–127. (In Chinese) [Google Scholar] [CrossRef]
- Silvestrini, M.M.; Smith, N.W.; Sarti, F.M. Evolution of global food trade network and its effects on population nutritional status. Curr. Res. Food Sci. 2023, 6, 100517. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Wang, J. Implications from pattern and evolution of global rice trade: A complex network analysis. J. Nat. Resour. 2020, 35, 1055–1067. [Google Scholar] [CrossRef]
- Duan, J.; Nie, C.; Wang, Y.; Yan, D.; Xiong, W. Research on Global Grain Trade Network Pattern and Its Driving Factors. Sustainability 2021, 14, 245. [Google Scholar] [CrossRef]
- Dong, C.; Yin, Q.J.; Lane, K.J.; Yan, Z.J.; Shi, T.Y.; Liu, Y.; Bell, M.L. Competition and transmission evolution of global food trade: A case study of wheat. Physica. A. 2018, 509, 998–1008. [Google Scholar] [CrossRef]
- Pu, M.; Zhong, Y. Rising concerns over agricultural production as COVID-19 spreads: Lessons from China. Glob. Food Secur. 2020, 26, 100409. [Google Scholar] [CrossRef]
- Erokhin, V.; Gao, T. Impacts of COVID-19 on Trade and Economic Aspects of Food Security: Evidence from 45 Developing Countries. Int. J. Environ. Res. Public Health 2020, 17, 5775. [Google Scholar] [CrossRef]
- Falkendal, T.; Otto, C.; Schewe, J.; Jagermeyr, J.; Konar, M.; Kummu, M.; Watkins, B.; Puma, M.J. Grain export restrictions during COVID-19 risk food insecurity in many low- and middle-income countries. Nat. Food 2021, 2, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Nechifor, V.; Ramos, M.P.; Ferrari, E.; Laichena, J.; Kihiu, E.; Omanyo, D.; Musamali, R.; Kiriga, B. Food security and welfare changes under COVID-19 in Sub-Saharan Africa: Impacts and responses in Kenya. Glob. Food Secur. 2021, 28, 100514. [Google Scholar] [CrossRef]
- Laborde, D.; Martin, W.; Vos, R. Impacts of COVID-19 on global poverty, food security, and diets: Insights from global model scenario analysis. Agric. Econ. 2021, 52, 375–390. [Google Scholar] [CrossRef]
- Yao, H.; Zuo, X.; Zuo, D.; Lin, H.; Huang, X.; Zang, C. Study on soybean potential productivity and food security in China under the influence of COVID-19 epidemic. Geogr. Sustain. 2020, 1, 163–171. [Google Scholar] [CrossRef]
- O’Meara, L.; Turner, C.; Coitinho, D.C.; Oenema, S. Consumer experiences of food environments during the COVID-19 pandemic: Global insights from a rapid online survey of individuals from 119 countries. Glob. Food Secur. 2022, 32, 100594. [Google Scholar] [CrossRef]
- Ali, Z.; Green, R.; Zougmoré, R.B.; Mkuhlani, S.; Palazzo, A.; Prentice, A.M.; Haines, A.; Dangour, A.D.; Scheelbeek, P.F.D. Long-term impact of West African food system responses to COVID-19. Nat. Food 2020, 1, 768–770. [Google Scholar] [CrossRef]
- United Nations. 2022. World Economic Situation and Prospects 2022 Report. Available online: https://www.un.org/development/desa/dpad/publication/world-economic-situation-and-prospects-2022/ (accessed on 7 April 2023).
- United Nations. Available online: https://comtradeplus.un.org/ (accessed on 22 December 2024).
- Center for Systems Science and Engineering at Johns Hopkins University. 2023. Available online: https://github.com/CSSEGISandData/COVID-19 (accessed on 20 May 2023).
- United Nations. 2022. World Population Prospects 2022. Available online: https://population.un.org/wpp/downloads?folder=Standard%20Projections&group=Most%20used (accessed on 31 May 2023).
- CEPII. GeoDist Database. Available online: https://cepii.fr/CEPII/en/bdd_modele/bdd_modele.asp (accessed on 29 December 2024).
- Egger and Larch. 2008. Available online: https://www.ewf.uni-bayreuth.de/en/research/RTA-data/index.html (accessed on 30 December 2024).
- World Trade Organization. Available online: https://globaltradedata.wto.org/official-data (accessed on 14 December 2024).
- World Bank Group. Available online: https://data.worldbank.org.cn/ (accessed on 18 December 2024).
- D’Odorico, P.; Carr, J.A.; Laio, F.; Ridolfi, L.; Vandoni, S. Feeding humanity through global food trade. Earth Future 2014, 2, 458–469. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Zhou, W.X. Quantifying the status of economies in international crop trade networks: An correlation structure analysis of various node-ranking metrics. arXiv 2023, arXiv:2303.00669. [Google Scholar] [CrossRef]
- Wang, J.; Dai, C. Evolution of Global Food Trade Patterns and Its Implications for Food Security Based on Complex Network Analysis. Foods 2021, 10, 2657. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Y.; Feng, Z.; Xiao, C.; Lang, T.; Du, W.; Liu, Y. Risk of Global External Cereals Supply under the Background of the COVID-19 Epidemic: Based on the Perspective of Trade Network. Foods 2021, 10, 1168. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, X. Understanding Global Rice Trade Flows: Network Evolution and Implications. Foods 2023, 12, 3298. [Google Scholar] [CrossRef]
- Wang, M.; Liu, D.; Wang, Z.; Li, Y. Structural Evolution of Global Soya beans Trade Network and the Implications to China. Foods 2023, 12, 1550. [Google Scholar] [CrossRef]
- Liu, M.; Lin, F. The Impact of COVID-19 Pandemic on the Resilience of China’s Agricultural Trade. Int. Econ. Trade Res. 2023, 39, 51–67. (In Chinese) [Google Scholar] [CrossRef]
- Liu, H.; Zhang, N.; Lu, Y.; Chen, X. A Study on the Impact of COVID-19 on Global Trade. Stat. Res. 2021, 38, 61–76. (In Chinese) [Google Scholar] [CrossRef]
- Puma, M.J.; Bose, S.; Chon, S.Y.; Cook, B.I. Assessing the evolving fragility of the global food system. Environ. Res. Lett. 2015, 10, 024007. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, H. Characterizing the Structural Evolution of Cereal Trade Networks in the Belt and Road Regions: A Network Analysis Approach. Foods 2022, 11, 1468. [Google Scholar] [CrossRef]
- Zhou, L.; Tong, G. Structural Evolution and Sustainability of Agricultural Trade between China and Countries along the “Belt and Road”. Sustainability 2022, 14, 9512. [Google Scholar] [CrossRef]
- Khorana, S.; Martínez-Zarzoso, I.; Ali, S. An anatomy of the impact of COVID-19 on the global and intra-Commonwealth trade in goods. Rev. Int. Econ. 2023, 31, 550–579. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, Y.; Wang, J. Global Food Security under COVID-19: Comparison and Enlightenment of Policy Responses in Different Countries. Foods 2021, 10, 2850. [Google Scholar] [CrossRef]
- Nadal, A.; Nazar-Beutelspacher, D.A. COVID-19: Solidarity initiatives for food security in the Mayan indigenous region of south-southeast Mexico. Glob. Food Secur. 2023, 37, 100697. [Google Scholar] [CrossRef]
- Workie, E.; Mackolil, J.; Nyika, J.; Ramadas, S. Deciphering the impact of COVID-19 epidemic on food security, agriculture, and livelihoods: A review of the evidence from developing countries. Curr. Res. Food Sci. 2020, 2, 100014. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, S.; Zhang, Y. Combined Impacts of COVID-19 Epidemic and Locust Plague on Grain Production and Trade Patterns in South Asia. Agriculture 2023, 13, 1212. [Google Scholar] [CrossRef]
- Bryan, E.; Alvi, M.; Huyer, S.; Ringler, C. Addressing gender inequalities and strengthening women’s agency to create more climate-resilient and sustainable food systems. Glob. Food Secur. 2024, 40, 100731. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, P.; Li, M.; Niu, J. The evolution of global soya beans trade network pattern based on complex network. Appl. Econ. 2023, 56, 3133–3149. [Google Scholar] [CrossRef]
- Wang, G.; Musa, R.B.; Li, B.H.; Liu, X.X. Evolution of global grain trade network and supply risk assessment based on complex network. New Medit 2023, 22, 43–55. [Google Scholar] [CrossRef]
- von Braun, J.; Afsana, K.; Fresco, L.O.; Hassan, M.; Torero, M. Food system concepts and definitions for science and political action. Nat. Food 2021, 2, 748–750. [Google Scholar] [CrossRef]
- Ansah, I.G.K.; Gardebroek, C.; Ihle, R. Resilience and household food security: A review of concepts, methodological approaches and empirical evidence. Food Secur. 2019, 11, 1187–1203. [Google Scholar] [CrossRef]
Variant | Global | Soybean | Wheat | Rice | Maize |
---|---|---|---|---|---|
Trade_ij | Trade_ij | Trade_ij | Trade_ij | Trade_ij | |
lnGRCOVID_i | −0.019 ** | −0.042 ** | −0.033 * | 0.030 | −0.182 *** |
(0.008) | (0.016) | (0.023) | (0.009) | (0.015) | |
lnGRCOVID_j | −0.003 * | −0.027 * | −0.059 *** | −0.051 *** | 0.155 |
(0.008) | (0.014) | (0.022) | (0.008) | (0.014) | |
lnGDP_i | 0.454 *** | 0.941 *** | 0.192 *** | 0.314 *** | 0.361 *** |
(0.010) | (0.024) | (0.027) | (0.010) | (0.018) | |
lnGDP_j | 0.236 *** | 0.176 *** | 0.161 *** | 0.024 ** | 0.055 *** |
(0.011) | (0.021) | (0.028) | (0.011) | (0.018) | |
WTO_ij | 0.774 *** | −0.691 *** | 1.167 *** | 0.793 *** | 0.082 |
(0.074) | (0.166) | (0.161) | (0.074) | (0.124) | |
Border_ij | 2.826 *** | 2.468 *** | 2.849 *** | 2.415 *** | 2.869 *** |
(0.068) | (0.115) | (0.131) | (0.070) | (0.091) | |
Language_ij | 0.083 * | 1.498 *** | −0.332 *** | 0.189 *** | −0.172 ** |
(0.048) | (0.096) | (0.111) | (0.051) | (0.072) | |
lnDistance_ij | −0.401 *** | 0.037 | 0.170 | 0.024 | −0.387 *** |
(0.020) | (0.039) | (0.044) | (0.021) | (0.031) | |
Rta_ij | −0.628 *** | −1.478 *** | 0.675 *** | −1.138 *** | 0.236 *** |
(0.039) | (0.085) | (0.112) | (0.041) | (0.070) | |
landlocked_ij | −1.029 *** | −0.570 *** | −0.963 *** | −1.377 *** | −1.190 *** |
(0.046) | (0.099) | (0.112) | (0.048) | (0.076) | |
Colony_ij | −0.663 *** | 0.169 | −1.410 *** | −1.167 *** | −0.349 ** |
(0.112) | (0.184) | (0.201) | (0.115) | (0.153) | |
Comcol_ij | 0.890 *** | 0.870 *** | −1.205 *** | 1.537 *** | −0.054 |
(0.075) | (0.176) | (0.226) | (0.074) | (0.133) | |
Curcol_ij | 1.594 *** | −0.948 | −0.071 | 2.056 *** | 3.741 *** |
(0.509) | (1.426) | (0.848) | (0.507) | (0.694) | |
Col45_ij | −0.014 | −1.968 *** | 1.943 *** | 0.298 * | −1.981 *** |
(0.154) | (0.301) | (0.324) | (0.157) | (0.237) | |
constant | −4.370 *** | −19.804 *** | −0.879 | 0.826 ** | 1.557 ** |
(0.396) | (0.913) | (1.021) | (0.402) | (0.674) | |
N | 69638.000 | 17416.000 | 18209.000 | 49366.000 | 28625.000 |
R2 | 0.089 | 0.153 | 0.053 | 0.098 | 0.094 |
Variant | Soybean | Wheat | Rice | Maize |
---|---|---|---|---|
Trade_ij | Trade_ij | Trade_ij | Trade_ij | |
lnCOVID_i | −0.055 ** | 0.015 | 0.032 | −0.098 *** |
(0.022) | (0.029) | (0.011) | (0.021) | |
lnCOVID_j | −0.041 * | −0.047 * | −0.052 *** | 0.078 |
(0.017) | (0.029) | (0.010) | (0.021) | |
Control variables | yes | yes | yes | yes |
N | 12057 | 11878 | 29868 | 16710 |
R2 | 0.214 | 0.174 | 0.172 | 0.160 |
Variant | Soybean | Wheat | Rice | Maize |
---|---|---|---|---|
Trade_ij | Trade_ij | Trade_ij | Trade_ij | |
lnCOVID_i | −0.138 *** | 0.071 | 0.037 | −0.275 *** |
(0.029) | (0.039) | (0.015) | (0.023) | |
lnCOVID_j | 0.136 | −0.082 ** | −0.060 *** | 0.231 |
(0.026) | (0.034) | (0.012) | (0.020) | |
Control variables | yes | yes | yes | yes |
N | 5359 | 6331 | 19498 | 11915 |
R2 | 0.169 | 0.047 | 0.065 | 0.075 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Xu, L.; Ma, H.; Zhang, X.; Tang, L. The Evolution of Global Food Trade Systems and Their Resilience in Response to COVID-19: Performance Across Nations. Agriculture 2025, 15, 1761. https://doi.org/10.3390/agriculture15161761
Zhao Z, Xu L, Ma H, Zhang X, Tang L. The Evolution of Global Food Trade Systems and Their Resilience in Response to COVID-19: Performance Across Nations. Agriculture. 2025; 15(16):1761. https://doi.org/10.3390/agriculture15161761
Chicago/Turabian StyleZhao, Zhimeng, Lili Xu, Haoyan Ma, Xuesong Zhang, and Liping Tang. 2025. "The Evolution of Global Food Trade Systems and Their Resilience in Response to COVID-19: Performance Across Nations" Agriculture 15, no. 16: 1761. https://doi.org/10.3390/agriculture15161761
APA StyleZhao, Z., Xu, L., Ma, H., Zhang, X., & Tang, L. (2025). The Evolution of Global Food Trade Systems and Their Resilience in Response to COVID-19: Performance Across Nations. Agriculture, 15(16), 1761. https://doi.org/10.3390/agriculture15161761